Note added in proof.

It should be noted that the existence of the C* hyperbolic splitting Tx M = V* pV?®
for f does not imply that the zero section is a hyperbolic fixed point for u — T f(uo f~1)
acting on C'* sections of Tk M (I owe this remark to Liu Pei-Dong). But it is not hard to
prove that the zero section is a hyperbolic fixed point for u — T f(u o f~1) acting on ce
sections of Tx M for some o’ € (0, ). One should thus replace a by o in Proposition 1.2,
and similarly later, but this is of no consequence for our results.

Earlier references for the smooth dependence on parameters of the conjugacy in struc-
tural stability are the following:

R. de la Llave, J.M. Marco and R. Moriyon. ”Canonical perturbation theory of
Anosov systems and regularity results for the Livsic cohomology equation.” Ann. of Math.
123,537-611(1986).

A. Katok, G. Knieper, M. Pollicott, and H. Weiss. ”Differentiability and analyticity
of topological entropy for Anosov and geodesic flows.” Invent. Math. 98,581-597(1989).

G. Contreras. ”Regularity of topological and metric entropy of hyperbolic flows.”
Math. Z. 210,97-111(1992).

I am indebted to Rafael de la Llave and Viviane Baladi for pointing out these references
to me.



Hyperbolicity of u — T'f(uo f1).

Let K be a compact hyperbolic set C M for the C11? diffeomorphism f of M. The
splitting Tk M = E° + E* is C'* for some o > 0. We claim that the linear map u —
Tf(uo f~1) is hyperbolic on the Banach space of C? sections of Tx M, provided 3 is
sufficiently small (0 < B < a).

We have to show that u — T f(uo f~1) is a contraction of the space of C? sections of
E®. We may take an adapted metric, so that ||Tf|E®|lo < A < 1. In the definition of the

CP norm: | ( ) ( )|
o(z) — O(y
®|| = max(sup |¢(z)||, sup ————=—

)

we take the second sup only over pairs (z,y) such that d(z,y) < €, where the constant e
will be fixed later (small but > 0).

Write T, = Ty, f, £ = d(z,y). Given a section u of E* (with C# norm ||u||) we may
for each pair (z,y) with small £ choose v € E? with [v — u,| < ||ul|O(£%). We have

Tpug — Tyuy = Tp(ug — v) + Tpv — Tyv + Ty(v — uy)

T (uz = v)| < Aftg — v] < At — uy| + [[uf|O(E")
Tev = Tyo| < |ul|O(€)
Ty (v — uy)| < [lulO(E")

hence
| Tpug — Tyuy| < ||U||(/\fﬁ +0(£7))

Since d(fz, fy) > C& we have

| Toue — Tyuy|

d(fz, fy)?

AP +O(e A
) = (G5 + 0e?)

< |||

For small 8 we have \/ CP < 1, and we may take e such that

NCP+0@EPy<1 if 0<é<e
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DIFFERENTIATION OF SRB STATES.
by David Ruelle*

Abstract. Let f be a diffeomorphism of a manifold M, and p; a (generalized) SRB
state for f. If supppys is a hyperbolic compact set we show that the map f — ps is
differentiable in a suitable functional setup, and we compute the derivative. When suppp;
is an attractor, the derivative is given by

5p(®@) =) pslgrad(® o ), X)

where X is the vector field 6f o f~!. This formula can be extended to time dependent
situations and also, at least formally, to nonuniformly hyperbolic situations.

The above results will find their use in the study of the Onsager reciprocity relations
and the fluctuation-dissipation formula of nonequilibrium statistical mechanics.

* THES (91440 Bures sur Yvette, France) <ruelle@ihes.fr>, and Math. Dept., Rutgers
University (New Brunswick, NJ 08903, USA).
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0. Introduction.

