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Abstract. In this paper we study rigorously the statistical mechanics of a gas of 
vortices in the thermodynamic limit. In this limit, no negative temperature 
states are found to exist. 

O. Introduction 

When the motion of a fluid may be considered as approximately two-dimensional, 
the fluid often exhibits well-defined vortices. The existence of such vortices is an 
experimental fact, which Poincar6 already tried to explain 1. If dissipation may be 
neglected, the motion of the vortices is Hamiltonian, and it is natural to study the 
"gas of vortices" by the methods of statistical mechanics. Onsager [20] has argued 
that when the total energy of the system is sufficiently large, the "gas of vortices" is 
in a "negative temperature state." He further argued that, in such a state, vortices 
of the same sign attract each other. In fact the coalescence of vortices of the same 
sign has later been observed in computer experiments (see Montgomery and Joyce 
[173), and is claimed to explain in part the existence of large well-defined vortices 2. 

In this paper we study rigorously the statistical mechanics of a gas of vortices 
in the thermodynamic limit. Thus we let the volume of fluid go to infinity, while 
the density and mean energy of vortices tend to constants. In this limit, no negative 
temperature states are found to exist 3, contrary to Onsager's proposal. 

Our main results are presented in Sect. 3 (Theorems 3.1 and 3.2). 

* Address after Aug. 1982: Theoretical Physics, ETH, CH-8093 Ziirich, Switzerland 
** Work supported in part by NSF Grant MCS 78-02721 

1 The argument of Poincar6 [22, Chap. VIII] is based on a discussion of the stability of motion 

2 See also Kraichnan and Montgomery [15t for a discussion of this theory. Note that vorticity is 
conserved in an inviscid fluid (theorem of Helmholtz) ; therefore Onsager's mechanism cannot explain 
the appearance of well defined vortices in a fluid where the vorticity is smoothly spread out initially 

3 Negative temperature states are known to exist for certain other systems without kinetic energy 
(spin systems). We claim that nothing of the sort is present here 

0010-3616/82/0087/0001/$07.20 
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1. Potentials 

Let v = (v 1, v2) be the velocity field of an incompressible two-dimensional fluid in a 
bounded open region A c I R  2. The incompressibility relation: 

~vl Or2 =0  
0x~ + 0X 2 

implies the existence of a stream function 7 j such that 

0ku 07 j 
V 1 =  ~ X  2, /32-- 0X 1, 

if we know that the flow of v through pieces of the boundary of A vanishes. 
Introducing the vorticity 

0v2 c~v~ 
co= - - -  A7 j ,  (1.1) 

8xl 0x2 

one sees that the instantaneous angular velocity of a fluid element is co/2. The 
relation (1.1) may be solved for ~ as 

= dy o(y) V(x, y),  
A 

where the potential V(x, y) is the kernel of the operator V= ( - A ) - z ,  defined with 
suitable boundary conditions (b.c.) on the space LZ(A)=L2(A, Lebesgue). 

We impose the physical condition that the fluid does not cross the boundary of 
A. If 8A is smooth, v is thus parallel to the boundary, and grad ku normal to it. 
Therefore ku is constant on 0A, and we may take this constant equal to 0. 
Mathematically, this corresponds to taking A = AA, where A A is the Laplacian with 
DirichIet b.c." - A  A is defined as the Friedrichs extension 4 of the positive operator 

0 2 0 2 
ax 2 ax22 acting on C oo functions with compact support in A. The correspond- 

ing potential will be denoted by Va(x, y). We extend the definition of this potential 
so that Va(X, y)= 0 if x~A or y~A; Va(x, y) is then the kernel of an operator g a on 
L2(IR2), vanishing on the orthogonal complement of L2(A). If A C A', the definition 
of the Friedrichs extension implies that the domain of A a is contained in the 
domain of A A, [-with the identification of L2(A) to a subspace of L2(A')], and that 

1A(--AA,)IA <= --AA, 

where 1 A is the orthogonal projection on L2(A). Writing 

we have thus 

hence 

A ~ - ( -  AA,)I/2V1A/2 , A*  ---- V1/2( - AA,)I/21 A, 

A*A <-_ 1A, 

AA* <-_ 1A,, 

4 For a discussion of the Friedrichs extension, see for instance Riesz and Nagy [24, Sect. 124] and 
Reed and Simon [23] 
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and finally 
V A<V A, when ACA'.  (1.2) 

It is convenient to introduce also the potential 5 

Voo(x, y)= -- 2 ~ l o g l y -  xl. (1.3) 

which corresponds to free b.c. (this is a definition of free b.c.). 
If we write 

VA(X, y) = VA(X, y)-- Vow(x, y), (1.4) 

then (x ,y)~  VA(x,y) is continuous in A x A. [To see this it suffices to notice that 
Va(x, y) is a harmonic function of both x and y.] We define 

WA(x ) = 1 ~A(X ' X). (1.5) 

Let A be fixed, contained in the circle of radius R centered at 0, and let A' be a 
circle with large radius R' centered at 0. For yeA,  [Za,(',y ) is harmonic with 

boundary values 2~ logR' + 0 ( R ) .  Therefore, by the maximum principle 

When co has support in A and satisfies the '"neutrality" condition f codx=O, we 
have thus A 

hence 

1"~ ~ co(x)co(y) VA,(X , y)dxdy = ~ co(x)co(y) Voo(x, y)dxdy. 

Combined with (1.2) this gives 

j co(x) co(y) Va(x , y) dxdy < S co(x) co(y) V~ (x, y) dxdy, (1.6) 

when ~co(x)dx=O. 

If ~ = { n l a l + n z a 2 : n l ,  n2e2g } is a lattice in IR 2, and A={,~lal+22a 2" 
0<21,2z<1},  a potential Vaper(x,y ) with periodic b.c. may be introduced. 
It is a periodic function q) of x - y ,  with 

-Aq~(¢)= ~ 6(~-a)- IA[  -1, 

where [AI is the surface of A. It is seen that Vapor corresponds to the inverse of the 
Laplacian on a torus, restricted to the orthogonal complement of the constant 
functions. We have thus 

co(x) co(y) VA(X, y) dxdy < f co(x) co(y) V A per(X, y) dxdy, (1.7) 

when j co(x) dx -- O. 

5 We write Ixl=(x~+x~) 1/2 
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The difference VApcr(X , y) - -Vco(X , y) is continuous at x=y,  and we define 

WAper ~ l [VAper(X,  Y ) -  Vo~(X' Y)]x=y 

which is a constant. 
We call - AaN the operator associated with the quadratic form ~ dx ~ (Oq~ 12 

a , 
defined on C a functions with bounded derivatives on A; Ads is the Laplacian 
with Neumann b.c., which corresponds to a vanishing normal derivative on the 
boundary of A when this boundary is sufficiently smooth. If A CA' we have 
-AAN< --AA, N with the usual identifications. We define VAN to be the inverse of 
-AAN restricted to the orthogonal complement of the constant functions on A. 
The corresponding potential thus satisfies 

- AANVAN(., y) = a,--IAl-1 

Assuming always 
 co(x)dx=0, 

one obtains easily the following inequalities: 

~co(x)co(Y)Va,N(x,y)dxdy<=~co(x)co(Y)VAN(x,y)dxdy if ACA' ,  (1.8) 

[. co(x) co(y) V~ (x, y) dxdy < j co(x) co(y) VaN(x, y) dxdy, (1.9) 

co(x) co(y) V A per( X, Y) dxdy N ~ co(x) co(y) VAN(X, y) dxdy. (1.1 O) 

The difference VaN(x , y ) -  V~o(x, y) is continuous at x = y, and we define 

waN(x) = ½ IvaN(x, y ) -  V (x, y ) L  =, ,  

which is a continuous function of x. 
The potentials VA, Voo, VAper, VAN may all be interpreted as two-dimensional 

electrostatic potentials, V a corresponding to conducting b.c., and V~ to insulating 
b.c. on 0A. If A C A', the electrostatic energy of a distribution of charge in A, with 
conducting b.c., is less than the energy of the same distribution in A' [inequality 
(1.2)]. This is because, going from A' to A, one allows the electric field of the given 
charge distribution to perform work on the freely moving charges of the newly 
introduced conducting boundary. 

2. Mechanics of Vortices 

The kinetic energy of the fluid contained in A is 

K = -Q ~ v 2 = -~ ~ (grad W)2 
2A 2A 

~J) = 2 ((D, VA03 ) 

e ! co(x)co(y) VA(X, y)dxdy, = -- 
2 

where ~ is the density of the fluid. 
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m 
Suppose that co = ~ c% where the co~ have definite signs, small disjoint supports 

1 
centered at ~1 ..... ~,~, and ]/~fcoi(x)dx=e i. Then 

0 " 
K =  2,~=1 ~ ~°3i(x)(DJ(Y)gA(x'y)dxdy 

= j=l 

fl- 2 I °°i(x)c°i(Y) Va(x, y) dxdy 
2 i  

+ ~ RiRjVA(~i, ~j). 
i<j 

If the supports of the 6o i tend to the points ~i, we have 

K -  ~ Q ~ ~ coi(x)coi(y) Voo(X, y)dxdy~ U A(~ 1, ..., ~ ) ,  

where we have written 

U A(~t, ..., ~ )  = ~ n 2 WA(~i) + ~ RiRjVA(~i , ~j) (2.1) 
i i<j 

[remember that W A is given by (1.5)]. We define similarly 

Uoo(~, ..... ~m) = ~ R~RjV~o(~*, ~j), 
i<j 

and for a parallelogram A, 

UAper(~ . . . . .  ~m) 

= 2R2Waper + ~ RiRjVAper(~i, ~j). 
i i<j 

The quantity UA(~ ~ ..... ~ )  is finite when the ~ are distinct and inside A. On the 
other hand K ~  oo when m > 0. We view U A as a renormalized energy of the vortex 
system; it may take positive or negative values. Note that, as a consequence of 
(1.2), 

u~(~i  . . . .  ,4.3_-< u~,(~l  . . . . .  ~m) 

Using (1.6) and (1.7) we obtain also 

UA(~I . . . . .  ~m) ~ U + ( ~ I  . . . . .  ~m) 

when ACA'. (2.2) 

when ~ R ~ = 0 ,  

UA(~-l,...,~m)<UAper(~l . . . .  ,~m) when ~Ri=O. 

