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Abstract. We consider a viscous incompressible fluid enclosed in a bounded
region of R 2 or R3, and subjected to time dependent forces. Using bound state
estimates for the Schrόdinger operator, we obtain rigorous bounds for the
characteristic exponents, entropy (Kolmogorov-Sinai invariant), and
Hausdorff dimension of attracting sets. Our methods are of potential use for
more general time evolutions described by nonlinear partial differential
equations.

1. Introduction

In an earlier paper (Ruelle [32]) some rigorous inequalities on the characteristic
exponents for the Navier-Stokes time evolution have been obtained. These
inequalities were based on estimates for the eigenvalues of Schrodinger operators,
and have been subsequently improved by Lieb [18]. Using other methods,
Constantin and Foias [4] have also investigated the characteristic exponents for
Navier-Stokes (in the 2-dimensional case).

From the estimates on characteristic exponents one obtains rigorous bounds
on the Kolmogorov-Sinai invariant (rate of creation of information) and the
Hausdorff dimension of attracting sets. Such estimates were given in [32] and [4].
We indicate below the best bounds currently known, based on the results of Lieb
[18] (see Eqs. (14)—(17)). This improves in particular the bounds on the Hausdorff
dimension of attracting sets obtained by Constantin and Foias [4]. Explicit results
are also obtained for a 2-dimensional convection problem.

One novelty of the present paper is to lift the requirement that the forces acting
on the fluid be time independent.

2. Definition of the Characteristic Exponents

We consider a time evolution equation
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ina separable Hubert space M1 and assume that the general solution x = f(x0, t) is
well defined for initial condition x0 in a suitable open subset UCM and ί^O. We
also assume the existence of the linear operator T(x0, t):M\-±M obtained by
taking the derivative of /(xo,ί) with respect to the first argument, i.e.,
T(x0, ) = DXof. The growth of a small perturbation ξ of the initial condition is
described by ζ(t) = T(xo,t)ξo. Alternatively, ξ satisfies the linearized equation

d

It
-ξ = (Dx(t)F)ξ. (2)

Note that the linear Eq. (2) is time dependent even if F does not explicitly depend
on t. We define the characteristic exponent λ(x0, ξ0) as the following limit if it
exists * 1

Mx0,ξ0)=lim-log\\ξ(t)\\. (3)
Hoo ϊ

We shall first discuss the case where the right-hand side of (1) does not depend
explicitly on t: F(x, t) = F(x). We write then f(x, t) = fx and T(x, t) = Tx and we
have, where defined,

fs+t = f8of\ /° = identity,

If M is finite dimensional2 and ρ is a probability measure on M, invariant
under time evolution (i.e., under the f\ all t ^0), the multiplicative ergodίc theorem
of Oseledec3 implies the existence of the limit (3) for ρ-almost all x0 (and all ξ0).
Furthermore4

\im((Tynγ'2' = Λx (4)
ί->oo

also exists almost everywhere and the characteristic exponents λ(x, ) are identical
with the logarithms λϊ(x) of the eigenvalues of Λx. If ρ is ergodic, the characteristic
exponents are almost everywhere constant.

The multiplicative ergodic theorem does not extend without further conditions
to the case where M has infinite dimension. In fact one can find a bounded
operator T such that [(τnγτnYl2n does not tend to a limit when n^ oo5. However,
the multiplicative ergodic theorem holds if the operators Tx are compact6 (i.e.,
completely continuous: they can be approached in norm by finite rank operators).
This is sufficient for applications to the Navier-Stokes time evolution.

1 In the Appendix we allow M to be a Hubert manifold. Here we take M linear for notational
simplicity
2 We also assume that /, T depend continuously on x and ί. Much weaker conditions are
actually needed
3 See Oseledec [26], Raghunathan [27], Ruelle [30]
4 In (4) we denote by T* the adjoint of T; since T* T is positive, its positive root (T*T) 1 / 2 ί is well
defined
5 This was shown to me by T. Kόrner (Cambridge). This example contradicts the multiplicative
ergodic theorem when the support of ρ is reduced to one point (and the time is discrete rather than
continuous)
6 See Ruelle [31], Mane [24]; Mane's results extend to Banach spaces
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3. The Time Dependent Case

To treat the case where the right-hand side of (1) depends explicitly on t we have to
make some statistical assumption on its time dependence. Here we discuss the
situation formally, the appropriate theorems are quoted in the Appendix, and their
applicability to physics is discussed in Sect. 6.

