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Summary. The Gibbs states of classical equilibrium statistical mechanics can 
be extended to states on non commutative algebras, satisfying the Kubo- 
Martin-Schwinger boundary condition. This way of looking at Gibbs states 
is applied here to the study of differentiable dynamical systems when some 
(strong or weak) hyperbolicity conditions are satisfied. 

I. Introduction 

The general study of differentiable dynamical systems (in particular their ergodic 
theory) is difficult, and detailed results are rare. For the special class of hyperbolic 
systems however (Anosov systems and more generally Axiom A systems) many 
results have been obtained following the construction of Markov partitions 
by Sinai [21], [22] and its improvement by Bowen [1]. Markov partitions 
permit the replacement of the original differentiable dynamics by symbolic dy- 
namics, and ergodic problems on a manifold are replaced by problems of equilib- 
rium statistical mechanics (on a one-dimensional lattice) for which one has effec- 
tive methods (see [2], [15]). Unfortunately, the construction of Markov parti- 
tions is not canonical and, a priori, mathematical objects constructed with the 
help of a Markov partition are also not canonical. 

In the present paper we define and discuss certain noncommutative algebras 
naturally associated with hyperbolic diffeomorphisms. (Hyperbolic flows could 
presumably be handled in similar manner, but will not be discussed here). The 
noncommutative algebras in question are of a general type introduced by Connes 
in connection with foliations [6]. Using these algebras one can make definitions 
which are manifestly independent of the choice of a Markov partition. (But 
note that Markov partitions remain important in making proofs). 

Before embarking in the discussion of hyperbolic diffeomorphisms, it is con- 
venient to analyze (in Section 2) a general definition of Gibbs states (Capocaccia 
[5]) and to show how it is naturally expressed in terms of a suitable C*-algebra: 

1 This manuscript was completed while the author was visiting the California Institute of Technology 
as a Fairchild Scholar. Permanent address: Inst. Hautes Etud. Sci. F-91440 Bures-sur-Yvette, France 



2 D. Ruelle 

Gibbs states p correspond to states ~ on the algebra, which are K M S  for an 
explicitly given modular  group of automorphisms.  

Next, we discuss Smale spaces (Section 3), which permit the analysis of hyper- 
bolic diffeomorphisms at a suitable level of abstraction. Using in particular 
a result of Haydn,  one shows that different definitions of Gibbs states on a 
Smale space (using or not a Markov  partition) are in fact equivalent. Some 
extensions (s- and u-Gibbs states, Gibbs  distributions) are briefly discussed. 

In Section 4, hyperbolicity is weakened to the requirement of having an 
ergodic measure with no zero characteristic exponent. It  is still possible to define 
Gibbs states p in this framework: each one corresponds to a state /~ on a 
von Neumann  algebra, and ~ satisfies the K M S  condition with respect to an 
explicitly given modular  group of automorphisms. Some examples are discussed, 
in particular that  of SRB measures. 

2. Reformulation of a definition of Gibbs states 

We consider a compact  metrizable space f2 and a representation k~--~z k of a 
countable infinite group F by homeomorphisms of f2 (the unit element of F 
is represented by the identity map of f2). We assume that this representation 
is expansive; this means that for a given metric d compatible with the topology 
there is e > 0 such that 

d(zkx, zky)<=e for all k~F 

implies x = y. We say that x and y are conjugate if 

d(zkx, z~y)~O when k ~  

Conjugacy is an equivalence relation, and the equivalence classes are countable. 
We assume that  the following condition is satisfied. 

( C )  For every conjugate pair (x,y) there is a map q~: (9~-~f2 such that (9 
is a neighborhood of x in I2, q9 is continuous at x, q~(x)=y, and 

lim d(zkz, zk~oz)=O (2.1) 
k ~ o o  

uniformly for z ~ (9. 
Capocaccia [5] has remarked that  if (C) holds, the germ of ~0 at x is uniquely 

determined by (x,y), and is a germ of homeomorphism.  2 It is thus natural  
to define a conjugating homeomorphism as a pair ((9, ~o) where (9 is an open 
subset of f2, and ~ is a homeomorphism of (9 to tp(9 such that  (2.1) holds 
uniformly for zs(9. The conjugating homeomorphisms form a pseudogroup of 
topological transformations of t2. 

