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The Thermodynamic Formalism for Expanding Maps*

David Ruelle
I.H.E.S., F-91440 Bures-sur-Yvette, France

Abstract. Let f:X\-+X be an expanding map of a compact space (small
distances are increased by a factor > 1). A generating function ζ(z) is defined
which counts /-periodic points with a weight. One can express ζ in terms of
nonstandard "Fredholm determinants" of certain "transfer operators", which
can be studied by methods borrowed from statistical mechanics. In this paper
we review the spectral properties of the transfer operators and the corresponding
analytic properties of ζ(z). Gibbs distributions and applications to Julia sets
are also discussed. Some new results are proved, and some natural conjectures
are proposed.

0. Introduction

The thermodynamic formalism is a body of ideas and results originating in equilibrium
statistical mechanics and which has had a considerable impact on the study of the
ergodic theory of hyperbolic differentiable dynamical systems.1 The easiest case, for
which the strongest results are known, is that of expanding maps. Of particular
interest are the zeta functions associated with such maps (see Ruelle [18,19] and
their correlation functions and corresponding resonances and Gibbs distributions
(see Ruelle [22]). Important ideas for the analysis of these concepts have been
introduced by Fried [8], Tangerman [27], Pollicott [15], Haydn [10].

The purpose of the present paper is to review the thermodynamic formalism
(or at least part of it) for expanding maps, with some extensions and some new
proofs. We shall discuss in detail the spectrum of fhe transfer operators and describe
conjectures and known results about the analyticity of the zeta functions. The
theory developed for expanding maps has applications to the thermodynamic
formalism of Axiom A diffeomorphisms and flows, and in particular to their zeta

* This is an expanded version of the Bowen lectures given by the author at U.C. Berkeley in

November 1988
1 For the origins of the subject, see in particular Sinai [24, 25, 26]; Ruelle [17]; Bowen and Ruelle

[5], and the monographs by Bowen [3] and Ruelle [20]
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functions (see Parry and Pollicott [13], Fried [8]), but we shall not discuss these
questions here. [Note added in proof: Conjectures A and B below have now been
proved, see D. Ruelle, An Extension of the theory of Fredholm determinants,
preprint.]

1. Assumptions

In what follows we shall use Cr functions, where r is an integer r ^ 1, or r = (r,α)
with integer r ^ 0 and 0 < α ̂  1. [We say that a function is C(r>α) if it is C and if
the rίh derivative is Holder continuous of exponent α]. We write |r| = r in the first
case, |r| = r + α in the second case, and say that r is finite. We shall also use C00

functions and Cω functions (i.e., real analytic functions) and write |oo| = |ω| = oo.
Let a C00 (or Cω) manifold M be given, with dim M < oo, and a Riemann metric

d. Also let I c ί / c M , where X is compact and U open. We assume that a
continuous map f\U\-*M is given such that

(a) There are ε > 0 and 0e(0,1) such that

whenever x, y e U and d(x, y) < ε.
(b) X = {xeU:fnxeU for all n > 0}.
(c) If 0 is a nonempty open subset of X (for the topology induced by U) there is n > 0

such that fnΘ = X.
(d) / is C.

Condition (a) expresses that /is expanding, (b) and (c) imply the invariance property
fX = X, (c) expresses that / is topologically mixing. [It is convenient to assume
topological mixing. More generally, one could decompose the nonwandering set
into topologically transitive pieces, and then reduce to mixing maps, see [20]
Chap. 7]. If r = (0, α), condition (d) is not needed, it suffices to take / continuous.

The above setup applies to the case of an expanding map of a compact
manifolds,2 and also to the case of a hyperbolic Julia set X when / is a rational
map of the Riemann sphere M?

1.1 Remark. If r = (0,α), we can do without the manifold M:X is a compact set
with a metric d, and a continuous map f:Xt-*X is given such that (a) and (c) hold.
The conditions (b) and (d) are not needed, but we have to assume the existence of
local inverses as expressed by Lemma 1.3 below.

Returning to general r we note that we may take for U an arbitrarily small
neighborhood of X; we can in particular assume that fU => closure U as the
following result indicates.

1.2 Lemma. There is an open set U such that X a U c U andfΰ => closure U.
Choose δ such that 0 < δ < ε and U contains the ^-neighborhood of X. Take x

with dense orbit in X, and choose n such that {fkx:0 ^ k < n} is <5-dense in X and

2 Here X = U = M, see [7] for a characterization of such maps.
3 See [21]
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d(fnx,x) < (0" 1 — l)δ. The lemma is verified if Ό is the union of the open balls
Bk(δ) of radius δ centered at fkx for k = 0,..., n — 1. [Because of (a) and Brouwer's
theorem on the "invariance of domain", we have fBk(δ) 3 Bk+I(θ~ίδ).'] •

As we have just seen, if XGX, the ball B^θ'1 δ) of center fx and radius θ~1δ
is contained in the image fBx(δ). Therefore, / has a unique local inverse
φ\Bfx(θ~1δ)\-*Bx(δ). [Furthermore, since φ is contracting, this map is Lipschitz,
i.e., of class C ( 0 ' 1 } . This is why (d) will not be needed if r = (0, α). If / is differentiable,
(d) yields that φ is CΓ].

1.3 Lemma. Ifx,y'eX and d(fx,y')<δ, there is a unique ysX such thatfy — y'
and d{x, y) < δ. Furthermore d(x, y) g θd(fx, fy).

This results from the existence of the local inverse φ. •

1.4 Lemma. Let I denote the set of/-invariant probability measures on X, equipped
with the vague ( = weak) topology, and let h{p) = hg(p) be the entropy of pel.

Ifg:X\—*R is continuous and g^O, the function

is upper semi-continuous on I. We define the pressure of log g by

P(log g) = max (h(p) + p(log g)).
pel

//pel realizes the maximum, p is called an equilibrium state. For Holder continuous
g>0, there is a unique equilibrium state.

Since / is expanding, h is upper semi-continuous (Bowen [13]). To show
that pi—•p(logg) is upper semi-continuous, let us assume that pn-+p and that

α ^ -oo. For ΛΓ>0, let S = {xeXύogg > -N}. We have

I pn(dx) log g(x) ^ pn(log g) -+ a,

hence

J p(dx) log g(x) ^ lim j pn{dx) log g(x) ^ a
S n +co S

and

p(log g) = lim J ρ(dx) log g(x) ^ a.
N^ oo S

[Note that p{x:g(x) = 0} = 0 since p = vague limpn and pn(logg)^a φ — oo.]
The uniqueness of equilibrium state for Holder continuous g > 0 follows from

symbolic dynamics (see below), and is a standard result, for which see [20]
Chap. 7. •

2. Symbolic Dynamics

2.1 Proposition (Markov partitions). For any δ > 0 we may write X as a finite

union X = (J Xt of closed nonempty sets X{ with diam X{ < δ. Furthermore, with
ίel

the topology of X induced by M,
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(i) intXi is dense in Xi9

(ii) int Xt n int X} = 0ifiφ j9

(iii) eachfXt is a union of sets Xj.