In a recent paper [7], G.Gallavotti has outlined a new proof of Onsager’s reciprocity
relations, based on the study of the SRB measure p; for a hyperbolic dynamical system
(M, f). To give a rigorous and general version of Gallavotti’s argument, one has to study
the dependence f — pr, and in particular compute the derivative. In fact, one may argue
that these problems are at the core of nonequilibrium statistical mechanics; they are the
subject of the present paper. We do not make here the assumption of [7] that we are close
to a Hamiltonian situation (where f has a smooth invariant measure); our analysis will
thus be valid ”far from equilibrium”. In what follows we concentrate on the mathematics,
and leave the application to nonequilibrium statistical mechanics for other occasions.

Let K be a mixing Axiom A attractor for the diffeomorphism f. In a suitable func-
tional setup we shall show that the SRB state p; on K depends differentiably on f. A
variation 6f of f corresponds to a vector field X = 6f o f~!, and we shall obtain the

formula
[e @]

Sp5(®) =Y ps({grad(® o f*), X))

k=0

This formula is relatively easy to guess, but its proof requires some care. Instead of the
Axiom A attractor case we shall in fact deal with the more general situation where K is
a hyperbolic set with local product structure, and ps the corresponding generalized SRB
state (Sections 1, 2 and 3). In Section 4 we shall see how the definition of attractor and
of SRB state can be extended to a general bounded time dependent perturbations of f.
Finally, in Section 5 we shall discuss a formula for the formal derivative of the SRB state
ps with respect to f, without uniform hyperbolicity assumption.

The rest of this introduction is a brief summary of facts concerning hyperbolic sets.
For more details see Smale [20], Shub [16], Ruelle [14], and references quoted there.

Hyperbolicity.

Let K be a compact invariant set for the diffeomorphism f of a finite-dimensional
manifold M, we assume f to be of class C", with » > 1. We choose some Riemann metric
on M. Suppose that T M (the tangent bundle restricted to K) has a continuous 7 f-
invariant splitting Tk M = V~ & V™ and that there are constants C > 1, § > 1 such
that

max ||(T, f T VE(2))| < Co™" for n>0

rzeK
Then K is called a hyperbolic (compact invariant) set for f. We call V— = V* and
VT = V* the stable and unstable subbundles respectively.

Local stable manifolds V™ (z) = V*(z) and unstable manifolds V*(z) = V¥(x) are
defined by

VE@z)={ye M: d(fTy, ff"z) <R  for n >0}
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The V*(z) are C" manifolds, respectively tangent to V*(z), and = — V*(z) is continuous
K — C". Furthermore, there are C' > 1, § > 1 such that if y, z € V*(x),

d(fFy, fT72) < C'0'"d(y,z)  for n>0

Expansiveness, Holder continuity of hyperbolic splitting, Axiom A attractors.

The map f restricted to the hyperbolic invariant set K is an expansive homeomor-
phism. This means that d(f*z, f*y) < e for all k € Z, implies z = y.

If » > 1, the stable and unstable subbundles V* are Holder continuous, i.e., the
sections = +— VT (z) of the Grassmannian over K are C® for some a > 0.

We say that the compact hyperbolic f-invariant set K is transitive if K contains a
dense orbit (f*a)rcz. We say that K is an Aziom A attractor if K is transitive and has
an open neighborhood U such that

It follows that the local unstable manifolds V*(z) of points of K lie in K (this is also true
for the global unstable manifolds U2 ; f*V¥(x)). One can then show that the f-periodic
points are dense in K. The local stable manifolds V*(x) of points of K fill a neighborhood
(say U) of K. Consider a continuous map ¢ : S; — Sy along the V: between two smooth
transverse sections S; and S (for instance two pieces of unstable manifolds). One can
show that ¢ is Holder continuous, and absolutely continuous (for the Riemann volume
elements of Sq, S2) with Holder continuous Jacobian.

Local product structure, shadowing.

We say that the compact hyperbolic f-invariant set K has local product structure if
R can be chosen in the definition of V¥ (z) such that, for all z,y € K

V()N VT(y) c K

In particular, an Axiom A attractor has local product structure. For small R, we may
assume that the V*(z) are nearly flat, so that YV~ (z)NV*(y) consists of at most one point.
One can check that the map (z,y) — [z, y], where [z, y] is the only point in V™ (z)NV*(y),
defines a product structure in a neighborhood of each point of K.