It  is convenient to introduce at this point a topological space G analogous 
to the " g r a p h "  of a foliation constructed by Winkelnkemper 1-26-1. The points 

2 In [5] it is assumed that F=Z v (the situation for statistical mechanics on a lattice), but the result 
extends to any countable infinite group F 
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of G are the conjugate pairs (x, y), and a base of the topology is given by 
the open sets 

{(z, (p(z)): zr and ((9, ~p) is a conjugating homeomorphism} 

This topology is Hausdorff because the germ of ~p is uniquely determined by 
(x, y), and it is clear that G is locally compact with countable base. 

Let now V: G~--~P~ be continuous and such that V(x, y)+ V(y, z)= V(x, z). 
(In particular V(x, x) = 0 and V(x, y) = - V(y, x)). We say that a probability mea- 
sure t~ on t2 is a Gibbs state with respect to V(see [5]) if 

q~ Eg,o'(~l (9)1 =~1r 

where 

g~(x) = exp - V(x, q~(x)) 

for every conjugating homeomorphism ((9, ~p). This means that the image by 
~p of cr restricted (9, up to multiplication by g~o, is ~ restricted to ~p (9. There 
are many possible variations on this definition, but as presented it is a direct 
generalization of the definition for classical lattice spin systems, and appropriate 
for the Smale spaces to be studied in the next section. 

We come now to the announced construction of a noncommutative algebra, 
along the lines of Conne's construction of the algebra associated with a foliation 
(see [6], Section 5). Let ~c(G) be the linear space of complex continuous functions 
with compact support on G. If A, B~cg~(G) we define the product A * B by 

(A . B)(x, y)= ~, A(x, z) B (z,y) 
z 

where the sum is over all z which are conjugate to x and y. There are finitely 
many nonzero terms in the sum, and A,B~Cgc(G) as one checks readily, so 
that Cgc(G ) becomes an associative complex algebra. An involution A~-~A* is 
defined by 

A* (x, y) = A (y, x) 

where the bar denotes complex conjugation. 
For  each equivalence class [x] of conjugate points of ~ there is a representa- 

tion nix] of the *-algebra ~(G)  in the Hilbert space 12 ( Ix ] )  of square summable 
functions Ix] --, ~E, such that 

((n[x] A) ~)(y)= ~ A(y, z) ~(z) 
zE[xl 

for ~12([ 'X]) .  Denoting by II nlx] AII the operator norm, we write 

II A [I = sup I[ u[~] A [I 
[x] 
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The  comple t ion  of cgr with respect  to this n o r m  is a separable  C*-a lgebra  
which we denote  by C* (G). 

IfA~Cgc(G) and t ~ R ,  we write 

(a t A)(x, y)=e  ivtx'y)t A(x, y) 

defining a one -pa rame te r  g roup  (a t) of  * - a u t o m o r p h i s m s  of (go(G) and,  by unique 
extension, a one -pa rame te r  g roup  of * - a u t o m o r p h i s m s  of  C* (G). 

A state ~ on C*(G) is a linear functional  such tha t  a ( A , A ) > O  and a (1 )=  1. 
I t  is invariant if r o a t = ct. An  invar iant  state satisfies the K M S  boundary condition 3 
if for all A, B~C*(G), there is a cont inuous  function F on {zetE: O < I m z < l } ,  
ho lomorph ic  in {z e ~ :  0 < l m  z < 1 ), and  such that  

~(atA .B)=F( t ) ,  ~ ( B . a t A ) = F ( t + i )  

[No te  tha t  it is sufficient to verify these var ious  condi t ions on Cgc(G)]. 