Since the vortices move with the fluid, by the theorem of Helmholtz, we have 

1:l01t grad 7J(~i) 
dt \~12] \ -  ~17J(~i)] \ -  1 O] 

= ( - 1 0  ; ) g r a d  ~j ! dycoj(y) VA(~i , f l)  

-_(01 
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We admit  that  if the ith vortex were alone in infinite space, its velocity would 
vanish (al though its internal s tructure might  change with time) 6. This means  that  
we m a y  replace ~ in the right hand  side of  (2.3), V,(~,y)  by 
V~(~, y ) -  Voo(~i, Y) = Va(~i, Y) [see (1.4)]. Not ice  that  V A is se l f -ad jo in tand  that  its 
kernel is real (because - A  A is a real operator).  Therefore VA(X, y ) =  VA(Y, X) and 

grad I/a(x, y)]~ =, = ~, = ½ grad f/A(X, X)I~ = ~ = grad  Wa(~,). 

Altogether  (2.3) becomes 

1 ~J)l' 
] / o d  (~11) ~ ( _  0 1 \ ~ , ~ ]  0) grad '  [ Ri Wa(~) + j.i~RjVA(~" 

Replacing ~ by = ,  we take this as definition of the mot ion  of point  vortices. 
We have thus 

]/~ Ri d~t 2 c~ U a 
(2.4) 

These are Hami l ton ian  equat ions 7 in the 2m variables ~ ,  with i = 1 . . . . .  m; c~ = 1, 2. 
In part icular  Liouville's theorem implies that  the volume element 
d~=d~11/~d~az ^ ... Adam1/xd~m2 is preserved under  t ime evolution. The total  
vo lume of  accessible phase space is in fact finite ( = [AI m, where [A[ is the surface of A). 
It  is thus natural  to follow Onsager,  and apply  the methods  of statistical mechanics 
to systems of vortices. This means  describing systems of m a n y  vortices in terms of 
Gibbs  ensembles. 

The  microcanonieal ensemble is the probabi l i ty  measure  

~ -  ~,~(uA(~z . . . .  , ~ , . ) -  E ) d ~ ,  (2.5) 

where ~2 is a normal iza t ion  constant,  and the suppor t  of  the measure  is on the 
energy surface defined by 

uA(~,  . . . . .  ~,,) = e .  

6 A more careful discussion would approximate the velocity field some distance away from the 
/ 0 1 \ 

vortex the form + . f -  0//grad V /x. and dofine on this basis Note that an isolated 

vortex enclosed in a box A will usually move, due to the presence of walls. In the simple example of a 
straight infinite wall, we have Va(x, ~) = V~(x, ~) - V®(x, ~), where ~ is the symmetric of ~ with respect 
to the wall. The vortex at ~ moves under the influence of its mirror image at ~. The motion of ~, ~ 
corresponds exactly in 2 dimensions to the motion of a smoke ring in 3 dimensions 
7 Writing qi=~l ]/0 I]/~il, PI=~2R~ ~ / l ~ i ] ,  we obtain the familiar equations dqJdt=c~UffOpl, 
dp]dt = -OUA/C~q~. It is however more natural to retain the variables ~i~ 
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The statistical description of a system by the microcanonical ensemble is usually 
justified by assuming ergodicity of the measure (2.5) under time evolution 8. 

The heart of statistical mechanics is the study of the thermodynamic limit, where 
A, n, E tend to infinity, while the density ]A]-an and specific energy [AI-~E have 
finite limits ~, e. Before taking the limit, one replaces (2.5), where E has a fixed 
value, by an expression where E varies in an interval (]Al(e- ~), [A[(e + 6)), and only 
after the thermodynamic limit does one let ~ 0 .  It is a new physical assumption 
that this complicated limiting process gives a correct description of (2.5) when 
A, n, E are large but finite, and E is a number, not an interval. There is some 
ambiguity in the limiting regime which is chosen. This will be briefly discussed in 
Sect. 5.4. In the next sections we go into the formalism of statistical mechanics, and 
study the thermodynamic limit. Before that let us recapitulate the physical 
assumptions that have been made: 

(a) Two dimensions 
(b) No viscosity 
(c) Point vortices 
(d) Ergodicity of the microcanonical ensemble under time evolution; (or 

dominance of an ergodic component in the presence of small random 
perturbations) 

(e) Fixed total energy may be replaced by a small energy interval; the 
thermodynamic limit is a good approximation for the description of large, finite 
systems at moderate densities and energy. 

3. Statistical Mechanics of  Vortices 

3.1. Introductory Remarks. In order to simplify matters, we assume that all 
vortices have strength R~= _+R, with R > 0 .  According to (2.1) the Hamilton 
function for n positive vortices at positions 41 ..... ~ and m negative vortices at 
positions ~ ..... ~m in an open region AcIR 2 is given by 

i= l  j = l  

+ R2VA,x( i, z)+ Y 
l <i<l<=n l <=j<k<-m 

- • RzVA,x(~,,~j), (3.1) 
i= 1,...,n 
j= 1,...,m 

where X specifies the boundary conditions (b.c.), X = D  (Dirichlet or conducting 
b.c.), X = F  (free or insulating b.c.), X = P  (periodic b.c.), X = N  (Neumann b.c.), 

8 Nothing is known on the ergodicity of a system of n vortices in a box. (For a discussion of the 
dynamics of 3 or 4 vortices in infinite space, see Novikov [18], Novikov and Sedov [19], Aref [1], 
Ziglin [28], and Aref and Pomphrey [2].) Actually, ergodicity may be too strong an assumption. It 
would be enough to assume that for large A, n, E, (2.5) has one ergodic component of measure close to 1. 
(One may suppose that the other components would be invisible, for instance because points starting in 
them would, by small random perturbations, go to the large ergodic component) 



8 J, FrShlich and D. Ruelle 

~n-(~ 1 ..... ~,). Furthermore WA,D =- WA, VA,o= VA, WA.v=O, VA, v -  V~, 
WA,v == - WAp,r, and Va,v == - Vaper in the notations of Sects. 1 and 2. 

The system is called neutral if n=m. It is straightforward, but cumbersome 
notationally, to deal with vortices of variable strength, distributed according to 
some a priori distribution, d2(R), of compact support ; (see Appendix B). 

It may be of interest to also consider the thermodynamics of "non-neutral" 
systems, e.g. n - 0 .  Their behaviour differs from the one of neutral systems (m = n) 
which we study below. In order to obtain thermodynamic behaviour, a neutraliz- 
ing, uniform background vorticity must be introduced. Physically, such a back- 
ground vorticity corresponds to a fluid in uniform rotation with constant angular 
velocity, or one which "shears" between two parallel lines. In this way one obtains 
a family of vortex systems interpolating between the neutral two-component 
Coulomb plasma and the "jellium" 1,26] in which all point vortices have strength 
-R,  and there is a neutralizing, uniform positive background vorticity. 

For the purpose of comparison (e.g. with numerical studies [17]) we not only 
discuss the physically motivated Dirichlet-, but also free-, periodic- and Neumann 
b.c. The remarks on the physics of the vortex system, assumptions (a) through (e), 
Sect. 2, suggest that we study the micro-canonical ensemble. It turns out, however, 
that for many values of the thermodynamic parameters this ensemble is equivalent 
to the canonical ensemble. Moreover, for the system of point vortices studied 
below, the canonical ensemble is known to be equivalent to the grand canonical 
ensemble. This is a simple consequence of the scaling properties of UA, x (see Sect. 4 
of 1-81, 1,9], and Theorem 3.2). Mathematically, the grand canonical ensemble is 
the most convenient one. 

3.2. Definition of Ensembles and Thermodynamic Functions, 
The Main Results 

(a) Microcanonical Ensembles. Let 5 A be the characteristic function of the interval 
1'- A, 0] and 6- the one of ( -  oe, 0]. The microcanonical partition function for a 
neutral system of n positive and n negative vortices in a bounded, open domain 
A C IR 2 is given by 

(1)2 
t?~,X(A,n,E)= ~. ~ 6~(UA,x(~n,{n)-E)d~"d{ ", (3.2) 

A2n 

where E is the total energy, and 

i=1  j = l  

(We closely follow notation in [8, 9, 25].) We also define 

(1)2 
t2X(A,n,E) = ~. ~ 6-(UA,x(~n,~')-E)d~"d~ ". 

A2n 
(3.2') 
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Let 

E A 2n 
s = ~ ,  6= ~ ,  o-IAl' 

where [A[ is the "volume" (area) of A. These quantities are the energy density, 
energy density uncertainty and particle density, respectively. We define the 
entropy densities 

~)-  ~log~2A'X(A, n, s ~ X ( ~ ,  E), 

(3.3) 
1 x 6 x  SAX(0, S) = 77, 1og~2 (A,n,E)>s3 (0, s), 

VII 

and 

s~'X(o,e)= lira s~xX(o,e),sX(o,e) = lira sX(o,s) 
A ~  2 A ~  2 ' 

with 6, e, and ~ kept fixed, (A .7 IR 2 in the sense of van Hove [25]). For  Neumann 
b.c. the thermodynamic limit of sa n can be shown to exist (see Sect. 4). The function 
sX(0, e) is by definition an increasing function of a 

It is easy to see E25] that if the thermodynamic limit of sX(0, e) exists and if 
sX(o, e) is strictly increasing at some s = %, then 

lim s~AX(o, %) = s~'X(o, %) = sX(o, %) 
A 7  ~2 

for all 6>0.  It might happen, however, that sX(o,~)=So=Const, for s~[eo, el], 
% < s  1. In that case it is conceivable that s~'X(~,e) depends on 6 and is strictly 
smaller than s(0, s), for some se (%, e 1) and some sufficiently small 6. Thus it might 
happen that 

O¢'x(~,  s) 
0e - / 3 < 0 ,  (3.4) 

at energy densities s around which sX(o, .) is constant. This was, in fact, expected 
by Onsager [20]. Of course, in a finite region A, 

- -  < 0 ,  
#s 

if e is large enough, depending on A. The true behaviour of s~'X(o, s), X = D, F, P, or 
N, as a function of e is described in the following result. 