Define

Ί if
ιj [0 otherwise

then some power tN of the I x I matrix (ty) has all its entries strictly positive.
Markov partitions have been introduced by Sinai [24,25], and generalized by

Bo wen [2]. Here, the existence of a Markov partition follows from the fact that
we have a compact metric space X with a continuous map / of X onto itself
satisfying Lemma 1.3. [This is proved in [20], Chap. 7.] The fact that tN has strictly
positive entries for some N reflects the assumed topological mixing of /. •

2.2 Proposition (Symbolic dynamics). We assume that δ has been chosen small
enough. Let

and tξ(n)ξ(n + ί) = 1} (2.1)

and define

τ(«n)λ.So = («n+l)λ, f e o (2-2)

/// is given the discrete topology, Ω is a compact subset of the product IN, and the
shift τ:Ω\-^Ωis continuous. When ξ = (ξ(n))eΩ, the intersection f] f~nXξ{n) consists
of a single point π(ξ). Furthermore n-°

(i) The map π:Ω\-+X is continuous onto,
(ii) πτ = / π ,

(iii) π " 1 is uniquely defined on the residual set,

X\\J f"\J(Xι\intXt\
n^O iel

(iv) The number card(π - 1 x) is bounded on X,
(v) τ is topologίcally mixing.

Symbolic dynamics consists in replacing the study of the dynamical system (X, f)
by that of (Ω, τ). This is the reason why Markov partitions were introduced by
Sinai. For the specific results given above, see Bowen [2,3,4], or [20] Chap. 7. •

A dynamical system (Ω, τ), where Ω and τ are constructed as in (2.1), (2.2) from
a finite set / and a matrix (ίfj ) with entries 0,1, is called a subshift of finite type.

2.3 Proposition. Given δ>0, one can choose open sets UiCiU such that Xt a Uh

diamUi<δ9 XionXiln~-nXik = 0 implies UionUiln~-nUiic = 09andfUi=>
closure Uj whenever ttj = 1. Ifttj = 1, there is thus a unique local inverse ij/ifU^Ui
off; the map φtj is C and di^i^x, φ^y) ^ θ d(x, y). IfξeΩ, the intersection f] fn Uξ(n)

consists of the single point π(ξ). n-°
The proof of the existence of the Ut is like the proof of Lemma 1.2, and the

rest is easy. •
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For the combinatorial considerations which follows, it is convenient to assume
that / is totally ordered. Let then I(k) consist of the k + 1 — tuples i = (i0, il9..., ik)
such that io<h< '" <h a n d Xi0

 n * * * n %ik ^ 0 Suppose that there is a
permutation π of = (jθ9jl9... Jk)

 s u c h that

f ^ π h for *f = 0,l,. ..,*.

We then write

+ 1 if Tϋis even

- 1 if πisodd

and ίγ j = 0 if there is no permutation π as above.
Given an integer m > 0 , suppose that i0, i 1 ? . . . , /„,_! are given such that

hi '"h T ̂  OJ ̂ e n there is a unique point x( ϊθ9..., im_ 1)in Fix / m such that
T

for / = 0,...m-^l. [Fix fm denotes the set {x\fmx = x}. The existence and
uniquenss of x( i 0 , . . . , *m-i) follows from the existence ofjhe local inverses φiβ

and the fact that they are contractions.] Note that, in fact, x( i0,..., im_ i)eX ί o o n •
n l i o k . We describe now the precise relation between fix/m and the points

2.4 Proposition (Counting periodic points).

Σ(- f Σ H.V ' L . Λ - "
 if x e F i x / "o'Ί

It suffices to discuss the case where xeFix/ m . Let then Xt , . . ., X. be the Xt

which contain f'x, for ( = 0,...,m - 1. Each -X̂  is contained in a unique /X ί Λ

by the existence of local inverses and the Markov property (we take / + 1 (mod m)
so that (m — 1) + 1 = 0). This implies that n(/) is independent of (9 and gives natural
bijections

0θl> ? I'oJl-Kil 1, ^ " l π ) ^ ^ O m - 1,1' > *w- l . i i ) 1 - * ^ ' l θ J

Let π be the resulting permutation of (i0 1, _ , ΪO M). If π is decomposed into disjoint
cycles, the unions of cycles are the only sets ί0 for which one has x( i 0,. . ., im_ x) = x.
Furthermore, if c is the number of cycles in Ϊ 0 , then ίτ τ ίτ τ = (— l) c + k , and
the proposition readily follows. Slightly different forms of "the above counting
argument have been given by Manning (11), and Bowen [4]. •

Markov partitions are a convenient tool, but they have the disadvantage of not
being canonical. We shall be able to get rid of this arbitrariness in our main final
results. A direct approach (not using Markov partitions) is sometimes useful, and
will be developed elsewhere.

3. Transfer Operators: Definition and Results

Let £ be a smooth finite-dimensional real or complex vector bundle over M, and
choose a smooth Riemann metric on E. If r is finite, the CΓ sections of E over U
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which have bounded C norm form a Banach space %>r

E(U). [Different Riemann
metrics give equivalent norms if U has compact closure in M, the choice of Riemann
metric will thus be unimportant.] The C00 sections form a Frechet space

For Cω sections, it is convenient to consider those which extend to some given
complex neighborhood U of U, and to define a Banach space by using a norm on
such extensions. (In this manner, ^E(U) is a countable union of Banach spaces.)

If φ is a CΓ bundle map over / , we define an operator 5£ = i f φ on ^r

E(U) by

y.fy = x

i f is called transfer operator (it is related to the transfer matrices of equilibrium
statistical mechanics).

For finite r, i f acts on a Banach space, and the theorems below estimate the
spectral radius and essential spectral radius of i f in terms of the pressure P(log | φ |).
where log |φ | denotes the function x\-*log\φ(x)\ on U9\φ{x)\ being the operator
norm of φ(x):Ex\-+Efx.

3.1 Theorem. The spectral radius of $£ is ^expP(log |φ |) .

3.2 Theorem. The essential spectral radius of $£ is ^0 | r | expP(log |φ |) .
This second theorem extends a result of Tangerman [27], who was the first to

study transfer operators and zeta functions (see Sect. 6) in the CΓ setting. For a
slightly different approach see Pollicott [16] Appendix 1.

Theorems 3.1 and 3.2 are proved in Sect. 4.

3.3 Corollary, (i) Let <£=<£* and &* denote the transfer operators on %E{U) and
^(U) defined by the same f, φ of class CΓ, with r > s. In the domain
{λ:\λ\ >0 | s | expP(log |φ |)} , the transfer operators <£x and S£* have the same
eigenvalues with the same multiplicities and the same generalized eigenspaces (which
consist of Cr sections). // / , φ are C00, it therefore makes sense to speak of the
eigenvalues and eigenfunctions of <£ acting on ^E(U). In particular, iff, φ are Cω, S£
acting on C™ sections has Cω eigenfunctions.