2.1 Theorem (i) I f  ~ is a probability measure on f2 then a state ~ on C*(G) 
is defined by 

(a)  = ~ ~ (d x) A (x, x) (2.2) 

(ii) a satisfies the K M S  boundary condition with respect to (a t) if and only 
if ~ is a Gibbs state with respect to V. 4 

Concern ing  (i) we note  tha t  

Ia(x ,y) l  ~ (  ~ Ia (x ,  y )12 )~  {l~rtyl All ~ HAll 
xe[y] 

for A ~ (go(G). Therefore  any  element  A of C* (G) also cor responds  to a cont inuous  
function on G, tending to 0 at infinity. In  part icular ,  (2.2) makes  sense and  
defines a state. 

The  state ~ is obviously  (a t) invariant .  I f  A, B~Cgc(G), then 

~(at A* B) =~ a(dx) ~, e iv(x'r)t A(x, y). B(y, x) 
yE[x] 

extends to an entire funct ion F of  t. Us ing  a par t i t ion of uni ty on supp  A, 
we m a y  write A = ~  A t, where supp Aj~(gj, and ((g j, tpj) is a conjugat ing  homeo-  
morph i sm,  thus 

F(t) = ~S~(dx) Aj(x, q~j x) B(q~ x, x) e x p  i V(x, q~jx) t 
J 

s For a discussion of the Kubo-Martin-Schwinger or KMS boundary condition, see for instance 
[25], [4] 
* Note that Araki has discussed the relation between Gibbs states and KMS states in the more 
restricted case of lattice spin systems 
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and therefore 

F(t + i) = ~ j  [e- vr ~,j~) e(dx)] B(9~x, x) At(x, (pix) exp i V(x, (pjx) t. 
J 

If ~ is ~ Gibbs state we have thus 

F(t + i)= ~ I a (dy) B (y, (071 y) A~(~o; t y, y) exp i V(~o; 1 y, y) t 
J 

=~(B*a tA  ) 

so that c~ satisfies the KMS condition. The converse is proved similarly. 

2.2 Remarks. (i) I f  ao is a Gibbs state corresponding to V= O, the corresponding 
state ~o on C*(G) is a trace. 

(ii) For the purposes of Theorem 2.1, it suffices to consider ~ restricted for 
Q(G), and the KMS condition thus restricted. 

3. Smale spaces 

Let O be a nonempty compact space, with a metric d, and a homeomorphism 
f:  g2~-+~. Following [15] we say that (O, d, f )  is a Smale space if g2 has local 
product structure - w i t h  an "expanding" and a "contracting" direction - a n d  
iff(resp, f -  t) is a contraction for distances in the contracting (resp. expanding) 
direction. More explicitly we assume that e>0,  [ . , . ]  and 2E(0, 1) exist such 
that the conditions (SS 1) and (SS 2) below are satisfied. 

(SS 1) The map 
{(x, y)ef2 x Q: d(x, y)< e}~-~[x, y ]eO 

is continuous; it satisfies [x, x] = x and 

[[x, y], z] = [x, z], [x, [y, z]] = [x, z] 

when the two sides of these relations are defined. 
Define 

V~(6)={z:[x ,z]=z  and d(x,z)<6} 

V~"(6)={z:[z,x]=z and d(x,z)<6} 

One verifies that, for sufficiently small d(x, y), 

~ ( ~ ) n  v,"(~)= { Ix, y] }. 

Furthermore, [ . , . ]  : V~"(6) x ~(6)v+O is a homeomorphism onto an open subset 
of ~2 for suitably small 6. 

(SS2) The homeomorphism f satifies f [ x , y ] = [ f  x, f y] when both sides are 
defined, and 

d( fy ,  f z )  < 2 d(y, z) if y, z~ V~(6) 

d ( f - t y ,  f - l z ) N 2 d ( y , z )  if y,z~V~(6) 
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If 6 is sufficiently small, we have 

V~(6) = {y: d(f"x,f" y)<=6 

V~,(6) = {y: d ( f - " x , f - " y )  < 6 

for all n > 0} 

for all n > 0} 

For more details, see [15]. 
Fried [7] has shown that d could be replaced by a H61der equivalent metric 

such that besides (SS2) also the following properties are satisfied for suitable 
6 > O , L > O  

(SS3) I f  d(x, y) <6, then d(x, [x, y]) < Ld(x, y) 

(SS4) f and f -1 are Lipschitz. 