Theorem 3.1. For X = D, F, P, N, there exists a function aX(o, e) such that 

e--, ~x(o, ~) 

if ax(O, .) is strictly concave at 

s~'X( e, ~) = sX(o, ~) = Gx(e, ~) . 
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(In particular, the thermodynamic limits of  s~ x and s x exist.) I f  e belongs to an 
interval of  linearity (eR, eL) o f  aX(o, ") then 

lim sX(Q, e) <-- aX(o, e), (3.5) 
A.* ~2 

lim sa'X(o, e) >- ax(o, eR). (3.6) 
A 7 ~ 2  

(Note that e R is the left extremity o f  the interval.) Finally 

0 lira ax (o ,e )=-o% lira sa,X(e,e)=o-elog ~. [] 

Notice that 

0 - e l o g ~  = lim log ]A] 2" 
AI~2 ~ 7  ~ ' ° =  IAI' 

is the entropy of an ideal (non-interacting), two-component gas of vortices. A 
proof of (3.5) and (3.6) is given in Appendix A. The remaining statements then 
follow by proving the equivalence of the microcanonical, canonical, and grand 
canonical ensemble for all, but possibly countably many values of 

Oax(e, e) 
fi & ' 

and exploiting detailed properties of the flee energy as a function of e and fl ; see 
Theorem 3.2 and Sects. 4 and 5. 

In Sect. 4 we show 

0 (3.7) sN(o, g) <= sX (o, e) < SD(O, e) < 0 -- 0 log ~, 

for all e < oo and X = F or P. 
Using a conjectured extension of the results in [4, 5] (proven for a lattice 

Coulomb gas) to the continuum gas studied here, one is able to establish the 
equivalence of all three ensembles, for fi sufficiently small, i.e. e sufficiently large, 
and Dirichlet boundary conditions, and to exhibit the approach of sD(o, e) to 

0 - 0  log~ 0, as e~oo,  explicitly (see Sect. 5). 
Z 

In the next section we establish some general properties of sa(e, e) and s(e, e) ; in 
particular, we prove the following scaling relation" For arbitrary b.c. and all 0 > 0, 

SA(O"g')=20'logO+O- 2s°-*A( 020''02g' + o'R241t 02log0)' (3.8) 

which can be transferred to the thermodynamic limit if the latter exists. In that 
case we obtain 

s(o, e) = eS'~/eR~s(e- s=~/eR:e, 0)-- 8tie~oR 2 , (3.9) 

by choosing e' = 0, Q' = 0- 20, 0 = e 4=`/~R'-. 
Thus, the entropy as a function of 0 and e is determined by the entropy as a 

function of 0, for a fixed value, Co, for example 0, of the energy density e, provided 
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the thermodynamic limit exists (see Sect. 4 and Appendix A.) Existence of the 
thermodynamic limit can be proven for strictly neutral systems with Neumann b.c. 
(Sect. 4). This summarizes our main results, but see also Theorem 3.2 and (3.34). 

(b) Canonical and Grand Canonical Ensembles. The canonical partition function 
for a system of n positive and m negative vortices in a bounded, open domain 
A C 1112, with D, F, P or N boundary conditions at 0A, is defined by 

1 1 S" d¢ "d~'e-avA'x(*"'~m), QX(A'n 'm' f l ) -  n! m! A,+"~ 

with UA, x given by (3.1), and 

QX(A, n, m, fl) =- O, unless n = m, 

if X = N, F or P b.c. are imposed. We define 

Qx(a, n, fl)-= QX(A, n, n, fl) , 

and 

flfx(~, fl)_ _ ~ log QX(A, n, fl), 

(3.10) 

(3.11) 

2n x 
with 0 = ~ ; fa(e, fl) is the free energy density for a neutral system in A with b. c. X. 

It is proven in [8, 9], Sects. 3 and 4, that for 0 < fl < and ~ bounded, 

QX(A, n, m, fi)< K(fl) "+" , (3.12) 

and 

4~  
QX(A,n,n, fl)=oe, for f l > - -  (3.13) 

R 2 '  

/ 
for X = F, P, and N. In Appendix B, this result is extended to X = D tin which case  

\ ) (3.12) has been shown to hold for f i< ~ -  in [93 • 

By using an argument of Griffiths [12], it has been observed in [13] that 

fv(~, fl) = lim2fVa(~,fl) 

(where the limit is understood in the sense of van Hove; see Definition 2.1.1 in 
[25]). The same argument works for Neumann b.c. [the important ingredient in 
the proof being inequality (1.8)]. 

For all four choices of b.c. the existence of the thermodynamic limit of x f A(Q, fl) 
can also be deduced from the equivalence of the canonical and the grand canonical 
ensemble and the existence of the thermodynamic limit of the pressure for all 

4re 
0 < fl < ~ and X = D, F, P, N;  (see Sect. 5). 
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We now define the grand partition function 

,TX(A,z, fl)= ~ z'+mQX(A,n,m, fl), (3.14) 
n , t n  = O 

QX(A, O, O, fl) =- 1, 

where z--e ~' is the activity, 0 < z < oo. The pressure is then given by 

fipX(z, fl)= iA~lOg~X(A, z, fl). (3.15) 

4u 
In Sect. 5 we show that for fl < 

0 < pNA(Z, fi) < { pFA(z' fi)] < p](Z, fl) < K(z, fl), (3.16) 
\ p ] ( z ,  f l)/  = 

where K(z, fl) is some finite constant independent of A, provided A is a circular or 
rectangular region containing {4:13[ < 1}. Moreover, for X = F and N and {A} an 
increasing sequence of circular or rectangular regions 

pX(z, fi) is monotone increasing in A , /  (3.17) 
pD(Z, fl) is monotone decreasing in A.J 

By (3.16) and (3.17), 

pX(z, fl) = lim pX(z, fi) (3.18) 

4n 
exists and is finite and positive, for all 0 < z < o% 0 < fi < R~-, and X = D, F, N. 

One can also establish (3.18) for X=P,  with A.TIR 2 through a sequence of 
squares or rectangles (see Sect. 5 and [6]). 

By (3.16) and (3.17), f o rX=F,N ,  

0 <pX(z, fl)<pX(z, fi) <p°(z, fi) <pD(z, fl). (3.19) 

By (3.10), (3.14), and (3.15) 

L ( (zJAJ)2"l 
lira fipX(z, fl) = p°(z)-  [AI log \,=~o (n !)2 ], 
~'-~0 

for X = F, P, and N, and 

cO 

limflpD(z, f i ) = P : ( z ) - - l l ° g (  2 (zl-AI)"~+~-)=2z" (3.20) 
~-~o rnl \ . . . .  o n!m! ] 

It is an elementary fact that 

By (3.19) and (3.20) 

lim p°(z) = 2z. (3.21) 
A,~, N2 

p°(z) < lira flpX(z, fl) <-_ 2z 
p-~O 
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for X = D ,  F, P, N and arbitrary A, so that  by (3.21), 

lim fipX(z, fi) = 2z = lira flp](z, fi), ] 
fl-*O /~--. 0 

for X = D , F , P , N  and for all A. 
(3.22) 

Next, by (3.10), (3.14), and (3.15), 

~(fiPD(z'fi)) -- R2 ~ d2~WA(~)Oa(fl, z; 4) 
8/3 IA[ A 

R 2 
.f d2 ~d2rl VA( ~, tl) [O~ + (fi, z ; ~, 11)-- O~ - (fl, z ; ~, 17)] 

IAI A x A 

where OA(fl, Z ; ~) is the one-vortex correlation, and 0~ -+ (fi, z; {, r/) is the correlation 
of a vortex with strength R at { and a vortex with strength _ R at r/, in the grand 
canonical ensemble; see [-25, 10] for definitions. In a bounded region A, 

lim [0~ + (fl, z; ~, t / ) -  Q+ - (fl, z; 4, t/)] = 0, 
/~-~0 

and 

lira 0A(fl, z; ¢) = z. 
/~'-,0 

Thus, by a dominated convergence argument, 

lim ~3(flPga(z' fl)) - zR2 
p.o ~/~ tAI fJ, d~WA(~) 

-- zRZ S d2~lim(V~( { - r / ) -  VA(~'rl))" (3.23) 
2[AI a r t ~  

Suppose now that A is the disc of radius r centered at the origin. Then 

lim (V~(¢ - r / ) -  VA(~, r])) = (1/4re) log r 2 -- (1/2zc) log(r 2 -- if2); (3.24) 

see Sect. 3 of [8J, or [9]. Therefore 

O(fip~(z, f i ) ) l  [(1/4u)logr2 + 1 r[. ] lim -- zR  2 ~-,o Off 2~7r2 "o ( -  2t) l ° g ( r 2 -  t2)dt 

z R  2 
- - - [ l o g r  2 - 2 ] .  (3.25) 

8re 
Hence 

By (3.17) and (3.22), 

l i m  ~?(flP°(Z' fi)) d i v e r g e s  t o  - o% as  r ~  o e .  

lira O(flP°(Z' fl)) < lim 3(fip~(z, fl)) 
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for arbitrary A. Therefore we conclude that 

lim ~(/3pv(z'fl)) - oe. (3.26) 

Theorem 3.2. Let (x=/3R2/47z. Then, for all choices of b.c., X = D ,  F, P, N, 

/3pX(z, /3) = z z/2 - ~FX(:~) , (3.27) 

where FX(~) is a finite, strictly positive convex function of ~, for 0 < ~ < 1, with the 
followin9 properties : 