(ii) If\λ\ >0 | r | expP(log |φ|), the elements of the generalized eigenspace of <£*
corresponding to the eigenvalue λ are distributions with support in X, of order sfor all

|logθ|

(iii) Define

2tr = {Φe^τ

E{U):Φ and its derivatives up to order r vanish identically on X}.

Then, the restriction of <£ to 2£r has spectral radius S θ{r{ expP(log \φ\).In particular,
in{z:\z\> 0 | r | e x p P ( l o g | φ | ) } , the eigenvalues of S£ acting on the quotient cit^JJ)jST

(space of sections of the bundle of r-jets over X defined by ^r functions on U) are
the same as the eigenvalues of ϊ£ acting on ^r

E(U) and have the same multiplicity.
This corollary is proved in Sect. 4.
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3.4 Remarks.
(i) One can, in Theorems 3.1 and 3.2, replace P(log|φ|) by

Ί

for any integer £ ^ 1.
This follows readily from the proofs. •

(ii) Let r = ω, and replace φ by a differential operator (φ(y)Φ()/) is thus an
element of Efy9 linear combination of derivatives of Φ(y) with real-analytic
coefficients). A form of Theorems 3.1 and 3.2 remains true: JS? is a compact operator
on a suitable Banach space of complex extensions of sections of E.

In fact the methods of [18] extend to this case. One does not however expect
Theorems 3.1 and 3.2 to extend in general to differential operators as above in the
C°° setting. •

Let us now assume that r ^ 1, and let T*M be the cotangent bundle of M,
and Λ\T*M) its /-th exterior power. The sections of E(g)Λ'(T*M) can be
interpreted as £-valued /-forms, and there is a naturally defined bundle map

' of E®Λ\T*M) over / , which is of class C'\ We denote by
the corresponding transfer operator acting on C~ι E-valued /-forms;

is identified with if.

3.5 Corollary. //I ^ £ ^ dim M, ί/ze spectral radius of^] is ^ Of exp P(log | φ |) and
the essential spectral radius of ^ is ^ θlτl+'~ι exp P(log | φ \).

This follows from Theorems 3.1 and 3.2 when |r| is replaced by |r| — 1 and

expP(log|φ|) by ^expP(log|φ|) [because I φ Θ Λ ^ T * / " 1 ) ^ ^ ^ ! ] . D

If E is the trivial one-dimensional bundle over M, we identify %T

E(U) with the
space <*fR((7) or ^r

c(l7) of C functions l7κ>R or C.

3.6 Theorem. Lei geΨu{Ό\ and let $£Q act on %T

C{U).

(i) // g ^ 0, ί/ien exp P(log g) is an eigenvalue of $£φ and it has an eigenfunction
S^O.

(ii) If g is strictly positive, expP(logg) is a simple eigenvalue of 5£g (respectively
y*\ vviί/z eigenfunction S > 0 (respectively a measure σ ^ 0) and all other eigenvalues
have strictly smaller modules.

This theorem is proved in Sect. 4. We shall see later (Corollary 5.2) that if g ^ 0
and exp P(log g) is a simple eigenvalue of £gφ the product Sσ of the corresponding
eigenvectors of $£g and JSf * is (up to normalization) the unique equilibrium state
for g.

3.7 Theorem. Let E be a real vector bundle, and suppose that there is a continuous
family (Cx) of closed strictly4' convex cones with nonempty interiors such that Cx cz Ex9

and φCx c Cfx.

4 We say that the convex cone C is strictly convex if C n (— C) = {0}



246 D. Ruelle

(i) The spectral radius of S£ is an eigenvalue of j£f, and it has an eigenfunction
Φo such that Φ0(x)eCxfor all x.

(ii) if φ(Cx\{Ox}) czint CfX for all x9 the spectral radius λ0 of !£ is a simple
eigenvalue; its eigenfunction Φo satisfies Φ0(x)eint Cx for all x. All other eigenvalues
have modulus <λ0.

This theorem is proved in Sect. 4.

4 Transfer Operators: Proofs

Before embarking in the proof of Theorems 3.1 and 3.2, we shall discuss the choice
of the open set U, and introduce new operators Jί and Jί{m) related to the transfer
operator i f defined by (3.1).

4.1 Remarks on the Choice of U. The operators obtained for sufficiently small
neighborhoods U of X are in some sense equivalent: if V c U, then 5£mΦ is
determined by Φ \ V if m is large enough. [Use the fact that / is expanding.] More
precisely, let <£' be the transfer operator corresponding to IP, and Q the operator
restricting sections from U to 17'. There is then a bounded operator R:^E(U')h^
%r

E(U) such that

βJSf = JSf'β, <£R = R2\

QR = <£'m, Rq = S£m.

These relations ensure that the spectral theories of <£ and !£' are essentially the
same.

4.2 The Operators Jί9 Jί{m). It will be convenient to assume that U = \JUi9 where
ίel

the Ut satisfy Proposition 2.3. We may also assume that the vector bundle E has
trivial restriction £ Ut x lRd to each Ut.

We shall identify the Ut with subsets of UdimM. Taking the Ut small enough
we may (up to a small change of θ) replace the Riemann metric by a Euclidean
metric on Ut if desired. We may also use the Euclidean metric on the fibres Ud of
11 v Ώd

UI X \K .

Let J] Ut be the disjoint union of the 17,. We may identify %>E(U) with a subspace
iel

of

iel

With this identification, i f is the restriction to ^T

E(U) of the operator Jί on %>E

defined as follows:

(JtΦ)jx)= Σ φ(ΨijX)Φi(ΨiA (4.1)
i tιj=l

where Φ{ = Φ\ Uh and {JίΦ)j = JίΦ \ Uj. In particular, the spectral radius of i f is
not larger than that of Ji. Note that an eigenvalue 1 of i f is also an eigenvalue
of </#, and that the multiplicity with respect to Jί is at least the multiplicity with
respect to JS?. Note also that ^r

E(U) is an invariant subspace for the resolvant
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(1 — zJί)~x when \z\ is small, and also (by analytic continuation) when \z\ is smaller
than the inverse of the essential spectral radius and z " 1 is not an eigenvalue.
Therefore, the essential spectral radius of $£ is not larger than that of M.