The nonwandering set f2 for a diffeomorphism f satisfying the Axiom A 
of Smale [24] has local product structure, and one can thus choose [ . , . ]  and 
a Riemann metric d such that all the above properties of a Smale space are 
satisfied. In fact it suffices (in view of Smale's spectral decomposition) to discuss 
the case where f is topologically transitive or even mixing on f2. This gives 
the possibility of presenting an important part of the theory of hyperbolic dyn- 
amical systems in the abstract setting of Smale spaces. 

The properties postulated in Section 2 are satisfied in the case of a Smale 
space, with F = Z .  Indeed f is expansive (see [15], Section 7.3) and satisfies 
condition (C) (see [15]), Section 7.15). In fact, if (x,y) is a conjugate pair, one 
obtains a conjugating homeomorphism ((9, q~) by writing 

q)z = [ f - " [ f " [ z ,  x ] , f " y ] , f " [ f  - "y , f - " [x ,  z]] ] 

when z is in a small open set (9~x, and n is suitably large. We shall associate 
Gibbs states with elements of ~g~(f2), the space of real H61der continuous func- 
tions of exponent ct on f2. If UeCg~(f2), we define V: G~--*R by 

V(x,y)= ~ [u(fkx)--u(fky)]. 
k =  - o o  

Since d(fkx, fky)-'-~O exponentially fast, uniformly on compacts of G when Ikl 
--. oo. V is continuous. From there the definition of Gibbs states proceeds as 
in Section 2. 

3.1. Theorem. I f  f is topologically mixing on f2, and UeCg~(f2), there is a unique 
Gibbs state p associated with A. This probability measure is z-invariant, and is 
the unique z-invariant probability measure making maximum the function 

ctF-, h,(e) + e(U) (3.1) 

where h, is the Kolmogorov-Sinai invariant (entropy). 
The study of Gibbs states on Smale spaces began with Sinai [23], and the 

use of Markov partitions. The Gibbs states defined with Markov partitions 
satisfy the variational principle (3.1) (see [15]) and are therefore independent 
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of the choice of the partition. There remains however the problem of the equiva- 
lence with the definition given in Section 2. Half of the proof is easy (see [-15]), 
the harder half was proved by Haydn [8]. 

3.2. Remarks. The formalism described above has two natural extensions. 
(i) Replace continuous functions by fl-H61der continuous functions, and 

measures by distributions in (~a)*. This leads to a natural concept of Gibbs 
distributions on a Smale space. 

(ii) Replace conjugating homeomorphisms by maps between stable mani- 
folds along the unstable manifolds, and replace V(x, y) by 

-1  

VS(x,y)= ~ [U(fkx) -U( fky)] .  
k =  - o o  

One defines in this manner s-Gibbs states (or s-Gibbs distributions) which are 
measures (or distributions) on stable manifolds depending H61der continuously 
on that manifold. (See [20], [-16] for similar definitions in the framework of 
foliations). The u-Gibbs distributions are similarly defined, and the product of 
an s-Gibbs distribution by a u-Gibbs distribution is a Gibbs distribution in 
the sense of (i). 

Definitions analogous to the above have in fact been made in the framework 
of symbolic dynamics (see [19]) and have proved useful in the discussion of 
resonances for hyperbolic systems. The above direct definitions are more natural 
because they do not use a Markov partition. Unfortunately the equivalence 
of the direct and "symbolic" definitions does not seem easy to establish, and 
the study of resonances requires at this time the "symbolic" definitions. 