A remarkable feature of hyperbolic sets with local product structure is that -pseudo-
orbits are well approximated by true orbits. We say that (zx)ie[ko,k,] IS @ 0-pseudoorbit
for f if d(fxk, zr+1) < O for every finite k € [kg, k1 — 1], where kg, k1 may be finite or +oco.
The pseudoorbit (xy) is e-shadowed by the orbit (f*z) if d(f*z,zy) < € for all k € [ko, k1].
Bowen has proved the following shadowing lemma:

Let K be a hyperbolic set with local product structure for f. For every e > 0 there is
0 > 0 such that every §-pseudoorbit in K is e-shadowed by an orbit in K.

This is a very efficient tool in the study of hyperbolic systems; it was for instance used
by Bowen [3] to prove the existence of Markov partitions (first introduced by Sinai [17],
[18]) in general and natural fashion. For a discussion of Markov partitions and symbolic
dynamics we must however refer to the original papers.



1. Stuctural stability results.

The spaces M, B, A.

From now on we take r integer> 1, and let Ky be a hyperbolic set for fy of class
CT". Then, the stable and unstable subbundles VOjE are C'* for some a > 0. The C* maps
Ky — M form a Banach manifold M. The maps close to the inclusion map K — M
are described by a chart of M which we may take to be the open e-ball B around 0 in
a Banach space B. Using the exponential map T'M — M, we may take for B the space
of C* sections of Tk, M. Finally, we shall denote by A the space of C" diffeomorphisms
sufficiently close to fp in a fixed neighborhood U of K in M.

1.1 Proposition.

Let r > 2.

(a) The map A x M — M defined by (f,5) — fojo fi' is CT—1.
(b) The tangent map T to j+— fojo f0_1 s given by

(T38)(@) = (Tj 5,y DO (S5 1)

where § € T; M.

To prove (a), it will suffice to show that (f,j) — foj is C"~!. Furthermore the
problem is local, ¢.e., it suffices to consider j and f o j near xg € Ky. The map f+— foj
is C¥ (in fact linear, using suitable local charts). Differentiating k times f o j with respect
to j introduces the k-th derivative of f, which is C™*, and composed with j this gives a
C® function if 7 — k > 1. Therefore (f,j) — foj is C"~! as announced.

(b) follows directly from the definitions. []

For the next proposition, remember that A is a sufficiently small neighborhood of fj.
1.2 Proposition.

Let r > 2.

(a) The inclusion map Ko — M 1is a hyperbolic fized point of the map M — M
defined by 7 — fo Ojofo_l.

(b) For f € A, the map M — M defined by j — fojo fy' has a unique fired
point j(f) close to Ko — M. This fized point is hyperbolic and is a C* homeomorphism

(c) The map f — j(f) isC™"1: A— M, and the tangent map S f — &5 is given by

5j = (1= Tip) " (0f o F~ 0 §(f))



Clearly Ky — M is a fixed point of j — foojo fy 1 The corresponding tangent map

is To : B — B given by
(Tob) (@) = (Ty+, F0)3(f5 ')

(see Proposition 1.(b)). We have to show that this is a hyperbolic linear map, viz., its
spectrum is disjoint from the unit circle. Here we use the fact that the splitting of Tx, M
into stable and unstable subbundles is C%, giving a decomposition B = B* & B* such that
To|B° and T, '|B* have spectral radius < 1. This proves (a).

Using Proposition 1(a), Proposition 2(a), and the implicit function theorem, we see
that j — fojo f;' has a unique fixed point j(f) close to Ko < M. By continuity, this
fixed point is hyperbolic (i.e., 7j(y) is a hyperbolic linear map). By expansiveness of fy on
Ky, j(f) cannot collapse different orbits, and is thus injective. This proves (b).

[We have here followed Hirsch and Pugh [8] in establishing the persistence of the
hyperbolic set K].