1) lira FX(~) = o0, 
e z / ' l  

2) lim FX(~) = 2 ,  
ct"~ 0 

3) lira d FX(~ ) = _ oo . 
Ct'-* 0 a ( z  

Moreover, the canonical and 9rand canonical ensembles are equivalent, for all 

, 2-c~[ 1 f(2-c~)0] 1]. [] (3.28) 
7-1  

Remarks. 1) For free b.c., (3.27) and (3.28) are proven in [8]. The extension to other 
b.c. is indicated in Sect. 5. From (3.27) one derives the equation of state 

PX(o, /3) = (0//3)(1 -/3R2/8~z); 

see [16, 8, 9]. 
2) Assuming that the methods of [4, 5] extend to the continuum Coulomb gas, 

for sufficiently small, but positive values of ~, one can show that F°(a) is C ~° in ~, 
for small ~, and 

d F°(c~) = O(logc~), (3.29) 

as ~--*0 ; see Sect. 5. 
We now turn to the proof of Theorem 3.2. For the proof of Eq. (3.27) see [8, 9] 

and Sect. 5. It follows from (3.10), (3.14), and (3.15) by using HNder's inequality 
that/3pX(z,/3) is convex in/3, hence in a. Thus, using (3.27) 

02(/3pX(z, fl)) 4 
O< - Oe 2 ( 2 -  0~) 3 (l°gz)fiPx(z'/3) 

+ ~ logz [ ( 2 @  (logz) flPx(z, fl) + 2zZ/Z-=F'(cQ ] 

-~ Z 2/2-ctFtt(O~) = F"(ct), for z = 1. (3.30) 

Thus F(e) = FX(cO is convex. That it is finite for 0 < e  < 1 follows directly from 
F 

and that it diverges when e .* 1 follows from (3.10) and (3.13). ]All (3.16), quantities, 
/ 
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QX, Ex, and pX, diverge when fl-~ ~ ,  because of the logarithmic singularity o f  

r/) at ~ = r/~c~A (see [8, 9]).[ 
1 

J 

By (3.22) and (3.27), 

lim flpX(z, fl) = zFX(O) = 2z, i.e. FX(O) = 2, for all X.  
fl'-~O 

This proves property 2) of F x. Next, 

~ (flPD(Z' fl)) = R 2 ~ (flpD(z' fl)) 

= 4~ (log z)flpD(z, fl) + z 2/2-~ dFD(e)] 
de J" 

This identity combined with (3.26) yield property 3), for X = D. In order to prove 3) 
for X = F, P, and N, suppose first that 

dFX(e) > const > - oo, 
d e  = 

uniformly in ee(0, 1). Then ~( f l f x (o ,  fl))=<% < ~ ,  for some constant % and all 

fie ( 0 , ~ ) .  Since by (3.28) 

lim (flfx(o, fl)) = 0 og ~ - 1 , 
fl'-~0 

and since the entropy density sX(~,~) is increasing in e, we conclude that 
/ \ 

sX(Q,~)=Q(1-1og-~), for all e>eo, X = F ,  P, N. But, by Theorem 3.1, 

e) _-< ~o(~, e)<~ ( 1 -  log ~), sD(Q, (3.31 ) 
\ z/ 

for all e < ~ .  Actually, the upper bound on a D follows from properties 2) and 3) of 
F ° and Eq. (3.27), Theorem 3.2, as shown below. Thus sX(o,e)>sD(Q,~), for 
~(%,  o9), X = F ,  P or N. This however contradicts inequality (3.7). We therefore 
conclude that 

dFX(e) 
lim - o o ,  
~'~o d ~  

for all X. This completes the proof of property 3). Finally, we observe that by 
(3.27), pX(z, fi) is analytic in z, except at z = 0, oo, and strictly convex on (0, ~).  As is 
well known (see [-25]), this entails the equivalence of the grand canonical and the 
canonical ensemble. Equation (3.28) therefore follows from (3.27) by Legendre 
transformation (see Sect. 4 of [8], or [9]). [] 
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The contents of Theorem 3.2 may be summarized, in terms of the free energy 
density fx(~,/3), by means of the following Fig. 1' 

Fig. 1 

p[log P-I ] 

0 

pfX(p,.) 

.._----- -o"x (p,e) 
I 
I 
I 
[ 
I 
1 
I 
I 

I. /  

Proof of Theorem 3.1. The main part of Theorem 3.1 is proven in Appendix A. 
The function o-X(~, e) is defined by 

ax(Q, ~) = inf (fie- fifx(o, fl)). 

Suppose flfx(o, fi) is continuously differentiable at some value rio of ft. Then 

a(fl f x) 
ax(o, eo)= [fi ~ - ( ° ~ ,  fi)- flfx(o, fi)L=~o , 

and e o is determined by the equation 

[o(/37:5, .,] 
° • 

Moreover, the microcanonical and the canonical ensemble are equivalent at those 
values of/3 and e, and 

lim s~X(~, eo) = lim saX(Q, e0) = ax(~, ~o). 
A ~ 2  A~p. 2 

By properties 2) and 3) of F D and Eq. (3.28) - which we have established without 
using Theorem 3.1 - there exists a sequence {/3,} converging to 0 such that 
/3fD(~o,/3) is strictly concave and continuously differentiable at/3 =/3,, for all n. [By 
(3.28), {/3,} can be chosen to be independent of ~ !J By property 3) of F v, Theorem 
3.2, 
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as n ~  oo. Therefore {o-D(0, e,)} is a strictly increasin9 sequence, and by proper ty  2) 
of F °, Theorem 3.2, 

lira aD(0, ~,) = sup cr (Q, e,) = 0 
n ~ 0 3  

Using inequality (3.5), Theorem 3.1, which is established in Appendix A, we thus 
obtain 

l i ~  sD(o, 8)<=GD(o, 8)<O[1-- log2] , 
A ~ , ~ 2  

for all e < ~ ,  and using (3.6) 

lira lira s~ D(0, e,) = lim lim SAD(e, ~,) 
n ~ 0 3  A ~ N  2 n ~ 0 3  A / ~ ?  

=lim,~03 ~r°(~,en)=O[1-1og~]. 

Next,  by proper ty  1) o f F  D, Theorem 3.2, there exists a sequence {/3"} converging to 
4~ 
R-- ~- such that 

lim ' v , f l , f  (/~,,~)= - oe, 
?t---r 03 

and flfo(fi, O) is strictly concave and continuously differentiable at fi = fl',. (Again 
{fl',} may be chosen to be independent  of Q.) Thus 

tends to - o% as n ~  oo. In conclusion 

lim o , a (~o, on) = lim lim SAY(0, e') 
n ~ o o  / 7 ~ o o  A ~ N .  2 

= lira lim s~i°(~, d , ) = -  oo. 
n -~  03 A / ~ .  2 

This, together with (3.5) and (3.6) (proven in Appendix A), completes the proof  of 
Theorem 3.1 for X = D .  By inequality (3.7) (which is proven in the next section) 

sX(o, e) < sD(o, e), (3.32) 

for all e <  o% X = F ,  P, N. Thus  a x, s x, and s °'x tend to - 0 %  as e---,- 0% and 

s~'X(~, ~) < sX(o, ~) < O [1-  log ~] , 
z] 

for all e < oo. 
As already noted in the proof  of Theorem 3.2, inequalities (3.22) and (3.32) 

yield properties 1)-3) of F x, X = F, P, N, stated in Theorem 3.2. By repeating the 
arguments given above for X = D, we thus conclude that, for each choice o f X  = F, 
P or N, there exists a sequence {e,} diverging to + oe such that  

lim lim s~ x(o, e~) = lim lim sX(0, ~,) 
n ~ 0 3  A . ~  2 n--*03 A / ' N .  2 

This completes the proof  of Theorem 3.1. 
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All as yet unproven statements about entropy, free energy or pressure are 
established in Sects. 4 and 5 and Appendices A and B. 

Next, we recall some facts and properties of correlation functions of the two- 
component Coulomb gas in the grand canonical ensemble. (We believe that the 
properties of correlations in the microcanonical ensemble are identical in the 
thermodynamic limit, but we have no proof.) In 1-21, 10] it is proven that, for all 

z > 0, 0 < fi < ~ and all n, m, the thermodynamic 
A 

limit o f  the correlation functions 

of n vortices of vorticity + R at positions 4" and m vortices of vorticity - R at 
positions ~m, 

~x(fl, z; 4", ~") = lim QAX(fi, z ; 4", ~"), (3.33) 
A~,N2 

exists if A/'IR 2 by inclusion, and for X=D,F ,  and N. (For the definition of the 
grand canonical correlation functions see [25, 10].) The limiting functions, 0 x, are 
Euclidean invariant. Of particular interest are the correlations of the vorticity, 
co(x), which we denote by (co(41)--. co(4,))x(fi, z). (This is the expectation value of 
the product of the vorticity at 41,..., 4,.) It is well known (see e.g. [11]) that 

<co(4)co(n)>x(/~, z) = ox(/~, z ;  o),~(4 - , ) -  2[Q x" + - (/~, z ;  4, ~ ) -  ~x, + + (/~, z ;  4, ~)3. 

(3.34) 

Here Ox(fi, z; 4) is the one-vortex correlation which is constant in 4, and the 
superscripts on the right side of (3.34) indicate the sign of the vorticity of the two 
vortices. 

It follows from [11, 8, 9] that ox'+-(fi, z; 4,tl)-Qx'++(fl, z; 4,tl) is a positive, 
convex function of 14-~/[ which tends to 0, as 14- ~1~ oo, forX =D, F, and N. Thus 

<co(4)~(~)>~(~ ,z ) ,  4 .  

is a negative, concave function of [~_-~/I which increases to 0, as ]4- t / l~oo.  This 
means that if the vorticity at the point 4 is constrained to be positive, it is 
predominantly negative at all points t/=~ 4 (in contrast to what might be expected 
heuristically). For X = P, one can still show that (CO(~)CO(t/))eA(fi, Z) is negative, for 
4 :# t/, in any bounded rectangle A. 