4. von Neumann algebras associated with invariant measures 
which have no zero characteristic exponent 

In the last few years, the field of hyperbolic dynamics has been considerably 
widened, thanks to a current of ideas initiated by Pesin [12], [13] s. Roughly 
speaking, Pesin has shown that one can replace statements true uniformly by 
statements true almost everywhere with respect to an invariant measure p. In 
particular, hyperbolicity of a diffeomorphisms f is replaced by the condition 
that p has no zero characteristic exponent. Along these lines we shall show 
how the construction of a C*-algebra in Sections 2, 3 can be replaced more 
generally by the construction of a von Neumann algebra together with a normal 
state t~ associated with p; modular groups of automorphisms will also be intro- 
duced. 

It will be convenient to use the concept of rectangle defined as follows. 
If (V~), (V~) are families of local stable and unstable manifolds parametrized 
by ~ and !/respectively, and if for each ~, ~/the manifolds Vr s, V~ u have a single 
point of intersection [4, q], which is furthermore transversal, then we say that 

5 See also Katok [9], Ledrappier and Young [10], etc 
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the set R =  { [~, q] } of all these intersections is a rectangle if R is compact.  
[This definition is inspired by that of Sinai and Bowen [1] for Axiom A basic 
sets, but we do not require here that R have dense interior]. 

4.1. Proposition. Let M be a smooth compact manifold, and f :  Mw-~ M a diffeo- 
morphism of class C ~ +~ (with a>O). 

There is a set H with the following properties 
(a) H is an f-invariant Borel subset of M. 

(b) p(H)= i for every ergodic probability measure p with no zero characteristic 
exponent. 6 

(c) I f  x ~ H, the stable and unstable manifolds of x are well defined and intersect 
transversally at x. 

Furthermore, if we introduce the ( f  f )  invariant set 

GH= 

{(x, y)~H x H : y  is on the intersection of the stable and unstable manifolds of x}. 

we also have 
(d) GH is the graph of an equivalence relation on H. 

(e) Having chosen an invariant probability measure p one can replace H by 
a smaller set with again p ( H ) =  I such that Gn is a countable union of  graphs 
of homeomorphisms r R'~ -~, R" where R', R" are rectangles 7 and 

lim d( fkx ,  f k q~x)=0 

uniformly for x~R'.  
This proposit ion results from the construction of the stable and unstable 

manifolds. Specifically, the constructions given in [12] and [18] yield all the 
properties listed. 

From now on, A will be an f - invar iant  subset of H, which is a countable 
union of rectangles, and we define 

G = Ga = GH c~ (A • A). 

Therefore (x,y)~G is an equivalence relation on A. In the case of an Axiom 
A diffeomorphism one can take A = basic set. 

4.2. Remark. An equivalence class for the relation (x, y)~G is the set of all trans- 
versal intersection points in A of a given stable and a given unstable manifolds. 
Because of the transversality of these intersections, the equivalence class Ix]  
of each x ~ A  is countable. In particular, for A = H ,  we see why Gn can be taken 
as a countable union of graphs of maps ~o: R'~--~R". Similarly, it follows from 
Proposit ion 4.1 that G is a countable union of graphs of homeomorphisms 
~i: A'~-oA'{ where A'i, A"i are rectangles. 

6 Note that (b) is equivalent to the requirement that p(H)= 1 for every f-invariant probability measure 
p such that the characteristic exponents are p-almost everywhere nonzero 

Note that in Sections 2, 3 we used open sets instead of rectangles, but that an open set in a 
Smale space is a countable union of rectangles 
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4.3. Definition. Let V: G~--~, satisfy V(x, y)+ V(y,z)= V(x, z). We say that the 
probability measure p on .4 is a Gibbs state with respect to V if, whenever r 
is a homeomorphism of a rectangle .4 'c .4 to A" c A, with graph contained in 
G, the image qg(p/A') is absolutely continuous with respect to p 1.4" and has Radon- 
Nicodym derivative 

y ~ h (y) = exp V(~p - 1 y, y). 

