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Abstract. We prove that in the high temperature regime (T/J > 1) the deviation
of the total free energy of the Sherrington-Kirkpatrick (S-K) spin glass model
from the easily computed logAv(ZN({βJ})) converges in distribution, as
ΛΓ-KX), to a (shifted) Gaussian variable. Some weak results about the low
temperature regime are also obtained.

1. Introduction

We consider the Sherrington-Kirkpatrick [1] spin glass model, with the mean field
Hamiltonian

where the spins σ l9..., σN take values ± 1, and the J 0 's are independent identically
distributed random variables with mean zero and variance J2. (The randomness is
reflected in the unusual scaling factor l/]/ΪV in H.) It is believed that this model has
trivial behavior at high temperatures (for βJ < 1) while at low temperatures (βJ > 1)
it has a rich structure of "Gibbs states" or "valleys" described by Parisi's Replica
Symmetry Breaking solution; see [2] for a review of the history, the current status,
and an extended list of references - on this and related subjects.

While the Parisi solution is widely believed to be exact, it is not claimed to be
rigorous. In fact, we have not found in the literature a complete treatment of even
the high temperature region. The main purpose of this note is to provide a full
description of the free energy in that regime. We supplement the existing analysis
by deriving the limiting probability law of the fluctuations in the total free energy.
In addition, the results of Sherrington and Kirkpatrick [1] and Thouless et al. [3]
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on the average value of the free energy per site are given here a rigorous proof. Also
presented are some weak but explicit bounds pertaining to the low temperature
region, on an order parameter which is similar to that of Edwards and Anderson,
and on the energy per site.

2. Assumptions and Statement of Results

We make the standing assumption that the distribution of the Jtj is symmetric with
respect to zero, and has moments of all orders. In particular we write

denoting by «...», or alternatively by Av(...), the average over the Jf/s. This is to
be distinguished from the averages over the σf's - of which the a-priori (equal
weight) average is denoted here by tr, and the thermal average (corresponding to
fixed {βJij}) is denoted by <...>. Examples to keep in mind are that of Jf/s
independent Gaussian variables, with

P(dJij)= -^(exp-Jfj/U^dJij, (2.1)
ylnJ

and the discrete case, Jυ= ± 1, with

PidJtj) = h (δ(Jij - J) + δ(Jtj + J)) dJtj. (2.2)

Of principal interest is the distribution of the partition function

^ σ , . , (2.3)

where {βJ} denotes the family of couplings βJtj.
Note that by the symmetry of the distribution of the J^ 's we have

( ( ^ (2.4)
i<Λ\ yN/l

so that

log«Z» = ΛΓ[log2+ i / ? 2 J 2 ] - $β2J2+ J^i +θ(j^, (2.5)

with ^ = ««/t2»~3«Ji2»2 (which vanishes in the Gaussian case). Here, and in
what follows, the subscript N is sometimes omitted.

The calculation of the mean free energy, which is proportional to PN(β)
= l/ΛΓ«logZ» is, of course, more difficult. In addition, the question of the
sharpness of the free energy per site, in the sense of its convergence in distribution to
a constant as ΛΓ-> oo [as in (2.11)]5 is nontrivial for the SK model. In this respect, a
special situation exists whenever

lim - « l o g Z » = lim - log«Z», (2.6)
i V i V Λ ^ i V
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(i.e. the "quenched" and the "annealed" free energies agree) - which is predicted by
Sherrington and Kirkpatrick [1] and Thouless et al. [3] to hold for βj < 1. In such
case, the sharpness of the distribution of the free energy density may be deduced
from just the mean value. [However, it is generally expected that the distribution
remains "sharp", i.e. the free energy density has the "self averaging" property, even
when (2.6) fails.]

It turns out that (2.6) is equivalent to the vanishing, as JV-» oo, of the mean value

O f 2

u Σ <Wj>2 (2-7)
1) i ^ i j N

(see Proposition 4.1). The limit of the corresponding mean, if it exists, defines an
order parameter which is somewhat similar to that of Edwards and Anderson.