Let (S, σ) be a probability space and (g')ί > o a semi-group of measure-preserving
transformations of S with respect to which σ is ergodic. We shall assume that
F(χ, t) = F(x, g^o) for some y0 e S and some function F : M x S-+M.

For instance we may take for S the /c-torus {(j/l5 ...,yk) mod2π}, for σ the Haar
measure, and let g*(yu •. ,yk) = (yi + cύit, ...,yk + ωkt), (ergodicity is ensured if
there is no relation Σ nfωf = 0 with integers nf not all zero). This corresponds to
quasiperiodic forces (periodic forces if k= 1).

If the equation

— x = F(x,gty0)

has a well defined general solution x = f (x0, y0, ί), we write f (x0, y0) = (f(xo> yo > 0*
g'j/o), and we have f+ ί = f of? f° = identity. We assume that (f) leaves invariant a
probability measure ρ on M x S and that the projection M x S-+S maps ρ to σ. Let
also Ύ\xy) be the derivative of f(x, y, t) with respect to the first argument, then

rps + t ΎS ΠΓί 'T'O -41
L(x,y)— 1ft(χ,y)ι(χ,y)^ L(χ,y)—R

The multiplicative ergodic theorem may now be applied to define characteristic
exponents7. In particular

iim\\ι(x,y)) ι(χ,y)) —/ι(x,y)
ί->oo

exists for ρ-almost all x, y.
To proceed we disintegrate the measure ρ by writing f ρ(dx dy) = J ρy(dx)σ(dy),

where the probability measure ρy on M is defined for σ-almost all y. We see now
that for σ-almost all y, we can revert to the study of (1) (with F( , i) = F( , g'y)),
and obtain the existence of the limit (3) and of

Λx= \im(T(x,t)*T(x,t))1/2t

for ρy-almost all x. If ρ is f-ergodic (this can be achieved by decomposition) then the
characteristic exponents are almost everywhere constant.

In the quasiperiodic example the above condition "for σ-almost all j / " may be
dropped (because in that case a (gf) invariant measurable subset of S is 0 or S).

4. Hausdorff Dimension and Entropy

Assume again that the right-hand side F of (1) is time independent, and let there be
a compact invariant subset K of M. The compactness of the derivative 7J implies

See the Appendix for a precise statement
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that K has finite Hausdorff dimension (Mallet-Paret [21]8)). An estimate of the
Hausdorff dimension of K in terms of characteristic exponents follows from the
work of Frederikson, Kaplan and Yorke [9], Douady and Oesterle [6], Mane
[23], and Ledrappier [16]. More precisely, let λ^)^^... be the decreasing
sequence of characteristic exponents associated with the ergodic measure ρ, define

c

ρ(
n)= Σ^i f°r integer n^O, and extend by linearity to the intervals [n,n+ 1].

Define the "Liapunov" dimension of ρ by

dim^(ρ) = max {s: cρ(s) ^ 0} .

Then (Ledrappier [16]) the Hausdorff dimension of K satisfies:

itfK ^ sup dimyl(ρ): ρ is ergodic and supp ρCK} .

Ledrappier [16] also shows that dίmyl(ρ) is an upper bound to the Hausdorff
dimension dim^ρ), i.e., to the minimum of the Hausdorff dimensions of the sets E
such that ρ(E)= 1. This is an interesting quantity (L.-S. Young [37], Grassberger
and Procaccia [12]) which can be measured experimentally (see Malraison, Atten,
Berge, and Dubois [22])9.