We now combine the ideas described above to obtain an operator Jί{m) which
is in some sense equivalent to 5£m. We say that (i0, i1,..., im) is an allowed m + 1-tuple
i f hoh = Ulί2 ='" = tlm_ιim = 1. W e let t h e n

The operator Jίim):%E(ΣU(i0,...Jm))\->(gE(ΣUi) is defined by

(Jf™Φ)dίx) = Σ Φ(io.ι1.....wM*(^Wι * * Φ^- l ί m 4 (4.4)

where the sum is over m-tuples such that (io,...,im) is allowed. (This formula
reduces to (4.1) for m = 1). If Qim) is the operator which identifies ^(^Ui) with

i

a subspace of %>r

E(ΣU(i0,..., im)) (by restriction of sections) we have

Jf(m)Q(m) = Mm^ ^ y

43 The Operators Jίk. Given k ̂  0, let

where the sum is over all k + 1 — tuples i = (i0, h, . . , ife) w i Λ *o < h < '" < h
that UionUhr\- r\ Uik Φ 0. We define an operator Jΐk on ̂ Ek by

(JtkΦ)j(x) = Σ hjφyjXϊΦ-iiψ-cjx),

where ί 7 j has been defined in Sect. 2 and φjj is the local inverse of / which maps
Ujo n- -n Ujk into Uio n n L/ίk. Clearly, ^ 0 can be identified with Ji. The reader
will easily figure how to define Jίk

m) by analogy with the operator Jt{m)

of Eq. (4.4).

4.4 Remark. The operators Jίk are of the same type as Jί — J(o, with the
replacement of (X ) by (X l o n nX i k ) and of φ°φij by t-jφoψΊj. Note that

| ί T j φ o ^ T j | = |<j0o^γj|, and that (J X ί o n n X f k is a subset of X. It then
( ί i ) l ( k )

follows from symbolic dynamics (see next lemma) that in going from Jί to Mk one
has to replace expP(log|φ | ) by a quantity ^expP(log\φ\).

4.5 Lemma. Ifg:U\->M is continuous ^ 0 ,

lim -logsup sup £ SW. .wM
M-κχ>Wl im xeUim io,ii,...,irn- l

(The 0(iOf..., J ^ d^πed fey (4.3).)
If f̂ does not vanish, write g = exp A with continuous A: C/κ-> R. we may replace

xeUim by xeXjw, the lemma is then an easy consequence of symbolic dynamics.
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[See for instance [20], Chap. 7, note that i ° π can be approximated by a function
of a finite sequence of symbols.]

In the general case, let (A/) be a decreasing sequence tending to logg. The
expression

-logSUp SUp £ 0(io,...,im)C4
W im xeUim io,...,im- l

where g'{io ί w ) corresponds to the replacement of g by e x p ^ Λ is a subadditive
function of m, and a decreasing function of t. We may thus interchange the limits
m-» oo, f-* oo. To conclude, notice that

lim P ( ^ ) = Km max(Λ(p) + p(A,)) = max
/-•oo /->oo pel pel

(Confer the proof of Lemma 1.4.) •

4.6 Proof of Theorem 3.1. Since the spectral radius of <£ is bounded above by that
of M, it suffices to study lim (\Jtm\ψm. In view of (4.5) and of the bound

m-κχ>

|| Q(m) || ^ 1, we are reduced to proving that

lim (|| Jt(m) || ) 1 / m ^ exp P(log| φ |).

Let us first estimate the C° norm of Ji^Φ. For any ε > 0 we can write, in view
of the above lemma,

IIΛr<»>ΦIIo^sup sup X lΦ(te,...wMI1φll
i m x e t / ί n ι io> » i m - l

g || ΦII const exp m(P(log | φ \) + ε). (4.6)

We now have to estimate the derivatives of M{m)Φ\ differentiating (4.4) ( times we
obtain a variety of terms, but the number of terms is polynomial in m, and each
term has an estimate similar to (4.6), so that

where &ξ is a polynomial. The estimate of the Holder norm of the r th derivative

is similar, therefore

|| Jί{m) || ^ 0>{m) exp m(P(log | φ \ + ε),

and the theorem follows. •

4J Proof of Theorem 3.2. The essential spectral radius of i f is bounded above by
that of Jί, which we shall estimate by use of Nussbaum's formula [12]. This
formula gives for the essential spectrum of a bounded linear operator J o n a
Banach space the upper bound

where (Km) is a sequence of compact operators. In the present case, it suffices to
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show that

lim inf || M™ - K(m) || ̂  0 |Γ | exp P(log \φ\),
m->aθ

where Jt{m) is defined by (4.4) and K(m) has finite rank for each m.
We have identified the Ut with subsets of Euclidean space, and we may identify

sections of E over Ut with functions ί/fh->lRd or Cd, where d is the dimension of
the fiber of E; the Φ(io,...,im) become thus matrix-valued functions. In this setup we
shall use Taylor expansions to define the operators K{m).

Choose x(z0,..., im)e U(iθ9..., ίm) for each allowed m + 1-tuple ( i 0 , . . . , im). We
define K{m) = Jί(m)/r, where frΦ is the Taylor expansion of Φ to order r at
x(io,...,iw) in the set C/(io,...,im) defined by (4.2) and considered as an open set
in Euclidean space. We let 01 be the remainder of the Taylor expansion, so that

((JIM - Kim))Φ)im(x) = Σ Φ(ίo.....wW*(io.....w(^ioii • • ' ^ - i u 4
ίθ, . . , ί m - l

Integrating

we find

for xE(7(io,...,im), hence

and therefore, using Lemma 4.5,

||(ΛT<«> _ X ( w ) ) φ | | 0 ^ const-1| Φ\\ θ m | r | sup sup £ k ( I 0,...,ίw)WI
i m ^eί/,w io im- l

S | |Φ||const θm | r |exp(mP(log|φ| + ε)). (4.7)

Estimating the derivatives of (Jί{m) — X (m))Φ, and the Holder norm of the
r th derivative yield a similar result (up to polynomials in m, see the proof of
Theorem 3.1). Therefore

r | r | exp (mP(log | φ \ + ε)), (4.8)

and the theorem follows. •

4.8 Proof of Corollary 33. Let s < r finite, so that %r

R(U) and %S

E(U) are
Banach spaces. We have ^T

E(U) a VΛ

E(U)9 and the generalized eigenspace
$\{U) of ifΓ corresponding to the eigenvalue λ is a subspace of S\.
Correspondingly, the canonical map ^ ( l / ) * ! - ^ * ^ ! / ) * sends (ίs

A* onto <ίΓ/
(because of duality with the injective map β\\-*δ%^ T o prove Part (a) of the
corollary, it suffices to show that if σe<fs

λ* and the image στ of σ in $x*λ

vanishes, then σ = 0. We choose t with | t | < |s|, such that \λ\ >0 | t | expP(log |φ |) ,
and we extend σ to an element σx of &x{. Using the fact that σ is a (generalized)
eigenfunction, and the existence of local inverses for the expanding map /, we see
that σ(Φ) depends only on the restriction of Φto an arbitrarily small neighborhood
of X. If σ Φ 0, there is thus Φ of class C s with compact support in U such that
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σ(Φ) Φ 0. But, by regularization, we may write Φ = lim Φh where the Φf are of class
CΓ and converge to Φ in the C* topology. Then,

σ(Φ) = σ\Φ) = lim a^) = lim a r ( ^ ) = 0.