Much less is known about systems of vortices of negative vorticity (for 
example, -R) ,  immersed in a neutralizing positive background vorticity. This 
system is stable for arbitrary values of the inverse temperature fi - in contrast to 
the two-component vortex plasma. The thermodynamic limits of the free energy 
and the pressure have been constructed [26], and results similar to (3.22), (3.26), 
and (3.27) can be derived. However, the microcanonical ensemble does not seem to 
have been analyzed directly, and the existence of correlation functions is only 
known for one special value of fi, [14] (see also [7]). It is an interesting speculation 
that for large values of the inverse temperature fl the correlation functions of this 
system exhibit directional long range order. We do however not have a proof of 
this. 
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4. Properties of the Entropy 

In Sect. 1 we have shown that 

(VA'FI<VA (4.1) 
V A , D ~  \VA,p]  = ,N, 

in the sense of quadratic forms ; see also [24, 23]. From these inequalities and the 
definition of the kinetic energy, K, in Sect. 2 [see (2.1) and (3.1)] we conclude that 

n 
n "ff m 

U A, D(~ ' ~m) ~ \ U A,p (~n' ~ml] = 
(4.2) 

for arbitrary ~"s A", ~"s Am. Now, recall the definitions of f2(A, n, E) and of SA( ~, e) 
-- see (3.2') and (3.3). Since 6-(Ua, x(~n,'~n)--E) is monotone decreasing in Ua,x, 
inequalities (4.2) give 

s (0, s (o, (4.3) 

This proves the first two inequalities in (3.7) and inequality (3.32). 
Next, we show that the thermodynamic limit of SAN(Q, ~) exists. Let A be the 

union of m sets Ai, i= 1, ... ,m, with disjoint interiors. By (1.8) 

?n 

~V VA,N < ~ a,,N (4.4) 
i = 1  

in the sense of quadratic forms on functions f(~) with the property that 
S f(~)d2~ =0,  for all i. [If f violates this condition, for some i, we set (f, Va,,Nf) 
Ai  

= + oo ; (4.4) then holds in general.] Let ~ni be the subset of points of ~" contained 
in Ai, and ~ ,  the subset of ~" contained in A i. By (4.4) and (3.1), 

n ~ n ~  , , U a, u(~ , ~ )=  Z U a, u(~a., ~a,). (4.5) 
i 

Since 3-  is monotone decreasing in U, we conclude that 

o FA I 
We set ,t i-= r~-" Clearly, 0 < 2  i < 1 and ~ 2 i =  1. We choose n and IAil, i=  1 ....  , m, 

such that k~=2in are integers, for all i. Finally we set E~-2~E. By (4.6), 

(I I 
i = i (Ai )Zk i  

By taking logarithms we find 

s~(~, e) > ~ 2~s~,(Q, e). (4.7) 
i = 1  
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Since 8-  < 1, 

'AI2" i.e. s~(~, ~) < ~ ( 1 -  log~) ~2N(A, n, E) <-_ (n !)2, _ (4.8) 

By standard arguments [25], (4.7) and (4.8) imply the existence of the thermody- 
namic limit of s N. 

Next, we compare the entropy with the free energy. Since 

8 - ( x -  E) < e -p(~-~) , (4.9) 

for all fl, we obtain from (3.2') and (3.10) 

f2X(A, n, E) < QX(A, n,/3)e ~ , 

hence 

S~A , x(~, e) < sx(o, ~) < fie --/3fXa( O, fl) . (4.10) 

As shown in [8, 9] and Appendix B, fx(~, fl) is bounded uniformly in A, for 
arbitrary Q and X = D, F, P, N, provided 

fl <4zrR -2 . 
Conversely, 

where 

l 

QX(A,n, fi)<= ~ Qj+Q< +Q>,  
j = l  

Qj=- ~. ~ exp[--f lUa,x(~",  (")]8E'+'-~'(UA,x(~ ", ~")-Ej+ 1)d~"d~" 
A2n 

< exp IAI{ - flej+ 1 + s~/(O, e j+ ,)}, 

where 

E~ 6 _ lA l_  l(Ej+ l _  E j )_  a=cons t  ; e s -  fAl'  

(1/ 
Q < -  ~. f e-aV~'x{¢"'g")b-(UA,x(~",~"l--EO d{"d~" 

A2n 

< QX(A, n, fi + 7)e ~1 , 

and we have used (4.9). Given fl<4~zR -2, we choose 7 > 0  so small that f l+7 
< 4~R- 2. Then Qx(A, n, fl + 7) <= constlAI, independent of our choice of E 1 (see 
[8, 9] and Appendix B).Finally 

Q> = nT. ~ e-eVA,x(~"'~")b-(El - Ul,x({",-~"))d{"d~" 
A2n 

<= e -  ,~lh iAI2n 
(n!) 2" 

These estimates permit us to use the arguments in [25, Sect. 3.4.3], to conclude 
that 

-/3f~(Q, t3) < max (s~ x(~, e ) -  i%) + g A , (4.11) 
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with #A~0, as IAI ~ o% if (for each A) l, E~, and E~ are chosen suitably. Combining 
(4.10) and (4.11) we obtain 

flfx(Q, fi)= m)n (~e -  lira s~X(~,e)), (4.12) 

where fx(Q, fl)= lim fx(Q, fi), with A.~IR 2, e.g. in the sense of van Hove [25]; see 
Sect. 5. A ~  

Next, we exploit the scaling properties of the Green's function VA, x of the 
Laplacian with X b.c. at OA and of the one-body potential WA, x, in order to 
establish the scaling properties of the entropy [see (3.8) and (3.9), Sect. 3.2]. Let 0 
be an arbitrary, positive number. We set 

8 -1A={~:8~eA} .  

Lemma 4.1. For X =D, P, N, 

1) VA,x(8~, Or)= Vo_~A,X(~,r). 

2) Wa,x(8~) = W 0 1A, X(~) + (1/47:)logS. 

For all choices of X 

3) U a,x((8~)",(8~)~)= UO-~A,X(~',~ ~')+ (n+m)R24~ log8. 

Proof. 1) LetX =D, P or N. The Green's function VA, X(~, 1I) is uniquely specified by 
the following properties: 

a) For teA, VA, x(~, r) is harmonic in ~ in AN {r}; VA,X(~, r) = Va,x(r, 4). 

b) For reA, VA, X(~,r)~- 2~ log l~ - r l+cons t ,  as ~--,r. 
- I  

%) VA, D(~,r)~O, if either ~ or r approach 0A. 

CN) ( ~  VA, N)(~,r)=O, for ~ ~OA. 

Cp) VA,e(~, r) is periodic in ~ and r, with domain of periodicity=A. 
Now, note that VA, x(8~, 017) satisfies a), b), and Cx) (X = D, P, N) if in a), b), and 

Cx) A is replaced by 8-1A. This proves 1). Lemma 4.1, 2) then follows from (1.3), 
(1.4), and (1.5). Using 1) and 2) we finally see that 3) follows from (3.1) and 
(1.3). [] 

We are now prepared to prove the scaling relation (3.8) for the entropy sX(~, e). 
(We temporarily suppress the super- and subscripts X.) By (3.2') and (3.3), Sect. 3.1, 

{(1) / sA( ,e)= log S 
A 2 n  

2n E 
with Q-  ~ ,  e -  ~ .  We now make a change of variables, ~--,t l j= 0-1~j, ~j--'flj 

=8-1~j,j=l,...,n. We set 

(8r)" =(8rl .... ,8~,), etc. 

Note that ~/" and ~" range over (8-~A)", and 

d~"=O2"dr ", etc. 
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Hence 
1 

SA(O'~) ~'0-2 [O-~A[ 

2nR 2 \ ] 
• log ~ ~ 6- Uo-~a(rl",gl~)+ l, (0 tA)2" 

i.e. 

which is (3.8). 

SA(Q,g,)~O-2So ~A(OzQ, O2e+ ~O21ogO) +2ologO, 

5. Free Energy and Pressure; Conclusions 

5.1. Existence of the Thermodynamic Limit 

Combining definitions (3.10), (3.11) with inequality (4.2) we obtain 

(s;(°' <= 
fY(q' ~) <= \f2(o, ~)) 

and, using in addition (3.14), we get 

< p~(z, ~) < (p~(z, [3)) <= p~(z, fl). (5. 0 1) 
= \p~(z, fl) 

In Appendix B it is shown that, for all z and all f l<4gR 2, 

p~(z, fi) < const, A ~ { ~ : ]~[ < 1}, (5.2) 

for some finite constant independent of A. Inequalities (5.1) and (5.2) yield (3.16). 
By (3.10), (4.4), and (4.5) 

QN(A,n, fl)>= f i  Q(A~,ki, fl), 
i = 1  

i.e. 

fA%/~) =< Z "~,f~(e, ~), (5.3) 
i = 1  

where 2 i -  [Ai[/IA[, k i = 2~n, .. . ,  as in Sect. 4. If A is a unit square, for example, then 
clearly 

Q N(A, k, fl) > O, 

for all k and all fi <4~/R 2. Furthermore, since QN(A, n, fl)< QD(A, n, fl)< const", if 
f l<4x/R 2 and 2n/[A[ is bounded uniformly in A (see Appendix B), we conclude 
that N fJ(0, fi) satisfies uniform upper and lower bounds, for all 4 > 0  and all 
fl<4rc/R 2. This and (5.3) show that if A/~IR 2, in the sense of van Hove [25], 

lim N _ A..,2f~(e, fl)= f (O, fi) 
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exists. An argument originally due to Griffiths [12] can be used to show that the 
thermodynamic limit of fav(~, fl) exists. See also [-8, 9, 13]. For X = D, P we do not 
give a direct proof of the existence of the thermodynamic limit of the free energy, 
but analyze the pressure and then exhibit the equivalence of the canonical and the 
grand-canonical ensembles (Sect. 5.2). 