Consider now the case of time dependent forces described by
F(χ, t) = F(x, g^o)? where (g'yo) *s distributed according to the measure σ. The
characteristic exponents /^ Ξ>A2^... associated with an ergodic measure ρ have
been defined above (ρ is a measure on M x S, but the characteristic exponents
correspond to expansion or contraction in M only). We define cρ and dim^ρ) as
before. Suppose now that there is a compact set K C M such that PK xScKxS
for ί^O. There is then a compact set K(y0) such that 1 0

K(yo)χ{yo}= Π

and its Hausdorff dimension satisfies (see Appendix):

dimi/K(j;0)^sup{dimyl(ρ): ρ is ergodic,

suppρCK x S and the projection on S maps ρ to σ}. (5)

A dynamical system with given invariant probability measure ρ may always be
considered as a source of information, and the rate of information creation is the
Kolmogorof-Sinai invariant or entropy h(ρ). In particular we expect h(ρ)>0 for a
turbulent fluid (the system acts as a random number generator) even though its
time evolution is deterministic. This is because of sensitive dependence on initial
condition: two initial conditions which differ by an amount too small to be
measured will differ by a measurable amount after some time ί, so that new
information on the system has become available.

In the case of time dependent forces, as discussed above, the rate of information
creation by the system is the relative entropy hf(ρ) — h(σ) = h(ρ\σ). It is a general

8 This argument has been applied to the Navier-Stokes equation by Foias and Temam [8]
9 We note in passing that dimHK is not in general equal to the supremum of the dim^ρ with
suppρCK and ρ ergodic (see McCluskey and Manning [25])
10 We assume that g~ίy0 is well defined; this condition is weakened in the Appendix
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fact that this quantity is bounded above by the sum of the positive characteristic
exponents (see Appendix):

Λf(e)-Λ(*)^ Σ λ\ρ). (6)
i: λτ > 0

In particular, for periodic or quasiperiodic forces we have h(σ) = 0.

5. Rigorous Inequalities

Suppose that the time evolutions defined by (1), (2) make good sense (this has to be
checked in individual cases). Suppose in particular that

is a well defined self-adjoint operator. Usually Jf(x) will be unbounded, but we
assume that this operator is bounded above and that its spectrum is discrete,
consisting of the eigenvalues α 1(x)^α 2(x)^..., repeated according to (finite)
multiplicity. Then it is shown in [32] that

0 1

(This inequality is related to Lemma 2.1 of [16].) Notice that the estimate (7)
forgets time correlations: the growth rate of a perturbation ξ is estimated in terms
of the maximum growth rate at each time. If ρ is an ergodic probability measure, (7)
yields

φ) = Σ UQ) ̂  ί Q(dx) Σ alx) = ( £ a) , (8)

and

Σ λiρ)^/ Σ aS . (9)

More generally (see [32])

Σ <MQ))yύ( Σ (at

if y^ l . In fact, as noted by Lieb [18], Karamata's theorem yields

£ = 1 \ i = l

if φ is convex non-decreasing, and

^/ Σ φ(aϋ)

if furthermore φ(t) = 0 for t ̂  0. The estimates (8), (9) yield rigorous bounds on the
Hausdorff dimension and the entropy as follows from (5) and (6).
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6. Application to Dissipative Physical Systems

In order to define the characteristic exponents we want the operators T(x, t) to be
compact. In fact, in order to use the inequalities of Sect. 5, we want the eigenvalues
at ofj4?(x) to satisfy lim ^=—00. [These conditions can be relaxed a bit, see [31].

ί-> 00

In particular, if the T(x, i) are bounded but not compact one can still define the
"largest characteristic exponent" by the theorem of Furstenberg and Kesten [10]
which is a predecessor of the multiplicative ergodic theorem.]

In practice lim a{ = — 00 in those cases where Jf contains a Laplace operator
i-»oo

operating on a (vector-valued) function in a bounded domain. The Laplacian
corresponds to a dissipative phenomenon: friction (diffusion of momentum), heat
diffusion or ordinary diffusion. Unfortunately, compressible fluids are not allowed
because the equation of conservation of mass:

does not have a Laplacian acting on ρ. The incompressibility condition div u = 0 is
acceptable however as an auxiliary condition. Altogether, our inequalities will be
useful for dissipative systems which are incompressible and enclosed in a bounded
regionx x. Otherwise one may get a finite upper bound for the largest characteristic
exponent, but divergent estimates for Hausdorff dimension and entropy.