The implicit function theorem also yields that f — j(f)is C"~1, and by differentiating
Jofo=foj weget
6jofo=0foj+Tfodj

hence
(1= Tj)i=6fojofot=06fof "o
hence
85 = (1= Tjp) ' (Of o f7H 0 (f))
proving (c). []
1.3 Proposition.

Let r > 3. We denote by 7 : M — M the Grassmannian of TM, and let f : M~—> M
be induced by Tf. Also let M denote the Banach manifold of C® maps: Ko — M, for
some suitably small B > 0 (we take f < «).

(a) The map A X M= M defined by (f,7) — fojo fo_l is C™2.

(b) The canonical lzftmg Ko — V§* is a hyperbolic fized point of the map M= M
defined by j— foojo it

(c) For f € A, the map M = M defined by j— fojo fo! has a unique fized point
J(f) close to Ko — V. Furthermore o j(f) = j(f), j(f)z = V*(i(f)z), and f — j(f) is
C™2: A — M.

(a) is proved like Proposition 1.1(a), taking into account the fact that f is of class
cr1i.

From the hyperbolic splitting Tg,M = Via V' (for T'f), one also obtains a hyperbolic
splitting TVuM V§ @ V¥ (for Tf). In fact

Ve = (Tn|Tye M)V
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and
173 = {¢:7m€ €V and £ is the tangent space to Vy at w&}

Note that z — V¥(z) is continuous because z — V¢ (x) is continuous K — C". Therefore,
the splitting Vi @ V is again C? for some 8 > 0, and (b) follows.

Using (a), (b), and the implicit function theorem, we see that 7 — fojo fo! has a
unique fixed point j(f) close to Ko — V{*. Since mo f = f ow, we have

moj(fy=mofoi(f)ofet=Ffomoi(f)ofy"

which shows that 7o j(f) = j(f). Since K = J(f)Kp is f-invariant and close to Vi, we
have K = V", i.e., 7(f)x = V*(j(f)z). Finally, the implicit function theorem also shows
that f — j(f) is C""2: A — M, concluding the proof of (c). []



2. Generalized SRB measures: smooth dependence on f.

We assume from now on that Ky has local product structure, and that fo| Ky is
mixing (for instance f, satisfies Smale’s Axiom A, and Ky is a mixing basic set). Then
also K = Ky = j(f)Ko has local product stucture for f, and f|K is mixing.

If f € A, the (generalized) SRB measure* with respect to f on K is the unique
equilibrium state for — log J}‘, i.e., the unique f-invariant probability measure p = py on
K making

ht(p) — p(log J§) (1)
maximum. Here hy(p) is the entropy of p, and J¢ is the unstable Jacobian [therefore,
p(log J¥) is the sum of the positive Lyapunov exponents for p]. We do not make the usual
assumption that K is an attractor**. The maximum of (1) is P(log J§) < 0 [the value 0
is obtained if and only if K is an attractor, see [5]].

Let 7(f) : K — K be the inverse of j(f) considered as a map Ko — K, and define
ps = J(f)*ps. Then, py is the unique equilibrium state with respect to fo on Ky for

—log J} o j(f). [This follows from j(f) o fo = f o j(f)]-

2.1 Proposition.

Let r > 3. We assume that K has local product structure with respect to f, and that
fIK is mizing.

(a) The map f+— J¥ o j(f) is C™2: A— CB(K,).

(b) The map f — ps|CP(Kyp) is CT72: A — CP(Kp)*.

Let u be the dimension of the unstable subspaces. We note that J¢ o j(f) is the norm
of (T'f)"* evaluated at j(f), and that f — Tf is C¥: A — C"~1. Since, by Proposition
1.3(c), f = j(f) is C"7%: A — M, we see that f — J¥ oj(f) is C"7% A — CP(K,),
proving (a).

We shall now use the fact that, if I is the set of fp-invariant probability measures on
Ky, then the pressure

A P(A) = max(hy, (u) + p(4)]

* SRB mesures were introduced by Sinai [19] for Anosov diffeomorphisms and extended
to Axiom A attractors for diffeomorphisms (Ruelle [12]) and flows (Bowen and Ruelle [5]).
For the general situation where uniform hyperbolicity is not required see Ledrappier and
Young [10]. In this Section and the next we consider another generalization where we
assume uniform hyperbolicity, but not attractivity. The uniqueness of p maximizing (1) is
because log J§ is Holder continuous, and f|K mixing (see Bowen [4], or Ruelle [13]).