The existence of the thermodynamic limit of the pressure for periodic b.c. can 
be inferred from [9, 6]. (The arguments are somewhat lengthy and are therefore 
not reproduced here.) For X = D, F, and N, we can establish the existence of the 
thermodynamic limit of the pressure by considering its first derivative in z: 

O(flPx(z' fl)) = ]Al-~ ~ d2~ox(fl, z; ~), 
z 8z A 

i.e. 
2 

fipX(z, fl) = IA]- a ~ d ~ -  ~ ~ dZ~X(fl, ~ ; ~). (5.4) 
0 A 

By correlation inequalities [10] Qx(fl, z;~) is increasing in A, for X = F, N, while 
~aD(fl, Z ; ~) is decreasing in A, for each fixed 4. These properties along with (5.4) and 
(5.1), (5.2) establish (3.!7) and the existence of the thermodynamic limit. (For 
X = F ,  N one could instead use Griffiths' argument [12].) 

Remark. The correlation inequalities in [10, 21] can be used to construct the 
thermodynamic limit of all grand-canonical correlation functions. 

5.2. Scalin9 Properties of the Pressure and Free Energy 

We recall the definition (3.10) of the canonical partition function. (We temporarily 
suppress reference to boundary conditions.) 

Q(A,n,m,~)= nvm~l ~ d~,d~,,e_aVa(~,,~m ) 
. , A n + m  

We change variables, ~j--,qj= 0 - ~ ,  ..., as in Sect. 4. By Lemma 4.1, 

02(n + m) 
Q(A, n, m, ~) = - -  ~ dq"dO m 

n!m! (0- ~a)-+~ 
R 2 

. e x p [ -  ~Uo- ~ a(rl~, ~")] exp [ -  ~(n + m ) ~  logO] 

= 0 (" +")t2-¢R:/4~)Q(0-1A, n, m, fl). 

With (3.14) this yields 

hence 

( A, z, fl)= ~( 0-1A, 02 -BRZ/4~Z', fl) (5.5) 

p A(Z', [~) = O-  2p o- 1a( O ~ - "Z', ~), 

where c~-~R2/4~. Now choose z ' = l ,  z=O z-~. After passing to the thermody- 
namic limit and setting /3p(1,/~)--F(c0, we obtain flp(z, fl)=zZ/(2-~)F(o~), which 
proves Eq. (3.27), Theorem 3.2. Moreover, it shows that p(z,~) is analytic in z, 
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except at z=0 ,  or, and strictly convex on the positive real axis, for arbitrary 
~(0 ,1 ) .  This proves the equivalence of the canonical and grand canonical 
ensembles. Therefore the thermodynamic limit of fA x exists for all X = D, F, P, N, 
and f x  satisfies Eq. (3.28), Theorem 3.2. 

5.3. Comments on the Equivalence 
of the Canonical and Microcanonical Ensembles; Conclusions 

Notice that if we can prove that the function FX(~) is continuously differentiable in 
at some value ~o of ~, then flfx(fl, ~) is continuously differentiable in fl at 

4 ~  o 
fl0- R 2 • ~n  that case 

e) = sX(o~, e)= floe - f io fx(Q,  flo), e= - ~fl (flfx(o, fl))/~ =~o, sh,X(Q, 

see e.g. [25]. If continuous differentiability is true for all flo e (0, 4~/R2), it follows 
that the thermodynamic limit s a' x(~, e) of the entropy exists for all 0 > 0 and all real 
e (see Theorem 3.2), and s~'X(~, ~) would be a strictly increasing function of e. 

We can think of two techniques that might enable one to derive differentiability 
properties of Fx(a): 

1) One could try to extend the techniques of Brydges and Federbush [4, 5] to 
the two-dimensional continuum Coulomb gas. This would enable one to prove 
that for 0 < ~ < ~, for some ~< 1, FD(~) is C ~° in ¢~ and to determine the rate of 

of ~FD(a), as ~ 0 "  In the thermodynamic limit divergence 

O(flPD(z, fi)) R 2 
Off - 2~ ~d2~ln[~lE~+-(fl'z; ~ '0 ) -~+  +(~' z; ~,0)]. (5.6) 

Taking for granted that the methods of [4, 5] apply to the continuum gas, one 
would conclude that 

eik~ 
Q+-(fi, z; ~,0)--~ + +(fi, z; ~,O)~constfl~d2kk2+m(fl)2, 

and the inverse correlation length, m(fi), behaves like 

m(fi) ~" ~ 2zfi, 

as f i~0,  up to corrections of higher order in ft. (These asymptotic formulas are 
suggested by Debye-Hfickel theory.) By inserting these results in (5.6) we conclude 
that 

,~(flpD(z, fl) ) 
const lnfi, (5.7) 

as f i-~0.  
2) One can try to exploit the results of Faddeev et al. [27], claimed to be exact 

results for the two-dimensional sine-Gordon theory. That theory is isomorphic to 
the two-dimensional, two-component Coulomb gas studied here [8,9]. The 
vacuum energy density of the sine-Gordon theory, normalized such that it 
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vanishes in the free-field limit, i.e. when/3-~0 or z-+0, is precisely the pressure of 
the Coulomb gas. The results in [-27] indicate that the pressure is a smooth 
function of fi in the interval (0, 4~/R2). This would imply that the function F(~), see 
Theorem 3.2, is smooth in c~e(0,1), and therefore the entropy is uniquely 
determined by the free energy. 

5.4. Reduction to a Box of Fixed Size 
We have discussed the situation where 2n vortices with fixed strength _+R are 
contained in a box A-+ o% with n/[AI constant. Because of the scaling properties of 
the electrostatic potential, it is equivalent to consider 2n vortices of strength _+ R in 
a fixed box A. We might also take 2n vortices of strength + R~-+0 in a fixed box A. 
There is some arbitrariness in the choice of the energy variable, and different 
choices may lead to different limiting regimes. It is not a priori clear which one is 
appropriate for the statistical mechanics of vortices (as Oscar Lanford kindly 
pointed out to us). The limiting regime which we studied gave the entropy as a 
nontrivial function of the energy (continuous nonconstant function). Essentially 
different limiting regimes would thus presumably lead to trivial functions. In 
particular, we don't see how to obtain an entropy function which would increase 
on one interval and decrease in another interval as suggested by the Onsager 
argument. 

Appendix A 

Proof of Theorem 3.1. We know that the limits 

fx(o, fl)=fi-llimlAl-llog{(n@)e ~d~"d~"e-~VY'(~"'~") } 

exist when A/~IR 2, in the sense of van Hove, and IAl-*2n-+o, defining the free 
energy density, for the boundary conditions X = D, F, P, N. We have shown that 

4re 
fx(o, f l )=-  oe, for f l > -  and fifx(o, fi) is a finite concave function of fi on g 2 , 

0 4tel 4re ,R2], with fx(o, fi)-+- av when/3-+ ~ .  This is part of the content of Theorem 

3.2, and is proved without the help of the present appendix. Define 

ax(0,e)= inf (fle-flfx(Q, fi)). (1.1) 

This is clearly an increasing function of e. Let %(fl) and gR(/~) be the left and right 
derivative of/3fx(o, fl) with respect to/3. We shall from now on omit the superscript 
X. General arguments concerning the equivalence of ensembles [25] give the 
following results : 

(a) lim SaA(O, e) = lim SA(O, g) = 0"(0 , g) = / 3 e - - / 3 f ( o ,  e) 
A . a N  2 A.aF.  2 

when e = eg(/3). 
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(b) lim sup s~(~, e) < a(~, e) 
A 2 '  Ill. 2 

when eE [eR(fi), eL(fl)7 (a(¢,-) is then linear on [eR(fl), ~L(fi)])' 

Proposition. For all X and 6 > eg(fi), 
lira inf S~A(0, e) > a(O, ~g(fl)) 

A / ' , N  2 

when A..~]R 2 in the sense of Fisher 9. 

We shall prove this proposition for X = D  which is the most difficult, but also 
the most interesting case. Other b.c. can be analyzed in a very similar way. 

We now establish some notation: 

~ o -  ~R(/~), So = G(~, 6~(~)). (A.2) 

Instead of specifying points (4", ~") in A 2n, the positions of vortices, we shall specify 
configurations, X, a set of n+  vortices and a set of n-vort ices .  If S is a set of 
configurations, X, and S the corresponding subset of A 2n [i.e. 
S =  {(~"(X), ~-"(X)):X~S}], we define 

vol,S 

with X~ the characteristic function of S. 
Given an arbitrary ~ > 0 and e > eo, we shall try, for large A and [A[-*2n ~ q, to 

construct a set S of configurations such that 

fA]- 1 log vol, S > s o -  7, (A.3) 

and such that all configurations in S have energy in the interval 
((e-6)[AJ, (6 + 6)IAJ), for some arbitrarily small, but positive c5. Since e > e o and by 
(A.2), this proves the proposition. 

The proof of (A.3) consists of an explicit construction of S which we now 
outline: We choose an integer v ~ n, with v ~  m and v/n~O, as n---, o% and consider 
configurations of 2(n-v)  vortices in A with energy in an interval 
[(eo-5')IAI, @All. To these configurations we add the 2v remaining vortices in a 
small number (two) of very concentrated clusters in such a way that they 
contribute an amount of energy proportional to IA] and make a negligible 
contribution to the specific entropy. 