This proves Part (i) of the corollary for finite r, and the assertion still makes sense
for r = oo since

r finite

If r = ω, we have again injectivity of &\-*β\, and we may use the same
argument as for finite r.

Taking σ as above, we see that it defines a continuous linear functional on C00

functions in I/, i.e., a distribution in the sense of Schwartz. We have seen that this
distribution has compact support contained in X; it has therefore finite rank k,
i.e., it extends uniquely from the C00 functions to the Ck functions. By part (i) of
the corollary it extends then uniquely to Cs functions, where s satisfies (3.2). This
proves Part (ii) of the corollary.

Let 2£r be the subspace of ^(U) consisting of those Φ's which vanish on X
together with their derivatives up to order r. We have then l£££r a 3£r. Furthermore,
the proof of Theorem 3.1 shows that the spectral radius of the restriction of ^ to
&r is ^ 0 | r |expP(log|φ|). From this, Part (iii) of the corollary follows. •

4.9 Proof of Theorem 3.6. To study 5£ g when g ^ 0, we appeal to symbolic dynamics
(see Proposition 2.2, and [3,20]). Define a metric on Ω by

d((ξn)Λη)n)) = {infθk:ξn = ηn for n < k}9

then π:Ω-*X is Lipschitz. We write β = α if r = (0, α), β = 1 if | r | Ξ£ 1, and introduce
the transfer operator L on #£(β) associated with the function g°π. Applying
Theorem 3.2 to L gives

ess-spectral radius L ^ .R(r),

where we have written

θ"ep if r = (0,α)

θep if | r | > l

We have
. (4.9)

Note that Φ°π = 0 if and only if Φ\X = 0. Furthermore, Corollary 3.3 (iii) shows
that $£ restricted to {Φ: Φ\X = 0} has spectral radius ^ R{τ). Therefore, (4.9) shows
that the eigenvalues of i f with modulus > R(r) are also eigenvalues of L (and the
multiplicities for i f are ^ the multiplicities for L).

The operator L has been much studied in the case where g is strictly positive
(see [20]), and it is known that exp P is then a simple eigenvalue of L, corresponding
to a strictly positive eigenfunction, and all other eigenvalues have strictly smaller
modulus. It follows that
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S= lim e~mP^
m->oo

S is an eigenvalue of J£? to the eigenvalue exp P, and the latter is simple, all the
other eigenvalues of ££ having strictly smaller modulus. The eigenfunction ω of
L* to the eigenvalue exp P is a positive measure, the same is therefore true of the
eigenfunction σ = πω. This proves Part (ii) of the theorem.5

If g ^ 0, Lemma 4.5 shows that

lim (||J2?mι|lo)1/m = έ?P

m->oo

This (together with Theorem 3.1) implies that the spectral radius of Sβ is ep. Let
and write

Φ=Ψ+YΨj, (4.10)

where, for each j9λj is an eigenvalue of J£ with \λj\ = ep, and Ψj is in the
corresponding generalized eigenspace; Ψ is such that

lim — ~ - — = 0 (4.11)
m~* oo Λ

for some λe(0,ep). We may assume that not all Ψj vanish (this is the case for
instance if Φ = 1). Using Jordan normal forms one sees that there is an integer
k ^ 0 such that

lim — — £ 5£m Ψj = Φj
m->oo λj -m

and

for all j, and Φ7 Φ 0 for some j. Using (4.10), (4.11) we find

φ ^ - ε ( m ) , (4.12)

where ε(m)->0 when m->oo. Remember that the sum over j is finite, and that
\λj/ep\ = 1. Writing λ0 = ep, we see from (4.12) that Φo ̂  0, and that Φo cannot
vanish identically. This proves Part (i) of the theorem. •

4.10 Proof of Theorem 3.7. The proof of (i) is analogous to that of Theorem 3.6
(i). In fact, according to Remark 3.4 (i), the spectral radius of S£ is

If Φis chosen such that Φ^eCΛlO^} for all x, one sees (using the strict convexity
of Cx and <pCxcCfx) that l/m||^mΦ||0->log/L0. The same argument as in the

5 It follows from symbolic dynamics that the product Sσ is (up to normalization) the unique equilibrium
state for g. We shall prove this results more generally in Corollary 5.2.
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proof of Theorem 3.6 (i) then shows that there is an eigenfunction Φ o to the
eigenvalue λ0, such that Φ0(x)eCx for all x. This proves (i).

To prove (ii) note first that the eigenfunction Φ o does not vanish anywhere on
X because if Φ0(x) = 0, then Φ vanishes on {y:fmy = x for some m}, which is dense
in X [use symbolic dynamics]. Therefore, we may assume that Φ o does not vanish
in U. For the rest of the proof we may forget about differentiability and restrict
attention to Holder continuous functions on X.

Let C* be the cone dual to Cx. Then, φ(x)* C% c C*. There is therefore a
family (LJ) of half-lines with LJ cz C* and φ(x)*LJx = LJ. A standard hyperbolicity
argument shows that xi—>L* is Holder continuous on X (see for instance [23]
Part 2, Problem 4). Let Hx be the hyperplane in Ex defined by Lx. The sections
Ψ of the subbundle H = (Hx) form an invariant subspace J f for the operator j£f.
Furthermore, our assumption about φCx implies that

•() exponentially
|ifwφ(;c)|

(uniformly in x) when m-> oo, hence

Ao m || J^m IΛ* || o -* 0 exponentially. (4.13)

We may apply Theorem 3.6 (ii) to the bundle map φ+ induced by φ on the trivial
one-dimensional quotient bundle E+ = E/H. The corresponding transfer operator
if + thus has a simple positive eigenvalue of highest modulus ^ λ0. The generalized
eigenspace of !£ to an eigenvalue λ 3 with \λ^\ = λ0 maps injectively (because of
(4.13)) into the generalized eigenspace of if+ to the eigenvalue λj. Therefore λ0

must be a simple eigenvalue of ^£, and all other eigenvalues must have strictly
smaller modulus. This proves (ii). •

5. Gibbs Distributions

In [22] certain distributions in the sense of L. Schwartz have been introduced,
called Gibbs distributions, which extend the notion of equilibrium state, and are
useful (among other things) in the study of correlation functions. In the present
setting, the Gibbs distributions take the simple form Φ Ψ9 where Φ and Ψ are
(generalized) eigenfunctions of if'φ and ^* respectively, and Φ Ψ is the linear form
on ΨC{Ό) defined by {ΦΨ) {A)=Ψ{AΦ). [More generally one could take
A(x)eΈnάEx, with x\-+A{x) of class C on 17]. Note that in [22] the distributions
considered were in the dual of a space of Holder continuous functions; here however
we may have distributions of arbitrarily high order. Note also that Tangerman's
idea (see [27]) of studying transfer matrices on spaces of differentiable functions
brings rewards even when one can use spaces of analytic functions (see [18]); this
is because Gibbs distributions appear as distributions of finite order rather than
linear functionals on analytic functions.