7. The Navier-Stokes Equation

Our previous discussion applies to the characteristic exponents of a viscous
incompressible fluid enclosed in a bounded region Ω in d dimensions (d = 2 or 3).
The Navier-Stokes equation is used:

-Z7 = -Σ UjdjUi + v AUJ - 8jp + gu Σ d^ = 0 .
01 j i

(The velocity ut on the boundary dΩ is imposed). The operator Jf corresponding to
the Navier-Stokes equation are of Schrόdinger type. The distribution of the
eigenvalues α of Jf may be estimated by a classical approximation, which also
yields rigorous inequalities, studied by Lieb and Thirring [19] (see also the review
in Reed and Simon [28] IV Sect. XIII 15 and Fefferman [7]). The original study
was made in Ruelle [32], and the results improved by Lieb [18]. One can further
generalize by allowing time dependent forces. One obtains thus, for y^l ,

\Ω

where the ρ-average is over the velocity field u, and

11 I am indebted to U. Frisch, A. Lafon, and J. L. Lebowitz for discussions on these matters. It
remains unclear to me if incompressible fluids are really excluded from the analysis, or if they could
be handled by a suitable trick
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Γ . fd-l\y/2 + d/4

is the dissipation rate; Lyd is a finite constant. The improvement by ( I

over [32] is due to Lieb [18], who gives LU2 ^0.24008 and L 1 > 3 ^0.040304 as the

current best estimates.
In particular, an estimate of the rate of information production is obtained by

putting together the inequality (6) with (10) for γ = 1:

( ) . (11)

The function cQ defined in Sect. 4 satisfies (according to [18], Eqs. (1), (27))

(fj) (12)
Ω Ω \ 2vd J
p=l+2/d,

where Kd is (for each d) a, universal constant. The estimate (12) is obtained by
comparing the eigenvalues of 34? with the eigenvalues of another operator repeated
d times. Therefore an upper bound to cρ(k) is obtained for any integer fc>0 by
linear interpolation of the right-hand side of (12) between values nd, (n + \)d. Since
the right-hand side is concave with respect to n we have, for all real s,

Therefore the argument of Lieb (leading to [18], Eq. (43)) yields the following
estimate for the Liapunov dimension:

[This result had been obtained in [32] only for d = 3, and assuming the correctness
of an unproved conjecture of Lieb and Thirring [19]. The best estimates on Λd are
currently [18]: A2^0.559Ί, ^ 3 ^0.1329.]

The inequalities (10), (11), and (13) are quite general, and valid also when the
boundaries δΩ of the region containing the fluid are time dependent. (This is the
situation of a fluid agitated by a propeller; the case of a spoon in a cup of coffee is
not allowed because of the coffee-air surface which makes this a more difficult
problem.) The case of moving boundaries is not exactly of the form discussed
earlier, because the region Ω and therefore the Hubert space M depend on time, but
the extension is straightforward.

8. The Navier-Stokes Equation in 2 Dimensions

The situation of the existence and uniqueness problem for the Navier-Stokes
equation is different in 2 and 3 dimensions.
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If d = 2, there is a good existence and uniqueness theorem (Leray,
Ladyzhenskaya). For time independent forces, a sufficiently large ball U C M is
mapped by time evolution to a compact set contained in U. There is therefore a
universal attracting set K such that every solution of the Navier-Stokes equation
approaches K when ί->oo. (A nice discussion of this is given in Foias and Temam
[8] Sect. 2, this article contains further references to Navier-Stokes theory1 2). For
the more general case of time dependent forces there is a universal attracting family
of compact sets (K(y))yeS.

We shall further discuss the case where the boundaries of Ω are fixed (u = 0 on
dΩ). We have then the identity

~\u\2=-2v\\u\

where | | is the L2 norm, and the Dirichlet norm || || is defined by

i j Ω

where || | |' is the norm in the dual of the Dirichlet space with the norm || ||. If — μ is
the largest eigenvalue of the Laplacian in Ω, we have 1 3

WgW^Sμ-'lgW / ^ ~ ,

where \Ω\ is the area of Ω, and therefore

Using (11), (13) we have in particular the entropy and Hausdorff dimension
estimates1 4

v ~o (14)

^ (15)

L 1 2 ^0.24008, ^ 2 ^ 0 .

