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Numerical studies by M. Feigenbaum have exhibited what appears
to be a new codimension bifurcation for maps f : [-1,1]+—— [-1,1] .
Feigenbaum's heuristic approach (see [4],[5]) 1is in the process of being
rigorized (see [3],[7],[1]) and extended to diffeowmorphisms and flows in
several dimensions (see [2],[6]) . We refer to [3] for a lucid introduc-
tion to the problem. We shall here be concerned only with Feigenbaum's

first step, which was to solve the equation

gog(x) + Ag(x) =0 1 (
1)

g : [-1,1]—[-1,1] even , g() =1 |

Feigenbaum showed numerically that there is A = 0.39953528... such that
(1) has a solution g which behaves like 1-const. x2 at the origin. This
has been made rigorous by 0. Lanford [7] who found that (1) has an analy-
tic solution. Lanford éirst guesses (numerically) a good approximation to
g by a polynomial of order 40 . Then he proves by Newton's method that
(1) has a solution close to the guessed approximation. This is simple and
perfectly rigorous, but involves calculations beyond human ability (they
are done by computer). In the present note a method for solving (1) is out-
lined, which does not involve superhuman calculations (although a small
computer was used in fact to do them). The details are in [1] . The solution
which we discuss is Feigenbaum's solution, shown in Figure 1. If numerical
computations are to be trusted, Figure 2 presents another solution h be-
4

having like 1l-const. x  at the origin. Figure 3 shows xv— h(V§)2 which

is again a solution, but corresponding to negative )\

We look for a solution g of (1) satisfying also



g smooth *) and g"(0) < O (2)

Our basic idea is that the functional equation for f2

£,(x) = @of,(O0x) (3)

(where ), are given) is relatively easy to analyze. [This equation
just says that the graph of f2 is invariant under (X,y)+—— (A—lx,w(y))].

We replace therefore (1), (2) by the problem
o ]
£ fz(xx) + ) fz(x) 0 (4)
f1 = f2 (5)

£, : [-1,1]i— [-1,1] smooth, even, f2(0)= 1, f;(0)< 0

(6)

The solvability of (4) with respect to f, (with £,(0) =1, £(0) # 0)

requires

fl(l) + 1 =0 (7)

Afi(l) +1=0 (8)
Modulo (7) we may rewrite (4) as

flofz(xx) + A, (x) = fl(l) * ) (4a)

(which is again of the form (3)) . We shall try to solve the system (4a),

(5), (6) , adjust A such that fl(l) + A =0, and take g = f1 = f2 .

*)We shall later take g(x) of class C3 as a function of x2 . There exist
many cl solutions. In particular, the existence of a solution which behaves
like 1~const|x|1+€ is established in [3] for small ¢ , and suitable A (¢)



The condition fl(l) + A =0 shows that ) 1s not arbitrary : our
problem is a non linear eigenvalue problem. Let f2 be a solution of (4a)

for given f1 s A . Then X i —— fz(kx) is again a solution. In view of

(5), (8) we shall 1lift this ambiguity by choosing the solution f2 such

that Afé(l) +1=0.

Notice that (4a) determines fz(x) for x near O in terms of
fl(y) for y near 1 *) . In view of these dissimilar roles of f1 and

f2 it is convenient to introduce new variables. Let us write
-1
F(x) = A [El(1~X) o fl(l)]
2
£,(0 =1 - p(x)

Then, (4a), (5) become

u(t) = F°w(A2t)
6x) = A L p((1-0)%) + w(1)] \l (5b)
F =G [

where it is assumed that F(0) =0 , F'(0) = x_z . One looks for a solution

] of (4b) satisfying

2xp' (1) =1 (8b)

and imposes (5b) . If ) 1is such that

p(1) =1 + ) (7b)

we have a solution of the original problem.

We may reformulate the problem as that of finding a fixed point

¥) )
In particular one cannot hope to determine simply from (1) the coefficients
of the power series expansion of g at the origin.