The following statement summarizes the high-temperature behavior of the free
energy to leading order in N.

Proposition 2.1. For all βJ<ί,

i) lim«τJV({i8J})» = 0, (2.8)
N-+00

ii) the mean free energy satisfies

lim ~«logZ» = log2+ ϊβ2J2 = lim ^log«Z», (2.9)

and iii) the free energy per site converges to its mean value, in probability,

1

IV'

and also in the U sense for each p<co.

Prob, ~logZ-(log2+i/? 2 J 2 ) >ε)— >0 for all ε>0, (2.10)

We shall go beyond (2.10) by showing that the fluctuations of the total free
energy, i.e. log (Z/«Z»), are of order one, and converge in distribution to a (shifted)
Gaussian. (Actually, we need this analysis for the proof of Proposition 2.1.)

To describe the fluctuations let us decompose the free energy as follows,

zN> with 2* = tr
ί<J |/iVJ i<J

(2.11)
Proposition 2.2. For βJ<l,

i) ZN tends in distribution, when N^oo, to the log-normal variable

where v is a Gaussian random variable with variance

2+±β*J4l= Σ lτ(β2J2)\ (2.13)

and
ii) Zjy/^Zjy)) tends in distribution, when N-+co, to

Γ=exp(u- i<u 2 », (2.14)
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where u is a Gaussian random variable with variance

(u2} = -\\\og(\-β2J2) + β2J2-λβ*l4-\. (2.15)

Remarks. The convergence in distribution, of a sequence of random variables XN

to a variable Y (<2)-\imXN = Y, or XN • Y), means that for all intervals [α, fc]

provided Prob(7= a) = Prob(7= b) = 0, i.e. provided the limiting density does not
have a δ function at Y = a or b.

A well known criterion is [4]:
Cl) If the moments of a sequence of random variables XN converge to the

moments of V, i.e.

then also

provided the distribution of V is uniquely determined by its moments. A sufficient
condition for the latter is that <F">/[ε"^!]-^0, for each ε>0.

In our case, the moments of the limiting distribution T are given by

Their rate of increase with n is such that criterion C1 does not apply - the log-
normal distribution is actually a known example of a law which is not uniquely
determined by its moments (see Derrida [5] for specific examples of other
distributions with such moments, and a discussion of this point in a relevant
context). So even had all the moments of ZN/<^ZN^converged to (2.16) for βJ<\,
that would not be sufficient to prove (2.2). In fact however, as pointed out to us by
Derrida, for each βj the higher moments of ZN/^ZN% i.e. from a certain value
n(β)<oo, diverge as N-^oo. The study of the distribution of the free energy has
therefore to be based an other techniques. [Nevertheless, it is interesting to note
that «Z2

N>y/((ZN»2^E(T2) for j8J<l.]
As a notion of convergence, ̂ -convergence is one of the weakest. In particular,

in itself it does not imply the convergence of the mean values. However, with some
extra compactness - like in the following criterion [4], it suffices.

C2) lϊXN > Y, while for some ε>0« |X N | 1 + ε » stays bounded uniformly in
N, then also <<JTN»-><<Y».

This criterion applies to the leading order of the free energy, i.e. the free energy
per site (Sect. 4), and enables us to deduce Eq. (2.9) from the results of
Proposition 2.2.

Finally, we present some weak low temperature results. To place them in a
context, let us first note some implications of well known basic principles. First, in
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any random system, if a function g( ) defined on [0, oo) satisfies

lim sup £ — log«Z*» S g(β), (2.17)

then also the following bound holds

®-lim sup ^ logZN({/?J}) ̂  g*(j8), (2.18)

where g*(β) is the pointwise largest function which is: i) nonincreasing in β, and ii)
satisfies g*(β) ^ g(/?), for all β ^ 0. An inequality involving "®-lim sup" [as in (2.18)],
or "®-lim inf," means here that the probability measure of the set of J's for which
the inequality is violated tends to zero.