5.1 Proposition. Let Ae^r

c(U). [More generally one can take ^ ( ^ e E n d f ^ , with
xι-> A(x) of class C on Ϊ7]. Ifλ0 is a simple eigenvalue ofJ?φ9 and \λo\> exp P(log \φ\).
0|Γ|, there is an eigenvalue λ(A) of £?φ(£xpA, depending holomorphically on A in a
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neighborhood of 0 in ^r

c(U), and such that λ(0) = λ0. Furthermore the logarithmic
derivative ofλ at 0 is given by (λ~ 1Doλ)A = Ψ(AΦ\ where Φ, Ψ are the eigenvectors
of <έ\,££% for the eigenvalue λ, normalized so that Ψ(Φ) = 1. (We may thus write
λ-1Doλ=ΦΨ).

It is easily seen that A^-*yφQxpA is holomorphic. Therefore one can choose the
eigenvalue λ(A) to depend holomorphically on A in a neighborhood of 0. Let also
Φ(A\ Ψ(A) be eigenvectors of <^λQXvA^ίeχPA

 t o the eigenvalue λ(A). We may
again assume that A\-+Φ(A\ Ψ(A) are holomorphic, and that Ψ{A) (Φ(A))= 1
identically. Writing dΛ••• = (Do~-)A, we have for the derivative of λ

dΛλ = dA(Ψ^Φ) = (dA Ψ)λΦ+ λΨ(dAΦ) 9

= λdA(ΨΦ) + Ψ(^(AΦ)) = (<£* Ψ)(AΦ) = λΨ(AΦ). •

5.2 Corollary. Let g"^0 and exp P(log g) be a simple eigenvalue of ££q (this is the
case in particular if g does not vanish). Then DloggP = Sσ, where S,σ are the
eigenvectors of S£g,J£* for the eigenvalue expP(logg), normalized so that σ(S) = 1.
Furthermore, p = S σ is the unique equilibrium state for logg.

Note that if p is an equilibrium state for log# we have, by Lemma 1.4,

P(log g + A) ^ h(p) + p(log g) + p(A) = P(log g) + p(A\

But, because of the differentiability of ^h^P(log^ + A), there can be only one p
with p(,4)^P(log0 + ,4)-P(log0) for all Ae^x

R(Ό\ and it is given by the
derivative DloggP = S-σ. •

5.3 Proposition. Let g^tO, write P = P(log g\ and assume that ep is a simple
eigenvalue of ££g,S£* with eigenvectors S, σ such that σ(S)=l. If
the series6

SAB(z)= Σ
m = 0

converges for \z\ < |, and extends to a meromorphic function in {z:\z\ < 0~ | r |}, with
poles at λ~ιep, where λ runs over the eigenvalues Φep of 5£g. If λ is a simple
eigenvalue, and if Φ, Ψ are the corresponding eigenvectors of <£g,S£* such that
Ψ(Φ) = 1, then λe~p is a simple pole ofSAB, with residue Ψ(SA)σ(ΦB\

This is based on a simple calculation which we present in a more general form
than needed for the present problem. Let σ be an eigenfunction of J5f * to the
eigenvalue λ0. Then

σ(A'-(B°fm)) = λom£e*mσ(A''(B°fm)) = λomσ((^mAr) B).

For the simplicity of formulae, let us assume that the eigenvalues λ of S£ with
modulus > θlr]ep+ε are simple, and denote by 9 the projection corresponding to
the part of the spectrum of if in {λ\\λ\ ̂  0 'V + ε } . Then,

6 This series is essentially the Fourier transform of the correlation function m\-+p(A.(B°fm)) — ρ(A)ρ(B)
associated with the equilibrium state
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m = 0

If we take λ0 = e p and A' = S (A - p{A)\ the term with λ = ep disappears in the
right-hand side, and the proposition follows. •

Note that various generalizations are possible, where Ae%>F(U)9 Be^F*(U) and
F, F* are dual bundles, or where λ0 φ ep, or where g is complex or replaced by

\ etc,

SAB.5 A Remarks on S

(i) If g > 0, SAB(z) converges for \z\ ̂  1.
(ii) In general, SAB may have multiple poles,

(iii) If r = oo, SAB is meromorphic in C.
(iv) We have

- — — PiXogg + sxA + s2B)\Si -S7-o = SAB(1) + SBA(ί) - ρ(AB).

The proof of (iv) is a simple calculation. [Let Φ, ¥* be eigenvectors of
^iogg+sA^ΐogg+sA s u c h t h a t *P(Φ) = 1. Differentiate SH-> Ψ{BΦ\ where the derivatives
of Φ, IP are obtained by differentiation of the equations £?Φ=λΦ, $£* Ψ=λΨ.~]

D

5.5 Remarks on Gibbs States.
(i) In the generalization where φ is replaced by a differential operator

(see Remark 3.4 (ii)), one cannot in general define Gibbs distributions of finite order.
(ii) Let F(x):Exh-*Ex be an invertible linear map for all x, and let x\-^F(x) be

of class C. If we define φ(x) = F(fxy1φ(x)F{xl then FJSf# = i f φ F , F " 1 J 2 ? * =
i f ^ F " 1 . In particular, the Gibbs distributions for φ are the same as the Gibbs
distributions for φ.

To prove (ii) note that if Φ = F~1Φ and Ψ=FΨ we have (Φ, Ψ){A) =
Ψ(AΦ)= Ψ(FAF~1Φ)= Ψ(AΦ) = Φ Ψ(A\ provided A is a scalar, i.e. Ae%r

c(U).

D

6. The Zeta Function

For every integer m ^ O w e write

xeFixf™

where Tr is the trace of operators in Ex. The zeta function associated with φ is
then defined by the following formal power series in z:

oo 1

Γ -ί Zm
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[It is not hard to see that this series converges for |z |expP(log|φ|) < 1.]

6.1 Theorem. Let r = (0, α), i.e., let φ be oc-Hόlder continuous. Then

converges for |z |# α expP(log|φ|) < 1, and Us zeros in this domain are the inverses
(λj)'1 of the eigenvalues of J£φ, with the same multiplicities.

The symbolic dynamics version of this theorem has been proved by Haydn
[10] when φ = expv4, and A is a complex-valued function. Earlier results in this
direction had been obtained by Ruelle [20], and Pollicott [14]. A general proof
of the theorem is given in Appendix A.

We discuss now the case where / is differentiable (as usual, / and φ are assumed
to be C\ the case r = (0, α) is not excluded).