Let S o be the set of configurations of 2 (n -  v) vortices with energy in the interval 
[(6o-5')IAI, eolAI]. Since v/n~O, we have for large A, 

]AI - ~ log vol,_ ~ S o > s o - 7/3. (A.4) 

We may also assume that 7 has been chosen so small that 

]AI- t log vol, So < So - 2y, (A.5) 

where S o is the set of configurations with energy < (t o -6')]AI. Since A/~IR 2 in the 
sense of Fisher, we may decompose most of the area of A into little squares, Z, of 
area 1/2Q. Let ( ( . ) )  denote the expectation value given by the measure 
(vol,_~So)- ivol,_~(.) on S o. Then, for more than half of the squares Z, 

(number of vortices in Z ) < 2 .  (A.6) 

9 See [25] for the definitions 
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Z~ 

Fig. 2 

Since  A..a~x 2 in the sense of Fisher, some fraction (>constant )  of these little 
squares has a distance > ~: diamA to the boundary of A, for some ~ > 0. We choose 
one such square, 2:1. Let S 1 C S o be the set of all those configurations in So with no 
vortices in S r It follows easily from (A.6) that 

vol,_ ~ S 1 >Jvo l ,_~S  o . (A.7) 

Hence, for A sufficiently large 

FAI- 1 log vol,_ ~ S 1 > s o - 27/3, (A.8) 

an immediate consequence of (A.4) and (A.7). [We note that we could, for each 
N = 1,2, 3, ..., find N Squares, S1 . . . . .  Su, at distances > x diam A from 0A, such that 
the set of configurations SN C So with no vortices in S1 w . . .w S  N satisfies vol,_ f in  
>(1/4)NvoI,_~So, and ]AI-l log VO1,_~SN >So--27/3, for sufficiently large A.] 

We now modify configurations in S 1 by adding v + vortices and v - v o r t i c e s  in 
221. Let co(x) denote the charge (or vorticity) density corresponding to the 2v 
vortices in S t . Clearly 

supp co c= $1, ~ dZxco(x) = O, ~ dZxlco(x)] = 2yR. (A.9) 

As shown in Sect. 1, it then follows that 

S dZxd2yco(x)co(Y)[ VA, x( x, Y) -- V~(x - y)] < const (Rv)2( ] / ~ -  ~c diam A)-1.  
(A.10) 

Next, we describe the way in which we distribute the 2v vortices in S 1 more 
precisely: They are all contained in a disc D of radius at most (1/4)(20) 1/2 
inscribed in S 1. Each individual vortex is in a disc of radius r, 

( 1 11/2 
< ' 

so that the distance of two such discs is at least 2r. The discs containing a positive 
vortex form a cluster, those containing a negative vortex form another cluster, and 
the two clusters are at a distance ~ 1/4(2~)- 1/2 ; see Fig. 2. To be specific, we may 
assume that these clusters are roughly circular pieces of a regular lattice 
(hexagonal or square) of small discs of radius r, with lattice distance proportional 
to r. By (A.10), the interaction energy of vortices within one such cluster is 

~ ( R 2 v 2 / 2 7 z ) l o g ( + ) - R 2 v 2 0 ( d i a m A - 1 ) ,  (1.11) 

r ] / ~  1, as v ~ .  
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The interaction energy between the two different clusters is 

~ _ ( R 2 v 2 / 2 ~ ) l o g ( 4 ~ )  _R2v20(diam A - 1). (A.12) 

These estimates are to be understood as follows: 
(a) Uniform constants only depending on the geometry of the clusters have 

not been computed. 
(b) Apart from those constants, (A.11) and (A.12) give the exact behavior of 

the total interaction energy of the 2v vortices, in the sense that the interaction 
energy is contained in an interval 

[K-~ ,K]R2v  2 log ( + ) ,  (A.13) 

where K and k are constants independent of r, v, and A, and t/tends to 0, as r~0 ,  
A--, oo. 

Next, we must estimate the interaction energy between the 2v vortices in D C S t 
and the 2(n-v)  vortices in A\ZI : We fix a configuration S 1 of 2(n-v)  vortices in 
A\S  1. This configuration determines a charge density, f2(x), with suppOCA\S~, 
and 

]" Q(x)d2x = 0 .  

Next, we fix the position of each of the 2v vortices in S~ to be at the center of one of 
the little discs of radius r contained in D C S 1. Let COo(X ) denote the charge density 
corresponding to this particular configuration. Furthermore, let COo(X) denote the 
charge density obtained from COo(X) by rotating the positions of all 2v vortices 
about the center of Sa (=center of D) through an angle 0. 

We now note that 

2 g  

dOCO~(x)- Co(x) (A.14) 
0 

is invariant under rotations about the center of S~, and ~co(x)d2x=O. The 
interaction energy between the 2v vortices inside S~ with charge distribution COo(X) 
and the 2(n-v)  vortices of the configurations S t in A\S 1 is given by 

Next 

W 0 = ~ d2xd2ycoo(X)~2(Y) VA, x(X, Y). 

2 ~  

S a0w0 = Ia2xd2yco(xta(y) VA,x(X, y). 
0 

2 ~  

dOWo=O. (A.16) 
0 

Since VA, x(X, y) is a harmonic function of x, for xe D, for all choices of b.c. X and all 
ye A\S1, and since ~co(x)d2x = 0 it follows that 
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As long as n is finite (or, equivalently, IA] is finite) W 0 is a continuous, periodic 
function of 0. This is true because 

dist (supp f2, supp COo) > 1 (2~)- ~/2. 

Thus there exists at least one value Osl of 0 such that 

W0s 1 =0 .  (1.17) 

As one varies the position of each of the 2v vortices in D C S 1 throughout one of 
the small discs of radius r (depicted in Fig. 2), the variation, A W0, in the interaction 
energy between the 2v vortices in D and the 2 (n -  v) vortices in A \ S I  is bounded by 

I A W01 < const (v(n - v ) / l / f~)  • r.  (A. 18) 

This follows from (A.15) and the continuity properties of VA,x(X, y) with respect to 
xeD,  for arbitrary y~A\Z~.  

Thus if the position of each of the 2v vortices inside Z~ is anywhere inside one 
of the 2v little discs, rotated by Osl, inside D then, by (A.17) and (A.18), 

[W% [__< const (v(n - v)/]//~) • r.  (A. 19) 

To complete the proof of our proposition we now must choose v and r, 
calculate the total energy uncertainty, using (A.13) and (A.19), and calculate the 
entropy of the class of configurations constructed above. For  example, we may 
choose 

v = (c l[A]/diamA) 1/2 , 
r = c2v- 2/2 exp [ -  c 3 diam A] ,J (A.20) 

where c~, c 2, and c 3 are finite, positive constants. Then the total energy of the 2v 
vortices in D CS~ is, by (A.13), contained in the interval 

c 4 [ K -  t h K]R2IAI , (A.21) 

for a positive constant c 4 (depending smoothly on Cl, c2, c3), with t/--*0, as A.-~IR 2, 
in the sense of Fisher. Moreover 

I Wosl I < c5 ]/-~lAl(lA[/diamA)t/% - c3 aiamA. 

Thus the total energy of the configuration, S, consisting of S~ and of the 2v vortices 
put into D by the construction described above, is contained in the interval 

[(% + c 4 K -  3x)lAI, (s o + c4K q- 32)1A1], (A.22) 

where 

31 = 3' + t] + exp [ -  O(diamA)], 

32 = exp [ -  O(diamA)l. 

By choosing cl, c 2, c 3 suitably, c4K can attain any prescribed, positive value. 
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To calculate the entropy of S, we first calculate the total volume, Vv, of all 
configurations of the 2v vortices inside D constructed as described above: 

Vv = (~r2)2V = const ( ~. ) e-  e°nstvdiamA . (1.23) 

Note that V~ is independent of S 1 (in spite of the fact that the angle Osl depends on 
• $1). Thus the volume of S is given by 

vol, S = vol,_~S 1 • V~, 

and hence, using (A.8), (A.20), and (A.23) 

[AI- i log vol.S = [AI- t log vol~_ ~S I + [A[- 1 log(V~) 

> s o - 27/3 - const (]A]- 1 diam A)1/2 

> So - 7, (A.24) 

provided A.~IR z, in the sense of Fisher, and, given ~, ]A[ is chosen sufficiently large. 
Clearly (A.24) and (A.22) complete the proof of (A.3) and hence of our 

proposition. 

Remark. In our proof we have used two special features of the Coulomb 
interaction : 

1) Va,x(X,y ) diverges to + o% as y ~ x ,  for each x~D.  [This was used in (A.11) 
and permitted our choice of v, namely v/IA]l/2"--~O, as [A[-+ 0(3, see (A.20).] 

2) More importantly, in our estimate of the interaction energy, W, between the 
2v vortices in D and the 2 (n-v)  vortices in A\Z~, we have used the harmonic 
property of Va,x(X, y) with respect to x eD, for y E A\Sz .  

It turns out that one can avoid using either of these two elements, 1) and 2). 
Instead one uses the following elements: 

a) Inequality (A.5). 
b) Given an arbitrarily small square 2;, the set of configurations of v(+ or - )  

particles inside 2; of energy > ~v 2 has a volume V~ > const(v !)-P, p < o% provided e 
is small enough. 

c) Charge conjugation invariance (i.e., + particles and - particles have equal 
a priori probabilities); or repulsive (positive) two body potentials of short range. 

d) One repeats the construction described above in N widely separated 
squares, S~ . . . . .  S N [-see remark between (A.8) and (A.9)]. 

These properties are all valid in the vortex gas studied in this paper, but they 
hold for a much larger class of classical statistical systems. The proof of our 
Proposition, assuming only a)-c) above, however becomes more difficult. [A clever 
interplay between d), c), and a) permits us to control the entropy and energy 
uncertainty.] We do not give the details. 

Appendix B 

Stability in the Canonical and Grand Canonical Ensembles, 
and Monotonicity Properties of the Pressure 

In this appendix we briefly describe two methods for proving the stability bounds 
(3.12) and (3.16) for/~<47r/R 2. In [-8, 9] these facts have already been established 
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for b.c. X = F , N .  Thanks to the third inequality in (3.16) it suffices to prove the 
stability bound [last inequality in (3.16)] for Dirichlet b.c. The bound (3.12) 
follows from (3.16) by standard arguments; see e.g. Corollary 3.6 of [8]. 

We then briefly indicate how one proves the monotonicity properties (3.17) 
and, finally, how one can treat vortex gases, where the vorticity, R, of individual 
vortices varies, but is distributed according to some finite measure d2(R) of 
compact support. 