The bound (2.18) is derived in two steps. First one may note that such an
inequality with g( ), instead of g*( ), is implied by a simple consideration of the
mean value of ZN [see (4.9)]. The improvement represented by g* is based on a
monotonicity statement which is implied by the nonnegativity of the entropy:

where ρ{βJ}(σ) = e~βH{σ;J)/ZN({βJ}) is the Gibbs state corresponding to {J}, and the
inequality holds since ρ(σ) < 1.

For the systems considered here the simple calculation (2.5) shows that (2.17) is
satisfied by g(β) = (log2)β~1 + βJ2/4. The above considerations involving g*( )
suffice to imply that the free energy cannot satisfy (2.9) for βJ>2]/\og2 ^ 1.39
(which is, however, somewhat far from the generally expected critical value

/y=i)
Another quantity of interest is the ground state energy (per site): eo({J})

= minσH(σ;J)/N. Simple thermodynamic considerations related to the above
show that

{ } / ϊ (2.20)

Since the order parameter defined in (2.7) also satisfies the relation

[see (4.14)], one has bounds which show explicitly that it does not vanish at low
temperatures [additional information on its behavior near β = 1 is provided by the
related inequality (4.12), of Proposition 4.2].

The result presented below provides some bounds which tend to be comple-
mentary to the above inequalities.

Proposition 2.3. For all β,

2Λϊm inf 4 log ZN ^ log 2 + ϊ du log cosh f 1 / — βJ ) . (2.22)
JV^OO N o W π J
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The implication of (2.22) for the ground state energy (obtained by letting /?-• oo)

is

χ J = 0.53J. (2.23)

π 3

Making a mild use of Wigner's "semicircle law" one can get a better bound for e0:

Proposition 2.44. For the Gaussian ensemble (2.1),

0-lim inf \eo\ ^ - J ̂  0.64 J . (2.24)

The restriction to the Gaussian case is expected to be just a matter of
convenience for the proof. The value produced by numerical studies is
\imN^ao\eo\^0.Ί6J [6, 7]. While there is obviously room for improvement, let us
note that the energy densities of typical configurations accessed by states in the
high temperature regime satisfy

-eπ±βJ2^0.5J, (2.25)

so that the bounds in (2.22)-(2.24) do reflect on the the low temperature region.

3. The Fluctuations in the Total Free Energy at High Temperatures

In this section we analyze the limiting distribution of the random variable
ZN({βJ}). We start by presenting a convergence criterion useful for our purpose

[4]
C 3) If a given sequence of variables XN can be approximated arbitrarily well in

the L2 sense by ̂ -convergent sequences, i.e. if for each ε > 0 there exist random
variables X$ and Y(ε) such that

i) IIA^-A^U^ε

and

ii) X^-^+Y{ε) (as JV->oo),

then the following limits exist and are equal

Let us now turn to the quantity ZN, defined in (2.12). Expanding the product,
and performing the tr, one arrives at the following expression

Z= Σ w(Γ) (3.1)

with

W(Γ)= π t a n h ( ^
b,edgesofΓ \J/iV
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The summation in (3.1) is over all the graphs with vertices in {1,2,..., N} which are
simple and closed, i.e. no bond (i.e. edge) is repeated, and the set

dΓ = {ίe{l,...,N}\i belongs to an odd number of edges of Γ}

is empty.
We shall also encounter here graphs with multiplicities. In general, for a graph

Γ, we denote by \Γ\ the number of its bonds, counted with their multiplicities in the
graph.

The following result indicates the origin of the Gaussian distribution which
appears in Proposition 2.2, and demonstrates the way we apply the above
convergence criteria.