** When K is not an attractor, p; serves to describe diffusion away from K under f.
This is the content of Proposition 3.1 in Ruelle [15]. See also Bowen and Ruelle [5], Young
[21], Lopes and Markarian [11] (for a special case: open billiard described by a Cantor set),
Eckmann and Ruelle [6] Section IV E. The work by Kaplan, Yorke, Kantz, Grassberger,
Gaspard, and Nicolis should also be mentioned here.
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is a C* function on C”(Kj). Furthermore, the derivative of P at A (which is an element
of the dual C#(Ky)*) is the restriction to CP(Kjy) of the equilibrium state u? for A. [For
these results, see [13]]. Therefore the map A — u?|CP(Ky) is C¥: CP(Ky) — CP(Ky)*.
Applying this to A = —log J}0j(f), and p? = py, we see (using (a)) that f — ps|CP(Ko)
is C"=2: A — CP(Ky)*, proving (b). []

2.2 Proposition.

Let r > 3. The map f — p¢|C"" (M) (where ps is the SRB state for f) is C"=2:
A— CTY(M)*.

We use the fact that py = j(f)*uf, so that

prlCTTHM) = €(f)* (us|CP (Ko))

where the bounded operator £(f) : C"~1(M) — CP(Ky) is defined by £(f)® = ®oj(f) and
¢(f)* is its adjoint. Differentiation of y; proceeds according to Proposition 2.1(b). The
function £ : A — L(C™Y(M),CP(Ky)) is 7 — 2 times continuously differentiable (as seen
by direct computation because if ® € C™!, its first » — 2 derivatives are still C', which
by composition with a C? function gives a C” function). The same holds therefore for

A — E(Cﬁ(Ko)*,CT_l(M)*)

We may now differentiate ¢(f)*(us|C?(Ko)), and we find that the derivatives up to order
r—2are in C"1(M)*. []
2.3 Remark.

One can probably improve Proposition 2.2 to the statement that f — p¢|C"~21¢(M
Pr
is C™2: A — C™2%¢(M)* when ¢ > 0.
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3. Generalized SRB measures: differentiation with respect to f.

For r > 3, we have just seen that f — py = j(f)*us is C*: A — C?*(M)*. We may
thus differentiate this map, or equivalently compute the tangent map dp¢(®) to

f=pp(@) = psp(@o0j(f))

for ® € C?(M). The linear functional 6f +— §ps(®) corresponds to a linear functional
X +— 6ps(®), where X = 6f o f~1 is a C""! vector field on M. We shall evaluate
X +— 0pf(®) in two steps.

First step: computing (6ps)(® o j(f)).

By assumption we have the hyperbolic splitting Tk M = V* V™ for T f over K. Let
F = F(f) be a section (not necessarily continuous) of (V%)% such that |F,| = 1 for all
z € K. (We use the norm defined from the Riemann metric; since (V*)"* is 1-dimensional,
F, is unique up to a factor £1). We have

(Tmf)Aqu = )\(.T)fo

Ma)| = J¥ () (2)

Let now VL C T*M be the subbundle orthogonal to V*. There is a unique section
F* = F*(f) of the 1-dimensional bundle (V1) * such that (F}, F,) = 1 for all x € K.
We have

(T2 )" Ff, = M) Fy

and
Az) = (Ffp, (Tuf) " F)

Remember that f +— = = j(f)zo, and F,(f), F;(f) depend differentiably on f. We
may thus estimate 0 J§ in terms of 0 f by straightforward first order calculus. [The fact that
Jj(f): Ko — K is in general not smooth plays no role here|. It is convenient to embed M
isometrically in RY with the Euclidean metric (for suitably large N). Then z + T, M may
be viewed as an affine subspace of R, and a local chart of M is provided by orthogonal
projection on =z + T, M. Let |z — y| < €/10. In an e-neighborhood of z, the manifolds M,
z+ T, M, and y + T, M are O(e?)-close, and the projections M — z + T, M, or y + T,M
preserve distances up to order 2. This means that for first order calculations we may
consider M as a piece of Euclidean space near x (or similarly near fz), and identify T, M
with T, M.