6.2 Proposition. Let f be differentiable and, for 0 ̂  / ̂  dimM, define

where \x{ is the trace of operators in Λf{T%M). Introduce the following formal power
series in z:

oo 1

a \zφ) — exp — 2^ ~~±mz

m=i m

Then

dimM

This is because ζm = £ ( - lftί,. D
t

The interest of the above proposition is that d* may be viewed as a kind of
Fredholm determinant of 1 — zJSf(/) (see Corollary 3.5), as the following conjecture
indicates.

6.3 Conjecture Λo. If f is differentiable, then d°(zφ) converges for

M 0 | r | e x p P ( l o g | φ | ) < l . (6.1)

The zeros of d°(zφ) in (6.1) are the inverse (λ®)'1 of the eigenvalues of ^£ — if(0),
with the same multiplicities.

Note that if we replace the bundle E by E (x) Λ\T* M) and φ by φ ® Λ'{T*f ~x),
we obtain the following statement.

6.4 Conjecture Ar Ifx ^ 1 (i.e., r = (r,α) with r ̂  1), then df{zφ) converges for

| z | θ | r | + ' - 1 e x p P ( l o g | φ | ) < l . (6.2)

The zeros of df(zφ) in (6.2) are the inverses ( /φ" 1 of the eigenvalues of if((f), with
the same multiplicities.
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We shall refer to Ao and A£ collectively as Conjecture A (equivalent to Ao).
In view of Proposition 6.2, we have

6.5 Consequence. // Conjecture A holds, then ζ(z) is meromorphic in (6.1). i.e., for
|z |<0- | r |exp-P(log|φ|).

6.6 Comments on Conjecture A. Note first that Theorem 6.1 may be viewed as a
Holder version of Conjecture A. If r = (0, α) and / is differentiable, log df(zφ)
converges for |z |0expP(log|φ|) < 1 when t ^ 1. Theorem 6.1 and Proposition 6.2
then imply that d°(zφ) converges for | z | θ" exp P(log \ φ |) < 1. In particular, this gives
the C 1 version of Conjecture A.

Conjecture A also holds in the Cω case. [The Cω case of Conjecture B below
was proved in [18], and we shall show (Proposition 7.3) that this implies
Conjecture A ]

In the case of an expanding map / of a compact manifold (i.e., X = M), and
the trivial bundle £ = M x C , Tangerman [27] has proved a weakened version of
Conjecture A. Specifically, for integer r and φ = exp .4, Tangerman shows that ζ(z)
is meromorphic for

\z\<Λ

 1 g- r / 3 d i m M exp - P(Re A\
degree/

provided r ^ 6 (dim M)3. In particular, ζ(z) is meromorphic in C in the C00 case.

6.7 Remark. In the Cω case of Conjecture A, the Fredholm determinants df(zφ)
are entire functions of order 0 satisfying estimates

log |/(zφ) | ^ [log(HlJ^III | z | ) ] d i m M + 1 + const,

where ||| J£?(/)||| is some norm associated with the extension of S£{ί) into the complex.
The above bound on the growth of/ is due to Fried [8], correcting an erroneous

statement in Ruelle [18] (itself based on an error in Grothendieck [9]). •

7. Relating Conjecture A and Conjecture B

The purpose of this section is to tie some loose ends, and provide proofs required
in Sect. 6. We shall however argue more generally, allowing r to take all values.

For k ^ 0 we define

• T r φ ( / - " χ ( ί 0 , . . . , im_,))...φ(x(i0,...., im_t)). (7.1)

From (7.1) and Proposition 2.4 we obtain

(7-2)Σ
k

where (° is defined in Proposition 6.2. Let us introduce the formal power series

oo 2 m

dξ(zφ) = aφ- £ - & . (7.3)
m=i m
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7.1 Conjecture J50. Iff is dίfferentίable, d%(zφ) converges for

|z|0 | r |expP(log|(?|)<l. (7.4)

Its zeros in (7.4) are the inverses of the eigenvalues of Jί, with the same multiplicity.
In view of Remark 4.4 this implies the following consequence.

7.2 Conjecture Bk. Iffίs differentiable, dk(zφ) converges in (7.4), and its zeros in
(7.4) are the inverse of the eigenvalues of Jίk, with the same multiplicities.

We shall refer to Bo and Bk collectively as Conjecture B (equivalent to Bo).

7.3 Proposition. Conjecture A follows from Conjecture B.
We shall prove this implication separately for each r. In fact we shall only

consider the case where r is finite, because the C00 and Cω cases then readily follow.
Since Conjecture B is known to hold in the C ω case, Conjecture A is a theorem
in that case, as noted in Sect. 6.

In view of (7.2), (7.3) we have

where d° is defined in Proposition 6.2. If \λ\ > 0 | r | expP(log |φ|), let mk(λ) be the
multiplicity of λ as an eigenvalue of Jik (write mk(λ) = 0 if λ is not an eigenvalue).
Using Conjecture B we see that Conjecture A reduces to proving that the
multiplicity rh(λ) of λ as an eigenvalue of <£ satisfies

m(A)=£(-l)*m f c (4 (7.5)

The spaces ^T

Etk introduced in Sect. 4.3 are mapped into each other by
coboundary operators ak defined in the usual manner:

[The image by αk of Φe^Ek evaluated on UionUhr\'-nUikr\Uik+1 is the sum
over fc + 1-terms (z0,...,z},...,zfeH_x) of the restriction to Uion- nUik+ι of
(—l) JΦ ( i o Γ. ifc+i).] The operator Jtk acts on ^τ

Etk, and it is readily checked
that J?k+1 ak = akJtk.

It is possible to construct a smooth partition of unity (χt) associated with ([/;).
More precisely, there are CΓ functions χt on I/, with χ{ ^ 0, and support χf cz (7f

such that £ χι = 1. [To construct the χt start with functions χf ^ 0 such that χ® > 0

on Xi9 and support χf a U^ Restricting (7, as we may, to a smaller neighborhood
of X, we assume that Σχ? > 0, and then obtain the χt by normalization.]

Using fa), a standard argument shows that im <xk = ker ock+1 for k = 0,1, . . . .
We have therefore an exact sequence

where ^τ

Etk = 0 for sufficiently large k. For each λ with \λ\ >0 | Γ | expP(log |φ|), let
Pλ (respectively Pλk) be the residue of (z — S£)~x (respectively (z — Jίk)~ι) at λ. This
is a linear projection onto the generalized eigenspace of Jέf (respectively Jik)
corresponding to λ; we have an exact sequence
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and (7.5) immediately follows. •

8. Hyperbolic Julia Sets

Our study of the zeta function was most conclusive in the Cω situation. In particular,
this includes the case of an invariant set X for a holomorphic map / of a complex
analytic manifold M, when the conditions (a), (b), (c) of Sect. 1 are satisfied. If / is
a rational map of the Riemann sphere M, let X be the Julia set (see for instance
Brolin [6]). Then Conditions (b) and (c) hold, and (a) is expressed by saying that
X is a hyperbolic Julia set.