Lemma 3.1. With γ ranging over simple loops on the vertex set {1, ...,N}, let

then, for βJ<\

VN(J)= Σ w(y) (3.2)
γ, simple loops

V»-iΓ^">> (3-3)

where v is a Gaussian random variable of variance given by (2.14). Moreover, the sum
of w(y)2 converges to a constant:

(3.4)
y

where the convergence is both in Q) and in L2, and

Prob(max{|w(7)|} ϊ ^ L _ ) - ^ ^ 0 (3.5)

for each ε>0. By implication,

Σ h Φ ) l * — > ° for each k>2. (3.6)

Proof The main result here is (3.3) which will be proven first. Our strategy is to
split the sum over the graphs into two parts,

Σw(y)= Σ vv(7)+ Σ n(y) = Fgk+F>k9 (3.7)
y y : |y |^k y:|y|>fc

of which F>k will be shown to be of a small L2 norm, and F^k will be shown to
converge on the basis of its moments. By Wick's identity for the moments of the
Gaussian distribution, and the criteria mentioned above it suffices to show

i) \\F>k\\2^εk, (3.8)

uniformly in N, with εk->0 (as k-+ao).

ii) lim lim «*•!*» = <t>2>, (3.9)
fc-> oo iV-» oo

and (the heart of the matter) -
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iii) the quantities

RkJN)=«(F**)"»- #[pairings of {1,...,«}] - « n , » " / 2 , (3.10)

vanish in the limit JV->oo:

RkJN) N ^ o o > 0 for all fc and n>0. (3.11)

First, we note that as square-integrable functions of {Ji3) the weights w(y) are
orthogonal for different loops [with respect to the measure P(dJ)~]. By easy
counting

MW-1,(W-g... ( W- t +,)//// t

2k
(3-12)

which directly implies (3.8) and (3.9). What is left is the main part of the analysis:
dealing with the higher moments. These, however, are considerably simplified by
the introduction of the finite cutoff k.

To prove iii) let us write

- Σ Σ ((ML X T ^ . ^ W ) ) , (3.13)
pairings yι,...,γn

of{l,...,«} Ivil^fc

and group the terms in the above expression according to Γ = y x o... o ynJ by which
we denote the multi-graph whose multiplicity for each bond is the number of loops
jι containing that bond.

For Γ which consist of non-intersecting "double loops" the structure of the
contributing n-tuples yu ..., yn is unambiguous - up to permutations. To each such
permutation there corresponds exactly one term in each of the sums over
{y1?...,yn} in (3.13), and there is exactly one pairing in the second sum with
nonvanishing «w w» ... «w w», which then equals «w(Γ)». The two terms
clearly cancel each other, and hence the net contribution of the double loop graphs
to R is zero.

By an easy estimate of the remaining contributions, one gets

(3.14)
r

with

( ( ( ^ ) " ' j / 2 ) ) 1 / " ] | Γ | ^ " | Γ | / 2 (3.15)

The summation (*) is over multi-graphs, each of which is given by the set of

multiplicities {n^ ll r^ι'</^JV}, such that:

1) \Π= Σ
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2) for each bond with n^Γ) Φ 0, and each vertex with nonvanishing order n^Γ)

= Σ ndn
( Φ ) and

3) there is either a vertex with /if(Γ) ̂ 8 , or a pair of vertices each having

(The last two properties follow from the fact that Γ is a union of simple loops,
has no single bonds, and is not decomposable into a collection of nonintersecting
double loops.)

The coefficient c(Γ) in (3.14) is a combinatorial factor satisfying

uniformly in N.
For each n and k, there is only a uniformly finite number of equivalence classes

of graphs Γ, modulo permutations of {1, ...,N}, which contribute to the sum in
(3.14). For each such class the weight associated with each graph decays with N as
const JV~|Γ|/2, while the number of elements in the class grows proportionally to
NV{Γ\ where V(Γ) is the number of vertices of Γ. However the above restrictions 2)
and 3) on Γ imply that

i.e.

| Γ | / 2 - F ( Γ ) ^ l . (3.16)

Therefore we obtain

\RkJN)\^ά(k,n)/N, (3.17)

which, by the criterion C1 of Sect. 2 - and by the known structure of the Gaussian
moments, implies that F <k converges in distribution to a Gaussian, whose
variance is easily computed [as in (3.12)] to be

k (β2j2)m

<^2>= Σ ̂ Γ " .
m = 3 2ΛΠ

The claim made in (3.3) follows now by the convergence criterion C3.
The other two statements, (3.4) and (3.5), are much more elementary.