In view of the above considerations we may write, to first order in d f,
IN(z) = A(z)[B() — ¢(f)] + (Ffy [0(Tu ) Fy)

where

¢(x) = <F;75F£C> :_<5F;vFa:>
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Note that the arbitrary 41 factor encountered earlier disappears in the definition of ¢(z),
and that ¢(-) is a continuous function.

We have
5(T$f) =T, (5f) = [Tf$(5f o f_l)](T$f)
hence
S(Tof)N = [(1+ Tpa(8f 0 fH)N = 1(Tw )N
hence

oA(z) — Az)[¢(z) — ¢(f)]
= M@)(Ffo [(1+ Tra(8f 0 f71))™ = 1]Fpo) = A(z)[div* X](f2) (3)

where div*X is the divergence of X = 6fo f~! in the unstable direction defined as follows.
The orthogonal projection M — x + T, M replaces the vector field X by a function X’ :
x4+ T,M — T,M. Restriction of X’ to z + V*(z), and projection parallel to V*(z)
gives a function X" : z + V*(z) — V¥(z). Using an orthonormal basis of V*(z), we let
&1, ..., &, be the corresponding coordinates in z+V*(x), and X7, ..., X, the corresponding
components of X”. It is now readily checked that (3) holds if we write

‘9
diviX =) —X;
=1 agz

[Note that with our choice of coordinates, the metric tensor may be considered as constant
near z; otherwise the expression for div" would be more complicated].

From (2), and (3) we obtain

()
A(z)

= [=div* X](f5(f)z0) + (5 (f)z0) — (5 (f)zo)

[~ log J} o §(f)lao = —

or
6[=log J¥ o j(f)] = [=div“X] o j(f) o fo + coboundary

where the coboundary term ¢ o fo — % does not change the equilibrium state.

Write U = [—div*X] o j(f) so that ¥ € CP(Kj). Taking also ® € C?(Kj), we have

(Op) (@) = [ (@ 0 f). U) — pp(®). s (W)

keZ

[See [13] Chapter 5, Exercise 5, and use a Markov partition to apply this result to the
present situation]. Finally (with ® € C?(M))

(Gup)(@05(f)) =D lps((o f¥). (=div"X)) = p(®). p(—div* X)]
kEZ
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Second step: computing p¢(6(® o j(f))).
Using Proposition 1.2(c) we have

§(® 05 (f))xo = (Tj(£)ae®: 65(f)T0) = (Ti(£)2o®, (L — Ti(p)) (6. o f 0 5(f))zo)

where

(Ticr) (Y 0 ()20 = (Tj-140) /)Y 0 5(F) o fo o

Write again z = j(f)zo, X = §fof~1, and let X (z) = X®(z)+X"(z) with X°(z) € V*(z),
X"*(z) € V¥(x). We have then

(Tiipn (Y 0 5()zo = (Tp-rp f¥) (Y o f7F)a

and

(@ o j(f))xo

= (T, ) Tjty)(X° 0 5(f))zo) — (Tu®, Y T, (X" 0 j(f))xo)

= (L@, Y (Tp-naf™)X*(f7"2)) = (L@, Y (Tynaf ") X" (f"2))

= (Tpng(®o 1), X*(f7"2)) — Y _(Tyna(® o f7), X"(f"x))

Using the fp-invariance of ;17, and writing grad ® for the element of Ty M defined by
T,® we have thus

us(5(3 0 3(£)))
- / 15 (d20)[S (T 1100 (® 0 17, X° )= 2By 2 £ X o)
Zgrad ®o f), Zgradq’ ), X))
3.1 Theorem.