8.1 Corollary. If X is a hyperbolic Julia set of the rational map f of the Riemann
sphere M, and φ a real analytic function on M, the zeta function of Sect. 6
can be written

M ( 3 1 >

where d°, d1, d2 are the Fredholm determinants of the transfer operators =Sf * on ί-forms
for ^ = 0,1,2. They are entire functions of order 0 satisfying the estimates of
Remark 6.7.

The above corollary makes more precise the results of [21]. Note that in [21], we
studied the situation where φ(x) = — log \\Txf\\. It is of interest that one can
estimate the order of the Gibbs distributions (which appear in resonances and as
functional derivatives of the zeros and poles of ζ with respect to φ—see Sect. 5).

If φ is holomorphic in a neighborhood of X rather than just real analytic, (8.1)
may be replaced by

d°H(zφ)

where d°w d^ are Fredholm determinants of transfer operators acting on
holomorphic functions and holomorphic 1-forms respectively.

Appendix A

The purpose of this appendix is to give a proof of Theorem 6.1, or more precisely
Theorem A.I below. For definiteness we restate the general conditions of
applicability of this result.

Let X be a compact metric space, and f:X\->X a continuous map which is
expanding, topologically mixing,7 and has local inverses. We assume thus

(a) there are ε > 0, 0e(0,1) such that

As indicated in Sect. 1, mixing is assumed to simplify the statement of results, but is not really needed



Thermodynamic Formalism for Expanding Maps 259

whenever x, y eX and d(x, y) ^ ε.
(b) if & is a nonempty open subset of X, there is n ^ 0 such that fnΘ = X.
(c) with ε as above, if x,y'eX and d ( / x , / ) ^ ε there is a unique yeX such that
fy = / and d(x, y) ^ ε.

Let 0 < α ̂  1, and £ H I be a d-dimensional (real or complex) α-Hδlder bundle.
[There is thus a finite open covering of X trivializing E, and the transition
functions are α-Hδlder dxd matrix-valued functions.]

A.1 Theorem. Let φ\E\-+E be a bundle map over f such that, for each local inverse
ψ of f, the map φ°ψ is cn-Hόlder continuous.

Then, the formal power series

φ φ ) = exp- Σ - Σ Trφ(/"-1x) φ(x),

m = l m x eFix p"

where Tr denotes the trace of operators in Ex, converges for

|z |0αexpP(log|φ|)<l. (A.I)
In this region, the zeros of d are the inverses (A,-)"1 of the eigenvalues of 5£, with the
same multiplicity.

We may thus write

d(zφ)'

where Jί is an an analytic operator-valued function defined in the domain (A.I).
As mentioned earlier, the symbolic dynamics version of Theorem A.I was

proved (for d = 1, φ = eA, A Holder) by Haydn [10), improving results of Ruelle
[20] and Pollicott [14]. A theorem on 1-dimensional maps, based on Haydn's
ideas has been obtained by Baladi and Keller [1].

A.2 Proof of the Theorem. Let (Xt) be a Markov partition for (X, / ) , and let us define

CmO = Σ T Γ P(io,ίi,...,im- i,io)M*0> > *m- l))>- i,io)
io,' ,im- l

where the sum is over m-tuples such that ίioil = ••• = tim _ l i o = 1 and
x(i o,.. .,iT O-i)eFix/w as defined in Sect. 2. Using (4.3) we have thus

The proof of Proposition 7.3 applies here also, and our problem is reduced to
showing that

m=i m

converges in (A.I), and that its zeros are the inverses (λj)'1 of the eigenvalues of
M, with the same multiplicity.
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Since the Markov partition is arbitrarily fine, we may assume that it trivializes
E. We may thus think of φ simply as a function with values in the d x d matrices;
Tr is the usual matrix trace.

We may write

where φfj. = φ 0 ^ - is α-Holder continuous on Xj9 and we know (see Sect. 4.7) that
the essential spectral radius of Jί is ^ θaep, where P — P(log \φ\\ We now think
of Jί as acting on the space (^c€(l(Xb

<Cά) of α-Holder functions ΣX^C4.
i

For ε > 0, there are finitely many eigenvalues λj of M such that | λ \ ̂  θaep+ε.
If nij is the multiplicity of λj we may write

where (σjγ) and (Sjγ) are dual bases of the generalized eigenspaces of Jί* and Jί
respectively to the eigenvalue λ>r

For each allowed m + 1-tuple (i 0,. . ., im), let

There is an operator β ( m ) (as in Sect. 4.2) which identifies # α ( £ Ui9 C
d) with a

subspace of %a(ΣU{iOi..., /J, Cd), and we have

For each allowed i = ( ΐ o , . . . , i j we choose x(ϊ)eX(i) and if im = z'0>
 w e require

x(i) = fmx(ϊ)9 so that x{\) is uniquely fixed in that case, and equal to x(i0,..., iw_ x).
As in the proof of Proposition 3.2, we shall use the Taylor expansion of Sjλ at

x(i), but we limit this expansion to the order r = 0. With the same operators K(m)

as in Sect. 4.7 we may thus write

Σ HΨ = Σ <^((^ ( m ) - K(m))Q^Sjy) + Σ σh(JP\ch)\ (A.2)
j Jy jy

where (cjy) has the constant value Sjy(x(i)) on X(ϊ). For the first term in the
right-hand side, (4.7) gives

σj ^ const. (θaep+ε)m, (A3)

where a polynomial in m has been absorbed in the emε factor. If χlk is the
characteristic function (in ΣX (i0,..., im)) of X(i) multiplied by the feth unit vector
in Cd, the second term of (A.2) may be written

Σσjy(^m\cjγ))=Σ Σ Σ ^ vk(χ(i))σΛ(^<m)zifc) = Σ Σ [(i - ^ ^ u r n i
(A.4)

where ^ is the projection corresponding to the part of the spectrum of Jί in
{λ:\λ\^θ*ep+ε}.

The right-hand side of (A.4) is the sum of two terms. The first is
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(A.5)

because the sum over i contains only terms such that i0 = im.
There remains to study the second term of (A.4), i.e., up to sign

where we have omitted the index k, and written Tr instead of Σk.
Keeping the definition of x(ίθ9..., im\ we also choose x(ί0,..., i;)eX (iθ9 . , it)

for t = 0,..., m — 1. We have then

and therefore

X Tr
i

= Σ o , . -

= Σ Σ
/ = 1 (io ιV)

-1))}.

We have thus

^ const || @Jlm || + const Σ " ̂  ^
1=1

• Σ

^ const
+eYθ'a

(A.6)

From (A.2), (A.3), (A.4), (A.5), (A.6) we obtain finally

Σ mjiλjT - ζm0 S const. m{θ«ep+ε)m

j

From this we see that

converges for \z\θιxep+ε < 1, and the theorem follows.
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