Equation (3.4) is equivalent (in its L2 sense) to:

which is easy to prove by the arguments used above. For (3.5) we take any
/c>min{2,3/ε} and use the bound,

Λ ί Σ«My)l*»
γ

^ ^ - N - ^ - 3 > - ^ 0 , ( 3 . 1 8 )

1-x iV1 2
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where x = βfe«|J12|
fc», and the summation is performed just as in (3.12) (with the

dominant term corresponding to \y\ = 3). •

Before we turn to the partition function, let us note the following consequence
of the above limits.

Lemma 3.2. For βJ<l,

^ " 2<v2», (3.19)

where v is the same Gaussian variable as in (3.3) and (2.14).

(To prove it, one may start by rewriting each factor, using: 1+x
= exp [x — \ x2 + 0(x3)], for x < \, and then substituting (3.3)—(3.6) of Lemma 3.1.)

Let us now turn to the reduced partition function Z. Our first step is to reduce
the collection of graphs with which one need be concerned. Because of its general
usefulness, the following estimate is stated separately.

Lemma 3.3. For βj < 1, the contribution to Z of large graphs decays exponentially,
in the following sense,

Σ w(Γ)V\\ ^ c o n s t ^ (β2J2)k. (3.20)
imple closed I //

\Γ\*k J II

Proof. By the orthogonality of the different graphs' weights,

L.H.S.= Σ «w(Γ)2». (3.21)
Γ simple closed

\Γ\Zk

For given sufficiently large /c, let ε = ε(/c) > 0 be defined by eε(βJ)2 = 1 - l/\/ϊk. We
have

Σ « w ( Γ ) 2 » ^ - ε k Π ( 2 φ l

Γ simple closed loops γ
\\

* ' " " 2 1-e^ 2 .

D (3.22)

Putting together the various estimates obtained above, we shall now prove the
main result of this subsection.

Proof of Proposition 2.2. i) Let

φ(z)= γι [l+zw(y)]. (3.23)
γ, simple loops

This function - which depends on N and {βJ}, is a polynomial in z. Using
Lemma 3.1, and the remainder formula,

n = on\ K— I K
\Z\ = R



S-K Spin Glass Model 13

(for a function which is analytic in a disk of radius R > 1) which we apply with a
fixed R> 1, it is easy to see that

nV+My)l- Σ Σ MyJ -MvJ-j^o (3.25)
0 { }

(where the sum is over n-tuples of distinct loops), provided kN and mN diverge when

At the same time, by the arguments which were used in the proof of Lemma 3.1,

2

z- Σ Σ w(7 l) ... w(?n)

(/ Σ
Γ simple closed

\Γ\^m k

^ C(m fc)/JV + Cexp[-\n(βJ)~ 2 -mk+ ]/mk'] , (3.26)

where C is a finite quantity which is independent of N, and the last step is by
Lemma 3.3.

With m and k chosen so that m, /c->oo while C(m k)/N-*0 (as Λf->oo), the
estimates (3.25) and (3.26) show that

— > 0 , (3.27)
y

which together with Lemma 3.2 imply that the distribution of ZN tends to that of
the log-normal variable described by (2.13).

ii) To complete the derivation of the fluctuations in the total free energy, we
note that by the decomposition (2.12),

Z/(2*Z) = exp ( Σ .log cosh(β Jtjή/N)