Let K be a compact invariant set for the C* diffeomorphism f of M. We assume that
K is hyperbolic with local product structure and that f|K is mizing. We denote by ps the
generalized SRB state on K.

(a) The derivative of f +— py is given by
5f = pp =0Wps + 6@ p;
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and, for ® € C%(M),

§Wpp(@) = Y [pr((@o fF)(—diviX™) — ps(®)py(—divX™)]
k=—o0
8@ pp(®) = prlgrad(@o ), X*) = > ps(grad(®o "), X*)
k=0 k=1

where X, X" are the components of the vector field X = 6f o f~1 along the stable and
unstable subbundles of the hyperbolic decomposition Tx M = V5 V™.

(b) If K is an attractor, we have ps(div'Y’) = 0 for any smooth vector field Y, and
therefore

]38

5pp(®) = ) _ prlgrad(® o f), X)

n=0

=Y psl((grad®) o f*, (T f")X*) — (®o f")div* X*]

n=0

The proof of (a) has been given above. For (b) we use a Markov partition and a
disintegration of py into measures carried by pieces of unstable manifolds. By a change
of variable z — y = fNz for N large, and use of Gauss’s formula we see that p;(div*Y)
reduces to boundary terms, and since these cancel pairwise pf(div"Y) = 0. Therefore
ps(diviX*) =0 and

prl(@ o f*)(=div*X")] = py(grad(® o f*), X*)

so that

oo

Sps(®) = prlgrad(®@o ), X* + X*)

n=0
as announced. []
3.2 Remarks.

(a) In the attractor case the formula for dp;(®) contains a term

oo

) plgrad®, (Tf™)X*) o f7")

n=0
which converges exponentially because T'f is a contraction on V?, and a term

oo

S pl@- ((divX") o /)]

n=0
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which converges exponentially because of the exponential decay of correlations for the
Gibbs state p.

(b) Let m be a probability measure absolutely continuous with respect to Riemann
volume on M, and with support in the basin of the attractor K. Then f*"m has the weak
limit py when n — co. We may write

5((f*"m)(@)] = Sm(@ o f7) = / m(dz) 5(f"z)
- / m(dz)((grad®) (f"z), 5 ")

/m (dz)((grad®)(f"x) ink )Sf(fF 1))

=Y [y man erad®) (), (17955 0)
k=0

-3 [ myanemadi@ o 49 @), X )
k=0

When n — oo we obtain formally
Sps(@) = pslgrad(®@ o f*), X)
k=0

as asserted in the theorem.
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4. Bounded time dependent perturbations.

Let B, C BZ be the Banach space of sequences (Xj)xez such that

1(Xk)lloo = sup [ Xkl < o0

Then, with the notation of Section 1, BZ C B, (BZ contains the open e-ball of B,,). Note
that 0 € BZ corresponds to (K < M)Z and is a fixed point of the map

(e)kez = (f o jr—10 f " kez

This map is differentiable, and its derivative at 0 is a hyperbolic linear operator in B,.
Therefore if f = (fi) € A%, the map

(k)kez = (fr 0 Jk—10 f~Hkez

has a unique fixed point j € BZ, yielding a diagram
g g

- Ki_4 jl K fgl Kk—H —

T dk-1 T jk T Gkt

-~ Kk 4 kK 4L K S

where the vertical arrows are the components j; of j and Ky = jixK. The diagram is
commutative because jr = fr o jx_1 0 f~!. Using the expansiveness of f on K, one checks
that the j; are homeomorphisms. The diagram expresses structural stability at the level
of bounded time dependent perturbations of a hyperbolic dynamical system.

Because the ji are close to the identity, and the fj close to f, one can define (un)stable
bundles VkjE with the obvious properties, and (un)stable manifolds V,;t (z), such that
3 YVE(jr) coincides with VE(z) in a sufficiently small neighborhood of x. The proofs of
these facts go along standard lines, and we do not give them here. We shall now outline
how SRB states can be defined in the present situation where there is no time stationarity.
The proofs will only be sketched.

SRB states.