12 Standard references are Ladyzhenskaya [15], Lions [20], and Temam [36]; see also Tartar
[35]
13 Note that JJu 2g ^dx1ma.x\u\\dx2max\u\S(j\\81u\){\\\82u\)

X2 Xl

14 In the case of time independent forces, sup/z(ρ) is the topologίcαl entropy, which is thus
v ~

bounded above by L x 2 — G
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where we have written G = — Ϊ W ^ I 2 ^ ) ^ 2 by analogy with the generalized
Id

Grasshof number G = -ψ- of Constantin and Foias [4]. We have G^G, and G is
v μ

proportional to G when Ω has a fixed shape. The estimate (15) improves the results
of Constantin and Foias (dimHK ^ const ((log G)1 / 2 + 1) in the case of periodic
boundary conditions, and dim#K ̂  const G2 in general, with constants depending
on the shape of Ω).

An example of 2-dimensional fluid set into motion by boundary effects will be
treated in Sect. 10 (convection).

9. The Navier-Stokes Equation in 3 Dimensions

If d = 3 there is no longer an existence and uniqueness theorem. One has a unique
solution for small times if the initial condition is good, and one can define "weak
solutions" for all times, but without uniqueness (Leray [17], Hopf [13]). This is
because the time evolution might create singularities even if the initial condition is
smooth. One knows however that the singularities can occupy only a small subset
of 4-dimensional space-time (see Leray [17], Scheffer [33], [34], and the best
results in Caffarelli, Kohn, and Nirenberg [2]). It is in fact not known if
singularities occur at all.

Here we shall ignore singularities, and assume that our initial conditions are in
some open set U which is mapped inside itself by time evolution. There is then an
attracting family of compact sets (K(y))yeS as in the 2-dimensional case. The
entropy and Hausdorff dimension estimates are here

/Λ , (16)

3 / 5 , (17)

Lx 3 ^0.040304, ^ 3 ^

where |Ω| denotes the volume of Ω.
It is not known how to bound <J ε5/4>ρ in terms of the forces acting on the fluid

(assuming u = 0 on dΩ). It is however possible to bound this quantity in terms of
<(I ε)2> and the forces by using the inequalities15

ε 3 ^ const v3]Ju|6,

^^/H^), (18)

15 Multiplying the Navier-Stokes equation by Δu, integrating, then multiplying by ||w||2α, one
obtains

α+1 dt

Averaging over time yields (18), which remains true for α = — 1
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etc. Unfortunately these inequalities are not suited to a large volume limit because
different terms are proportional to different powers of the volume of integration16.

10. Convection

We consider heat conduction by a viscous fluid, with gravity treated in the
Boussinesq approximation. This means that the fluid is considered incompressible
except for a buoyancy effect. We further assume that the various
phenomenological and thermodynamic coefficients are constant17. Writing
Q = T—T0 + βZ, where To is a reference temperature and Z the vertical co-
ordinate, we have the following evolution equations

ΣdiUi = 0, (19)
ί

^ = " Σujdju, + vΔUi--δiP + gaθδ.Z, (20)
01 j Q

~ = - Σuidi(θ-βZ) + κAΘ+-^Σ(8iUj + djui)
2-^ΣuigaθdiZ. (21)

01 i C Z ij C i

The term gaθdtZ in (20) is the buoyant acceleration, defined only up to a gradient
(absorbed in dtp); c is a specific heat. The fluid is enclosed in a box Ω. The velocity
and temperature are imposed on the boundary of Ω, where it is assumed that (ut)
and θ vanish. We simplify our problem by taking the specific heat c infinite, so that
(21) becomes ™

7Γ = ~ Σu&(β-βZ) + κΔΘ. (22)
t i

Furthermore we shall discuss only the 2-dimensional situation and take diZ = δi2.
The linearized Eqs. (20), (21) are of the form

where ξ is a vector field with components U1, U2, kθ, satisfying Σ<Wί = 0 (The
constant k will be fixed later.) Define '

U\\2=\Σξf-
Ω i

The self-adjoint part Jf of Jf is then defined by

+ κk2ΘAΘ-k2Θ Σ

16 R. Mane has informed me that he has obtained Hausdorffdimension estimates (unpublished),
Constantin, Foias, Manley, and Temam [5] have also announced such estimates
17 For a classical study of convection see Chandrasekhar [3] see also Glansdorff and Prigogine
[11], Chap. XI
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with