=«Z/2"» • exp(ΰ- | « δ 2 » + 0(£)), (3.28)

where in the last step we use (2.4)-(2.5), and u is the random variable

By the central limit theorem, ύ converges in distribution to a Gaussian variable
[with variance 1/8 jff 4(«Jί 2»- ^ 4 )] Note that for each N the variable u is
orthogonal, in the « » sense, to the quantity Σγ w(y) - which is the source of the
residual fluctuations in logZ. Using the analysis of Lemma 3.1 it is easy to show
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that in the limit N-+00 the two fluctuation terms in logZ add as a pair of
independent Gaussians (as suggested by their orthogonality). The result is that the
distribution of logZ tends to the log-normal law described in Proposition 2.2. •

4. Mean Free Energy and an Order Parameter

The preceding discussion yielded an explicit form for the distribution of the total
free energy. In this section we step back, in a sense, and use just the leading order of
that law for a proof of the result of SK and TAP on the free energy per site, for
βJ < 1 (a conditition identified by TAP).

Let us start with a useful thermodynamic relation, which implies that any
deviation in the free energy density of the "quenched state" from that of the
"annealed system" [i.e. any violation of (2.6)] is necessarily associated with the
nonvanishing of the order parameter defined by (2.7).

Proposition 4.1. For each N and /?,

^ ^«\ogZN({βJ})>y= \βj\\ -<<τN({βj})yy) + RN, (4.1)

where RN is a remainder term which vanishes as iV—•oo, satisfying

RN^comtβ2/]/N. (4.2)

Proof. Standard differentiation gives

where, as we shall see, the weak correlation of <σt σy> with the direct coupling Jtj is
significant. Denoting (with some abuse of notation) by <σt σj}0 the expected value
in a system for which the coupling Jtj is set equal to zero, we have

i-h^σiσ^oianjupjy/i/^vj

= (σiσj}o + ̂ -^-(1 - (°i°j)o) + 01 -— i J -) . (4.3)

Hence,

= i Σ JιAσισJ>o + RN (4-4)

with a reminder ̂ N which satisfies a bound like in (4.2). Since the average (over J) of
the first term on the right side of (4.4) vanishes, the above expressions directly yield
(4.1). D
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Proof of Proposition 2.1. Let

Q(β):= lim i log«Z i V » = log2+ \β2J2. (4.5)
JV-+00 IS

We shall now obtain the three claims presented in Proposition 2.1 - in reverse
order.

iii) Taking just the leading order of the result of Proposition 2.2 (ii) on the total
free energy, we obtain:

^ for all βj>\, (4.6)

which is an equivalent form of (2.10). (The IP convergence is proven along with ii).)
ii) In order to deduce from (4.6) the convergence of the mean values (i.e. <<...»),

one has to determine that they are not affected by some large fluctuations whose
probability vanishes in the limit. The following two general bounds show that the
distribution of the free energy per site is sufficiently compact; for example, it
certainly satisfies the criterion C2 presented in Sect. 2.

1) For all {βJ}

which follows from:

ZN({βJ})/2N = tr e-^σ) ^ exp( - tr βHj(σ)) = 1. (4.8)

And, in the other direction,
2) for all β

f \ \
le~E\ (4.9)

where QN(β) is the finite volume approximant oϊQ(β). (The last bound is derived by
considering the mean value of Z.)

As explained above, the two bounds (4.8) and (4.9) imply that, at any
temperature, ^-convergence of the free energy per site implies also the conver-
gence of the mean values. Hence, we may deduce from (4.6) the relation (2.9), as well
as the following stronger statement,

^ ^ >0, for all p<oo. (4.10)

i) By Proposition 4.1, the derivative with respect to β of the left side of (4.10) is
nonpositive for all β ̂  0. The vanishing of the limit for β < 1 implies, therefore, that
also the derivative tends to zero, as N-+co. By the explicit formula (4.1), the last
statement means that

lim«τJV({j8J})» = 0, for all βj<ί, (4.11)

proving the first assertion in Proposition 2.1. •
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It might be interesting to note that the above proof, together with the
monotonicity mentioned below, implies that for each open set in the range of β the
three conditions listed in Proposition 2.1 are in fact equivalent.

Formula (4.1) carries also the following implications for the order parameter τ
in the low temperature regime.