We assume that the obvious measurability requirement on V is satisfied. 
Note that it suffices to verify the above condition for the countable family 
(~0~) of Remark 4.2. Our definition does not require that V and p be invariant 
(under ( f , f )  and f respectively), but the V's which we shall consider are of 
the form 

V(x,y)= ~, [u(fkx)--u(fky)] 
k = --0o 

and therefore invariant. 
For  any probability measure p on A we can define the complex Hilbert 

space ~ = ~p of p-square integrable functions 7': y ~-~ l 2 ( [y])  on A, where 12 ( [y])  
is the space of square summable functions [y] ~-~tE. An element ku of .~ is thus 
a function G~-~E such that 

1I~I[2=Sp(dY) ~ [~(x,y)[ 2<c~. 
xe[y] 

Given a function A: G~--~, we write 

II Y, x(- ,  z) ~(z)ll,2~txl~ 
ze[x] 

Ir A Illxj = sup 

and 

JIA[[ =ess. sup. llAlrtxl 
x 

where the essential sup is with respect to p(dx). Those A for which IIAII < 
define operators on ~ by the formula 

(A~)(x,y)= y, A(x,z) ~'(z,y). 
zEiu] 

It is easily seen that the set of these operators is a von Neumann algebra ~ ,  
and that [I A I[ is the operator norm. 

4.4. Remark. The center of  ~ consists of those C: G~-~C such that C(x,y)=O 
if x ~e y and C(x, x) depends only on [x]. In particular, if a p-measurable function 
which is constant on equivalence classes is almost everywhere constant, then 

is a factor. 
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If V: G~-~I~. satisfies V(x ,y )+  V(y, z)= V(x, z), a one parameter group (a t) 
of . -automorphisms of ~ is defined by 

(a'A)(x, y)=  e iv~x' r)t A(x, y) (4.1) 

4.5. Theorem. (i) For every probability measure p on .4, there is a vector state 
on ~p such that 

(.4) = ~ p (d x) A (x, x) 
A 

(ii) ~ satisfies the KMS condition with respect to (a t) if and only if it is 
a Gibbs state with respect to V. 

Concerning (i), let ~ . ~  be such that ~(x, y)= 6xy, then [1 �9 [I = 1 and 

(~, A cb)= S p(dx) A(x, x)= ~(A) 
A 

so that ~ is a vector state (hence normal). 
Part (ii) is an easy extension of the proof of part (ii) of Theorem 2.1. 

4.6. Remark. I f  Po is a Gibbs state corresponding to V=0, the corresponding 
state t)o on ~ is a trace. In particular, if ~ is an infinite dimensional factor, 
it is of type 111. 

4.7. Problem. Let U: M~--~N be H61der continuous, and 

V(x ,y )=  ~ [ u ( f k x )  - U ( f k y ) ]  (4.2) 
k =  - 0 0  

what is the relation between Gibbs states with respect to V and f-invariant 
probability measures p making h(p)+ p (U) maximum? If f is C ~, it is known 
that p~--~h(p) is upper semi-continuous (Newhouse [11]) and therefore, if U 
is continuous s, h(p)+Q(U) reaches its maximum on a nonempty set of equilibri- 
um states. (This is a Choquet simplex, and its extremal points are ergodic). 
It is then natural to conjecture that such equilibrium states are Gibbs states 
with respect to Vdefined by (4.2), for suitable A. 

4.8. States with local product structure 

Let us consider the special case U = 0. We assume therefore that p makes the 
entropy h(p) maximum (and we may take p ergodic, as discussed above). In 
the Axiom A case (see Bowen [1]), we know that p has local product structure. 
Conjecture: in general, if p makes the entropy maximum, and has no zero 
characteristic exponents, then it has local product structure. Let us give a precise 
definition. Suppose that a rectangle R consists of the intersections of local stable 
and unstable manifolds of the families (V~), (V~) parametrized by ~ and z respec- 

s H61der continuity is not used here, but it is needed to prove the convergence of (4.2) 
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tively. If, for every such rectangle R, the restriction pl R is of the form pS(d~) 
x pU(dz), then we say that p has local product structure. 