Let ~)A,X be the Green's function of the operator -AA,X + # 2  where A A, X is the 
Laplacian on L 2 (A, Lebesgue) with X b.c. at the boundary (?A of A, and #>0.  
Clearly 

~ )  <V! "') for # > # ' > 0 .  (B.1) A , X =  A , X ,  

Let U~)x(~", ~m) be an (n, m) particle Hamilton function defined as in (3.1), but with 
VA, x replaced by ~A~)X and with WA, X(~ ) replaced by ½!in~ (Vt~)x(~, q ) -  V.(~, q)). By 
(B.1) 

rr(u) t~, 8"~ < lim U (u') (~" ~")= , ~m U A , X ( ¢ ,  ¢ ) (B.2) ~ A , X  ~,~ ''~ 1.-.~ A,X\"~ , 

and the last equation holds for all X, provided one sets UA.X(~ ~, ~ ) =  + ~ ,  for 
n 4= m, when X = F, P or N. We define 

1 1 d~ ,d~e_pV~,x ( , .~ ) ,  (B.3) Q(")X(A, n, m, fl) = n ! m l 
. A n + m  

and 

By (B.2) 

S(">X(A, z, fi) = ~ z"+"Q(U)X(A, n, m, fl). (B.4) 
n,m=O 

QX 
~,x<=s(,)x J for kt>0, (B.5) 

i.e. it suffices to establish stability of a gas where the "vortices" interact through a 
Yukawa - rather than a Coulomb potential, and this will follow from an upper 
bound on ~(~)x of the form 

E(u)X( A, z, fi) < exp [k(z, fl)lA]], (B.6) 

where ]AI is the area of A, and k(z, fl) is a finite constant, for all z > 0  and all 

f l<4~/R  2. I f X = D ,  A =  U Aj, where A t . . . . .  A, are disjoint, open sets, then 
j = l  

(4, (m), A,D~,'-~ , = 

and one checks easily that this entails 

l 
~(")D( A, z, fi) < [-[ E(u)D( A j, z, fl) . (B.7) 

j=l 

Thus it suffices to prove (B.6) for X = D  and a region A of unit area. By (4.2), this 
will prove (B.6) for X = F , P , N ,  as well. In the literature one finds two fairly 
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convenient  methods  for proving (B.6); see [8, 9, 3]. They both rely on the sine- 
G o r d o n  t ransformation which also plays a crucial role in a p roof  of the 
monotonic i ty  proper ty  (3.17) based on correlat ion inequalities [10]. We briefly 
recall some of the main formulas defining this transformation.  Let C ( =  Vf,)D) be 
the integral kernel of a positive definite quadrat ic  form on L z (A, Lebesgue). Let 
d#c(O ) denote the Gaussian measure on ~ '(A) [the dual of C~°(A)] with mean 0 
and covariance C. Let C o be a kernel with the proper ty  that  

c(4) = lim (C(4, ~7) - Co(i, tl)) (B.8) 

is cont inuous and integrable near ~A. Formally,  we define r andom fields :e ~ :0 
and :e ~ : by 

: e~* :o(0 = e÷~c°(~' °e~¢(°, 
(B.9) 

: e ~¢ :(4) = e ½~2c(~" °e~¢(°. 

It follows that 

:e i~* :0(4) = e -  ~:~(~)" e i~¢ :(~). 

By the definition of d#c and (B.8)-(B.10) 

(1 : e i~'~ :0(~j)d#c(qb) = exp [ - i ( ~  1 . . . . .  4,)3, 
j = l  

where 

(B.IO) 

(B.11) 

U(4a, . . . ,~ , )  = ~ ~i~jC(~i,~j.)+ 1 ~ a{c(4,). (B.12) 
<i<j<n 1= = i=1 

If we set C = V (") Co = Vo~ we obtain A, D~ 

Lemma B.1. 

<e .... 

where <(.))c  denotes integration with respect to the Gaussian measure d#c(O ), and 
C = V (") A,,,#>=O. 

Remark. Formally,  the proof  follows by power series expansion of the exponential,  
the identity 

2z :cos ~-fiR~b :o(~) = z(: e iV~R* :o(~) + :e iV~R* :0(4)) 

and identity (B.11). To make these formal calculations rigorous, one first proves 
Lemma B. 1 for a regularized version of  Va(~)D(~, ~1) which is cont inuous in 4 and ~/ 
and then removes the regularization, proving at the same time a uniform bound  of 
the form (B.6). Details for X = F may be found in [8, 9]. For  X = D, a convenient  
regularization consists in replacing 

V(Jl)D(4,~/) by [VA(~)--VA(MD)](~,~), M > > # > 0 .  

This is used in [3]. 
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By (B.IO), 

! :COS~/flg~:o(~)d2~= 5Aexp[-- ~2R2c(~)] cos~g~a:(~}d2~, 

where 

c(~) = lim [ Va(")o(~, q ) -  V¢o(~, q)], (B.13) 

and we may choose/~= 1. One verifies easily that, for fiR 2 <47~ and A a unit square 
or unit disc 

(a) ~ exp[- ~ R2c(~)td2~ < oo, and 

(b) OA!oAeXp[--fl2R2{c(~)+C(rl)}]V~o~),D(~,rl)d2~d2rl<--_constO, 

for all 0 > 1. To prove (a) and (b) we notice that -c(~)_<-(4~z)-lln(1/dist(~, OA)) 
+ const and that VoC~ ), o(4, r/) has exponential decay in I~- - r/I [this is used in the proof 
of (b)]. 

Estimates (a) and (b) are typical of the estimates one needs to control the 
renormalization group scheme in [3] which (with Lemma B.1) yields the bound 

E(u)D(A, z, fi) < e x p  c(fiR2)z 2 , (B. 14) 

for some constant c(flR 2) which is finite for 0 < fir 2 <4re, and A is assumed to be a 
unit square or unit disc. The method in [3] is designed to establish (B.14) for a 
renormalized version of E(u)X(A, z, fi), for all fiR 2 < 6re. This causes some technical 
complications which are unnecessary in our case. It is not entirely trivial to 
develop a simplified version of [3] which can be used to prove (B.14) without 
appealing to sophisticated techniques. Since details are lengthy but fairly straight- 
forward, we omit them. 

When A is a disc, one can set # = 0 and prove (B.14) by following the method in 
[8, 9]. This case is quite simple, because the Green's function of the Laplacian 
with Dirichlet b.c. on the boundary of a disc has a simple explicit expression. One 
proceeds as follows: One defines C =  V(A°)D = VA, D. The Green's function VA, D is 
calculated in [8, 9]. Let A o and A be two discs centered at the origin, with A o C A 
and dist(Ao, OA) >0. Then 

SD(A,z, fl)= (exPI2z ! :cos ~g~):o(~}d2~]) c 

<-<_(exp[4z~:cos~fiRCP:o({)dZ~])lc/2 

(exp[4zAJAo:COS]/fiRCP:o({)d2{])lc/2" (B.15) 

exp[-~R2c(~)]  is uniformly Now, notice that the re-Wick ordering factor 

bounded on A o. Therefore a convergent upper bound on the first factor on the 
right side of (B.15) follows from the results in [8, 9]. A bound for the second factor 
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can be proven by adapting the arguments in Sect. 3 of [81 : In Eqs. (3.11) and (3.15) 

of [8] the terms 1] Izj-wj+,Hwj-zj+,l ~ are replaced by 
j = l  

IZj--Wj+nl IWj--Zj+.I p -- e2{c(Izjl)+c(Iwjl)} , (g.16) 
j = l  

where c~ =/3R2/4~r, and 

- c(Iz[) = lim [V~ - VA,D](Z, w) < 1 ln(1/dist(z, 8A)) + const. 

Since Izj- wj+,l <const  dist(zj, OA) and Iwj- zj+,l_-<const dist(wj, 8A), for all 
z I . . . .  ,z~ and w 1 . . . .  ,w, contained in A\Ao, (B.16) is bounded by const'. The 
estimates in Sect. 3 of [8] and the boundedness of (B. 16) yield a finite upper bound 
on the second factor in (B.15). 

Finally, we note that the stability bound for QX(A, n,m, fl) follows from (B.14) 
and (B.4) by the Cauchy estimate. 

We now outline the idea of the proof of the monotonicity properties (3.17) of 
the pressure. First note that 

@X(z' fl) = [A[- 1Z-1 S OAX(fl ' Z ; ~)d2~ " (g.17) 
~Z A ' 

see (5.4). In the sine-Gordon representation 

ox(fl, z; ~)= 2zEX(A,z, fl)-l(:cos ~fiR~b :0({)exp [2z A: COS ~fiRq5 :o(~)d2~])c, 
( B . 1 8 )  

with C =  VA, x. It now follows from the correlation inequalities in [101 and the 
inequalities 

V~,,N + V~,N> V~,,,, 

VAI,D ~- VAx, D~-~ VA,D, 

where A 1 and A 2 are disjoint, open sets and A=A1uTI 2, that for each fixed 

QAX(fi, z ; 4) is increasing in A, for X = F, N,  

and 

eAO(fi, Z; 4) is decreasing in A. 

From this (3.17) follows by standard arguments (provided the domains are squares 
or discs). 

We conclude with a few remarks on vortex gases with vortices, the vorticities of 
which are distributed according to a measure d2(R), with supp2C[ -Ro ,  Ro], 
R 0 < oo. The grand partition function of this gas in the sine-Gordon representation 
is given by 

3X(A, 2, fl): (exp~d2(R) ! :eiV~R4:o(~)d2~)c, (B.19) 
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C= Va, x. By taking the absolute value of the expression inside the expectation 
(( ' ) )c  we obtain 

:co  

By J e n s e n ' s  i n e q u a l i t y  

(B.21) 

where z=~d2(R). Thus, combining (B.19)-(B.21) one finds 

The right side is bounded for all z >0 and uniformly in R, provided fiR 2 <4n;  see 
(B.14). If d,~(R)=d2(-R), the correlation inequalities in [10] are applicable, as 
well, and can be used to prove (3.17). 
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