F of the map ¢A : F—— ¥i—— > G where Yy 1is defined by
¥() = FEGZ) , ¥0) =0, ¥'(0) =1 (9)
and
=1 2
G(x) = A [¥ (@) -¥a(l-x)7)] (10)

where o 1is determined by

2020v'(@) =1

[in this notation y(t) = y(xt)] . Finally determine A such that

Y(au) =1 + A .

From (9) and the assumed smoothness one gets formulae such as

oo

1 (2P0 o))

¥'(t) =
n=1
1 * " 2n
;ﬂ'gzg G e AZn\P,(>\2nt) _F (\V(xz t))
n=1 F'(Y(\“"t))

sH @) = & 2 22012 6sE) (1 (7))
n=1

where Sf = (f"/f")' - %»(f"/f')2 is the Schwarzian derivative. These
formulae give a good control on ¥ . Notice that these formulae require
the knowledge of F only on the range of t —— W(Azt) , t € [0,a] .
For the purpose of finding fixed points of ¢A , it will thus be possible

to consider functions F on [0,A] with A smaller than 1 .

The strategy will now be the following. We choose an interval



J of values of ) and for each X € J define a nonempty set MA of
functions F on some interval [0,A] such that ¢A Mx (o MA and ¢A is

a contraction on MA with respect to some metric d . The map ¢A has thus

a unique fixed point FA in the closure of MA . Uniqueness implies con-
tinuity of A +—— FX and thus of )A+—— ¥(a) - 1- 2 . Finally one checks
that Y(a) - 1-2 has different signs at both ends of the interval J .
Therefore there is at least one ) € J for which ¥(a) = 1+2X , and this
yields a solution of our original problem (1) . A priori, FA is only in
the closure of MA , there may thus be an annoying loss of differentiabi-
lity. A little miracle occurs however which saves the situation :MA contains
is analyticity improving. The fixed point F

analytic functions, and ¢

A A

is thus real analytic, and the same is true of the solution g of (1)
Implementing the details of the above program is real work (see

[1] ) , and involves in particular numerical computations. Here we give

only general indication. The interval J 1is chosen as [V.152,/.165] . Then

A is chosen as a function of )\ (piecewise constant and < .261) . The set

M is convex and defined in terms of a set M; such that

A X

" n _ y
F € MA a-%T € Mi (notice that if s = %T , then F(x) = [ dya 2exp.f s(z)dz).
o o

p 1 .
The convex set Mi consists of the C functions on [0,A] such that

-1-}-}—{ - 2,17 - 23(1—}()3 < -s() < ﬁ - e, (1x) - c3(1—x)3

(11)
s'(x) + s(x)2=< 0
-s'(x) < L (12)

where 21,23,c1,c3 , L are given as piecewise constant functions of

A,Ogclgzl,

then G"/G' satisfies (11) on [O,1] (not just [0,A]) . In particular,

0 < c3:§ 23 3 21-+23 < 1 . It turns out that if T € MA 2



G"/6' <0 and GM/G'< O . Since G'(0) = X , we have G' >0,

G"<0, G"<0 on [0,1] . The metric d on MA is given by the follow-

ing norm on M;‘

||s|| = sup I(l-x)_1 s(x)] .
o<x<A

As to the analiticity improving character of <I>A , one shows that if

F € M}\ and

|%. (%)n F(X)IS__)\-Z Bn_1 for x € [0,1] , n >1
with B > 1.8 , then

|-I% (%HF(X)'§}\_2 e for x € [0,1] , n>1

with B < B .

Theorem : There is at least one number ) € [V.152,V.165] for which the

functional equation

geg(Ax) + ag(x) =0 , g =1

has an even smooth solution on [-1,1] . The solution found has the follow-

ing further properties

g"(0) <0
g(l) + 2 =0, 2g'(1) +1=0

g'(x) <0, g"x

A

0, g (x) >0 on [0,1]

n il i
Iﬁ (ix) g(x)] < ,xl 10 i for x€F1L,1) ,m3 1.
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