Proposition 4.2. i) For βJ > 1

0-lim swpτN({βJ}) ^ 1 - ^y, (4.12)

and in general ^-lim s u p ^ ^ β[\ — τN{{βJ})] (as well as other well defined @-limits)
are increasing functions of β.

ii) «τN({j3J})» obeys the lower bound (2.21).

iii) ®-liminfτN({j8J}) = l-O(l/jβ), as β^oo. (4.13)

Proof, i) By general principles the left side of (4.1) is a monotone increasing
function of/?. Equation (4.12) is a consequence of this monotonicity and the fact
that this function vanishes for all βj<ί.

ii), iii) Since the left side of (4.1) equals the negative of the mean value of the
energy per site, ej(β) = (Hj(σ)/N}βj (which is typically negative), (4.1) may be
rewritten as follows

«^({|S/})»= 1 + ^ f ^ - O(β/]/N). (4.14)

This directly implies the lower bound (2.21). Equation (4.13) is obtained by
combining (4.14) with any bound on |«e./»|, e.g. an L1 version of (2.20). •

5. Some Weak Bounds for the Free Energy at Low Temperatures

The thermodynamic arguments mentioned in the introduction show that the
situation described by Proposition 2.1 does not persist at low temperatures. The
phase transition is generally expected to occur at βJ = 1 [3, 6]. [Note that this is
the point at which the 0(1) fluctuations of the total free energy, in Proposition 2.2,
diverge.] The transition reflects the fact that for low (negative) values of e, the
number of spin configurations with energy densities Hj(σ)/N « e is lower than what
is obtained from an extrapolation of the high temperature entropy, which is S(e)/N
= \og2 — (e/J)2 [computed by a Legendre transform of P(βJ]. In this section we
present some explicit bounds whose purpose is to show that S(e) does not vanish
too fast. While the results are not very strong, and they do not deal with the
structure discussed in [5, 6, 8,9], they demonstrate two algorithms for the
construction of some low energy configurations.

It might be remarked first that for any fixed configuration σ the energy per site,
Hj(σ)/N, is vanishingly small for "typical" J, since

(5.1)

Hence the low energy configurations do have a nontrivial J dependence.
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a) A Sequential Algorithm

For a fixed set of couplings {Ĵ -}, let us associate to each spin configuration σ
( = {σ.}) a sequence of integers ηt= ±1, defined by

and for

σ7sgn
i = l

if Σ V i

otherwise.

The energy can now be expressed as

Hj(σ)=- Σ Ak(σ,J)ηk{σ9J),
k=l

(5.2)

(5.3)

(5.4)

The distribution of Ak at any fixed σ is, for fe of the order of N, asymptotically
given by the density

where Ak is the nonnegatίve quantity

k - ί T

Pk(A)=\

zexp
N A:

for A>

(5.5)

0 for yl<0

(by the central limit theorem), with the mean value

a[N): = «ylfc(σ, J)» (at a fixed σ)

(5.6)

For a fixed set of couplings J, the map σ-*η is invertible (by a simple procedure

in which σf are recovered in the order i=l,2,...), and its inverse defines for us

σ(η, J). We now claim that for a large collection oϊη, e.g. η = + 1 , the energy αί /ϊxerf

^ is for "typical" J not O(|/ΪV), as it is at fixed σ [by (5.1)], but is instead of order

O(N) - with an O(|/ΪV) fluctuation with respect to the quantity

E(η)=- Σ 4 J

k=l

Lemma 5.1. For each fixed η

.N-ί

(5.7)

(5.8)

Proof. For a fixed η, the quantities σ 1 ?..., σk_ ι and Au ..., Ak_ x - as functions of
(η,J) depend on only those couplings Ji} for which ij<k. Yet when all those



18 M. Aizenman, J. L. Lebowitz, and D. Ruelle

couplings (i.e. not just a2,...,ak_1) are specified, the distribution of

k-l J

Σ ̂ β
ι

is independent of their values, since those affect this quantity only through the
variables σί3 and the distribution of J. k is independent of the previous J's and is
invariant under reflection "gauge transformations." It follows that the random
variables Ak = Ak(σ(η,J\J) are jointly independent (!), and their distributions do
not even depend on η.