Σ M^j= Σ
Uj=l i,j=

The symmetric 3 x 3 matrix M satisfies TrM = 0, and therefore its eigenvalues are
bounded by (f T r M 2 ) 1 / 2 (Lieb's remark, see [18]). Therefore

\ A
v +( |TrM 2 ) 1 / 2

l
For a probability measure ρ ergodic under time evolution, we have then, by easy
modification of standard arguments ([32] and [18]):

(23)
i:λι^O

for y ^ 1, and

^ ^ ^ d f 2 ^ 2 (24)

We have

JTrM 2 = J ̂  ( Σ t (δ;«,)2 + ̂  _

because cross products disappear by integration. On the other hand (20) and (22)
yield

v(ί Σ (δ^) 2) =ga<ίu2θ)e,
\ u i / . ( 2 5 )

so that

and taking k = (ga/β)112, we get

1 ί (26)

We specialize now to the case of a rectangular region Ω of height h and basis b,
so that |Ω| = bh, and Z varies from 0 to h. We assume that the initial temperature T
in Ω is between To and T0 — βh; the evolution equations imply that this remains
true at all times, and we have

Writing i9±=i(|0|±0), we

h

0

have

ιUdZ =

h

0

d (z

dZ\o

h

z



296 D. Ruelle

where

0 Z

Therefore

3 o

( \
where we have used J d2u2dZ = 0 I, hence

V o /
i/2 //, \i/2

M ( U )
o 3 \15/
hence 2

22β2h*\Ω\V$ Σ2 270v* ~H " '""' ' 2hupΓ1"" '

where we have used the fact that (d^u^2 = (d2u2)
2 as a consequence of (19). In view

of (25) we have thus

2 " / = a 2 7 0 v »

Therefore (26) yields

and we obtain

κ:v

1620 ' 3

7 ααβft4 2 Ί 1 / 2

( l 2 / ) ^ J (

(27)

(28)

where we have introduced the Rayleigh number ^?= h4.
KV

If K is the universal attracting set for the present problem18, dimHK is bounded
by (28) while the topological entropy of the time evolution (restricted to K), i.e.,
supή(ρ), is bounded by (27). In particular, we have an upper bound to the

18 The existence of such a set is fairly clear, but we have in fact not proved it
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dimension of K which is linear in M. This means physically that the number of
"excited modes" does not grow faster than linearly with the imposed temperature
gradient.

11. Conclusion

In this paper, we have described a relatively systematic method of obtaining upper
bounds on characteristic exponents, entropy and Hausdorff dimension for a time
evolution described by nonlinear partial differential equations. The full nonlinear
problem is decomposed into a linear part and a nonlinear part. The linear problem
can be handled systematically by use of existing methods (of the type of classical
estimates for a quantum system). The remaining nonlinear problem requires
making suitable a priori estimates. The method has been illustrated by examples
from hydrodynamics, but it is potentially useful in the study of many dissipative
physical systems.

Appendix

In this appendix we discuss a situation slightly more general than in the main text:
we allow M to be a manifold. On the other hand the time is taken to be discrete,
which is sufficient (use a time one map).

Let M be a Hubert manifold (modelled on a separable Hubert space) and S a
compact metrizable space. Let also ρ be a Radon probability measure on the
compact set suppρ (the support of ρ) contained in M x S. We denote by π: supp
ρ->S the canonical projection. We assume that there is a neighborhood U x S of
suppρ in M x S , and continuous maps ΐ:U xS-^M xS, g:S-»S, such that
fsuppρ = suppρ, fρ = ρ, and π o f = g o π . We write f(x,y) = (fyx,gy), and σ = πρ.

Disintegration

In the above setup we can disintegrate ρ with respect to π, i.e.
$ ρ(dxdy)= J σ(dy)ρy(dx), where ρy is a probability measure with support in U
defined for σ-almost all y. [See for instance Bourbaki [1], Integration Chap. 6
Sect. 3 No. 1.] We have the invariance relation fyρy = ρgr

Assume now that the maps fy: U-+M are of class C 1 and define the linear map
T{xy) to be the tangent oϊfy at the point x. Therefore T(JC y ) maps the tangent space
TXM to TX,,M, where χ' = fyχ, and T(JC>30 depends continuously on x. We assume
that TiXty) depends continuously on (x, y) e U x S. Using a finite number of charts
of M, one may consider all T^^ as acting on a single Hubert space, but the
dependence on (x, y) will in general only be measurable, instead of continuous.