Suppose now that p is an f-invariant probability measure with local product 
structure. Let ~0 be a homeomorphism of a rectangle A ' c M  to a rectangle 
A" c M, such that the graph of tp is contained in G and 

lim d(fkx, fk~ox)=O 
lkl~ ov 

uniformly in A'. Then, using a covering of fk(A'wA") by rectangles, for large 
positive or negative k, we see that ~0(p [A') is proportional to p lA" with locally 
constant proportionality factor. More precisely, we can write 

a~p(plA')+ b(plA")=O. 

Thus, states with maximum entropy, states with local product structure, 
and Gibbs states with V= 0 are all closely related, but they are known to coincide 
only for mixing Axiom A basic sets. 

4.9. SRB states 

If f :  M~--~M is a C 2 diffeomorphism of a compact manifold, Ledrappier and 
Young [10] have shown that the following two conditions on an f-ergodic 
measure p are equivalent. 

(a) The entropy h(p) is equal to the sum of the positive characteristic (Lya- 
punov) exponents of p (taking into account multiplicity). 

(b) The conditional measures of p on unstable manifolds are absolutely con- 
tinuous with respect to Lebesgue (i.e. smooth) measure on these unstable mani- 
folds. 

If these conditions are satisfied, p is called an SRB measure 9 and it is shown 
in [10] that the densities of conditional measures in (b) are actually C 1. 

Suppose now that p is an SRB measure, and has no zero characteristic 
exponents. Let ~0 be a homeomorphism of a rectangle A' to a rectangle A" 
such that the graph of (p is in G and lim d(fkx, fkqgx)=O uniformly. We 

can label a point of A' by its coordinates 4, t/in the unstable and stable directions 
respectively, and the corresponding point q~([~,~/]) of A" by its coordinates 
~(~, t/), t/ where it is permissible and convenient to use the same coordinate 
~/in the stable direction. The measure p IA' is then of the form a l (4,)7) d a x p 1 (d r/) 
where da denotes the Riemann volume element in an unstable manifold after 
choice of some Riemann metric on M; the density a~(~, r/) is a C ~ function 

9 These measures have been investigated in the Axiom A case by Sinai [23], Ruelle [14], Bowen 
and Ruelle [3]. The equivalence of (a) and (b) was conjectured in [17], but the general proof (which 
is not easy) was only obtained in [10] 
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of  r/, in A'. Similarly, the measure pl A'' is of  the form a2(~, r/) d a  x p l (dq)  with 
the same pl  (d q). Finally, q~ (p I A') is of  the form aa (4, q) d a x p ~ (d q). We have 

a2(4', r/) [j J"(fk[4, q]) 
a,(4, tl) k=-o~ J"( fk[4' ,q])  

where J"  is the " Jacob ian  de te rminant"  o f f  in the unstable direction (defined 
using the Riemann  metric). On  the other  hand  

a3(@(~, tl), q) l~i J"(fk(~O(4, rl), q)) 
al  (4, r/) = k=llo J"(f*(~' q)) 

so that  
a3 (~//(4, q), r/) 

a2 (~k (4, t/), q) 

where we have written 

= e x p V ( [ ~ , q ] , ~ [ 4 ,  q])  

V(x ,y )= ~ [log j u ( f k y ) _ l o g  Ju(fkx)].  (4.3) 
k = - o o  

Therefore ~0 (p I A') is absolutely cont inuous  with respect to p I A", and has Radon-  
N icodym derivative 

y~--*exp V(~o- l y, y) 

so that  p is a Gibbs state with respect to V defined by (4.3). We have proved 
the following. 

4.1t}. Theorem. Let f :  M~--~M be a C 2 diffeomorphism of a compact manifold, 
and p an f-ergodic measure. I f  p is SRB and has no zero characteristic exponent, 
then p is a Gibbs state with respect to V defined by (4.3). The corresponding 
state I~ is therefore K M S  with modular group defined by (4.1). 
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