By the above independence property, the left side of (5.8) is

N Ί2\\ N 2

c = l k k j I/ k=ί
N k-ίj2

ύ Σ Σ — =J2(N-\)/2, (5.9)

where the actual behavior of the left side is ^(1 — 2/π) J2(N—1)/2 [using
(5.6)]. D

As η is varied, EN(η)/N varies over the interval [ — <?*,£*], where [by (5.6)]

U2 Y / 2 i/2 2
lim e%= Π - α Jdoc= / - - J^O.53J. (5.10)

N^OO o\π / ]/ π 3

Hence the lower bound (2.23) on eo({J}).
The above procedure may be used to generate a large number of low energy

configurations. The corresponding lower bound for the free energy at finite β is
stated in Proposition 2.3, which we are now ready to derive.

Proof of Proposition 2.3. Let us recall the standard variational principle, accord-
ing to which (for each J)

logZN({βJ})^=m?ix\ΣQ(^ogρ(σ)-1-βΣρ(σ)HJ(σ) ρ^09Σρ(σ)=ί\. (5.11)
[ σ σ σ j

For a given J we choose to consider the variational state

-βE(η(σ,J))

e{βj}(σ)= z m , (5.12)

with the {J}-independent normalizing factor

k= 1

The substitution of ρ{βJ}( ) in (5.11) yields the bound

l

_ y e~βE(η)
n

V ) ) . (5.13)

logZUβ)QN({βJ}), (5.14)
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with

β e~βEN(η)

QN({βJ})= ^Σ^^βΓίHMη,J))-EN(η)-]. (5.15)

By Lemma 5.1, and the triangle inequality,

«QN({^J})2»1 / 2^^J/|/2iV, (5.16)

and therefore @AimN_>ODQN({βJ}) = 0. Using (5.6) and (5.13) to evaluate
Λ^MogZ^, we see that (5.14) reduces as iV->oo to the claimed inequality
(2.22). D

b) Shadowing the Ground State of Jtj

Another algorithm (less explicit than the above) for generating low energy spin
configurations is to choose σ which maximizes the overlap with one of the low
eigenstates of the symmetric matrix MUj = Jij/(2]/N) - for which we generate
diagonal terms with the same distribution as the other J's. The Hamiltonian (1.1)
may be expressed by means of M (with Mt t = 0) as

i, j i a

where φa are normalized eigenvectors of M and λa are the corresponding
eigenvalues.

By Wigner's semicircle law, which has been extended also to other than
Gaussian ensembles [10], the eigenvalues λa are asymptotically distributed with
density

C\/J2-U2du,

over the interval \^ — J,J~\. Let φ correspond to the lowest eigenvalue, or any other
"fixed" eigenvalue with λ& — J. The components φt of φ have, approximately, a
Gaussian distribution with mean 0 and variance 1/JV. Choosing σ^sgnφ^, we
have

| / ^ ^ > ( 5 1 8 )

and hence

<φ|σ> 2 ^-iV^0.64JV.
π

We also argue that if σ is chosen by the above criterion then for typical J's the
contribution to Hj(σ) from all the other eigenvectors in the expansion (5.17) is of
order O(]/ΪV). In the Gaussian case that is easily seen from the invariance of the
distribution of the frame of all the eigenvectors under general unitary rotations -
even when it is conditioned on the spectrum. By this invariance, a bound like (5.1)
applies also to Hj(σ) — X<φ|σ>2, even when σ is allowed to depend on H through
the eigenvector φ.
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Therefore eo(J) < -(2/π) J> (for a "typical" J), as stated in (2.24). This result is

not improved if instead of one "specific" eigenvalue X one takes a finite number of

eigenvalues.
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