Multiplicative Ergodίc Theorem19

From now on we assume that the operators T{xy) are compact, and write

1(x,y)— 1fn-Hx,y) ' -ίf(x,y)1(x,y)

19 For this infinite dimensional variant of the multiplicative ergodic theorem of Oseledec, see
Ruelle [31], Mane [24]
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Then, for ρ-almost all (x,y), the following limit exists in norm and is compact:

lim (Tn * T " Λ1!2n—Λ (*Λ
n m \1(x,y) 1(x,y)) —yi(x,y) V )
n-> oo

(here T* is the adjoint of T). Let expA(1)>... >exp/lω>... be the sequence of
eigenvalues of Λ{x>y), and U[l]y),..., C/^^,... the corresponding eigenspaces. If
V$}y) is the orthogonal complement of U{1) +... + U{r~ι\ then

lim -log||T" y)u|| =Afc> )9 when u e K ( V + ι )

n->oo 7t

for r = 1,... (and the (x,y) for which (*) holds).
The λ^ are the characteristic exponents, and their multiplicities are the

raω = dim UU). If ρ is f-ergodic the characteristic exponents and their multiplicities
are ρ-almost everywhere constant. Let λ1(ρ)^λ2(ρ)^.. be these characteristic
exponents repeated according to multiplicity, define

c

ρ(ri) = Σ ̂ i(g) f°r integer n ̂  0,

and extend cρ to be linear on intervals [n 5 n+l] . Notice that cρ is concave on
[0, + oo), that cρ(0) = 0, and that cρ(s) may take the value — GO for suffiently large s.
Define also

dimyl(ρ) = max {s: cρ(s) ̂  0}.

Hausdorff Dimension

Remember that f(x, y), T(x y) depend continuously on (x, y)eU xS. We assume
that there is a sequence (y(-R))n^0

 s u c n t n a t g^-ro^JV-"

1
vague lim - ]Γ (5( _ } = σ.

H-> 00 M 0

We also assume that there is a compact KcU such that / y (_ 0KcK, and define

Then K(,(0))=n o / , ( - 0 K.

dimyl(ρ): ρ is ergodic, suppρCKxS and πρ = σ} .

[When S consists of a single point, this is a corollary (see Ledrappier [16],
Corollary of Proposition 2) of a theorem of Douady and Oesterle [6].
(Ledrappier's result is finite dimensional but, as he points out, it extends to infinite
dimension. Related results have been obtained by Mane.) The arguments of
Douady, Oesterle and Ledrappier extend in a straightforward manner to the
present situation.]

Entropy

Assume again that ρ is ergodic. Then

hf(ρ)-hg(σ)^ Σ Uρ).
i .λi^O
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[This has been proved in [29] for the case when M is finite dimensional and S is a
point. If (S, σ) is non-trivial, replacing the entropy by the relative entropy is done in
standard ways (see Jacobs [14], Sect. 10.5, Theorem 5). If M has infinite dimension,
the proof of finite Hausdorff dimension of K(y) supplies coverings of K(y) by very
flat ellipsoids, which can be cut in small rectangular cells, and the argument of [29]
extends to this situation. Another proof has been promised by R. Mane.]

Acknowledgements. I am indebted to U. Frisch, A. Lafon, J.L. Lebowitz, R. Temam, and especially
J.-P. Eckmann, F. Ledrappier, E. Lieb, and R. Mane for discussions pertaining to the contents of
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Note added in proof: The following recent references are relevant to the subject matter of this
paper:

[A] Babin, A.V., Vishik, M.I.: Attractors for partial differential equations of evolution and
estimation of their dimension. Usp. Mat. Nauk 38 No. 4 (232), 133-182 (1983)

[B] Foias, C, Manley, O.P., Temam, R., Treve, Y.M.: Asymptotic analysis of the Navier-
Stokes equation. Physica 9D, 157-188 (1983)

In particular [A] contains lower bounds on the dimension of attracting sets (obtained by
proving the existence of an unstable fixed point).