We first recall the definition of SRB measure in the case of a single diffeomorphism
f. Suppose that K is a mixing Axiom A attractor for f, and let m(dz) = m(z) dz be a
probability measure absolutely continuous with respect to the Riemann volume element
dz, and with support in the basin of attraction of K. Then, when n — oo, f*"m tends
to the SRB measure p. One way to see that the limit exists (see [12]) is to choose a
Markov partition of (K, f) formed of rectangles [S;,U;]. Displacing the mass of m(dz)
by a bounded distance along stable manifolds, we obtain measures m; on the pieces U; of
unstable manifolds, where m; is absolutely continuous with respect to the Riemann volume
element of U;. The weak limit of f*"m remains the same if m is replaced by the sum of
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the m;, and this leads to a standard transfer operator study and to the identification of
the limit p. The SRB state p may be characterized in four different ways:

(i) as limit of f*™m where m is absolutely continuous with respect to dx,
(ii) as f-invariant measure absolutely continuous along unstable directions,
(iit) in terms of eigenfunctions of transfer operators L and L*,

(iv) by a variational principle.

In the situation of bounded time dependent perturbations as described above, we can
still define SRB states as collections (px) where py is a probability measure on Ky and
frpk—1 = pr- We may take as definition the property

(i*) for each k, pr, = lim,_,o0 ff -~ fi_,m.

To prove existence and uniqueness of the SRB states,and study their properties, we
may use the maps ji and a Markov partition into rectangles [S;, U;| for (K, f). Note in
particular that Kj is a union of sets ji[s,U;]. Choose now s; € S; and let 7; : [S;,U;] —
[si, U;] be the projection. Here is a second characterization of SRB states:

(ii*) for each k, the conditional measures pys; of pr with respect to the partition
(Jkls,U;]) are absolutely continuous with respect to the Riemann volume element on un-
stable manifolds. Furthermore the densities ¢;j, of the measures (jkﬂ'ijk_l)*(pkuk [Si, Ui])
with respect to the unstable volume element are continuous uniformly in k.

The second condition in (ii*) could be replaced by various other uniformity properties.

We write

Lrdr—1 = o

to express that the densities ¢; ; are obtained from the densities ¢; ;1 by application of
a transfer operator £ with coefficients constructed from unstable Jacobians. If oy is the
collection of measures on the ji[s;, U;] corresponding to the unstable volume elements, and
¢ = (¢;) is arbitrary, we have

(0% Lxo) = (Ok—1,0)

i.e. L3o = op—1. Here is a third characterization of SRB states:

(iii%) (Gemidn ) (prlielSi, Uil) = drow
where ¢y is (up to normalization) limy, oo L+ Li_pnl.

The Ly, acting on a space of Holder continuous functions, are close to £, and there is
thus a cone C containing the ”principal” eigenvector of £, and mapped inside itself by all
L. From this one obtains that Ly ---Lr_,,1 converges to a limit ¢y.

Adapting for instance the study in [12] to the time dependent situation, it is now easy
to prove existence and uniqueness of SRB states, and equivalence of (%), (i1*), (iii*). Note
that we have here a situation close to the study of Gibbs states and equilibrium states by
Bogenschiitz and Gundlach [2], Khanin and Kifer [9], Baladi [1], where however (fx)kez is

17



distributed according to some T-ergodic measure P. In that case, one obtains only P-a.e.
statements, but one gains equivalence of (i*), (ii*), (#ii*) with a variational principle (iv*).

Causality.

Note that the "attractors” Kj and the "SRB measures” p, depend only on fi_,,
n > 0. However, the ji, the (jkmjk_l)*(pk|jk[5i,Ui]) and the densities ¢, depend on all
f; (because their definitions involve projection along stable manifolds).

Differentiation of the map f — pyg.

We shall not embark in a general study of the smoothness of the map f — pg, although
such a study should be possible. What is easy is to vary a finite number of the fi, say
those with |k| < N, because p_n then remains fixed, and we have

po =[5 . fINP-N-1

In particular,

6po(®) =0(fg --- fZnp-N-1)(®) = dp_n-1(®o foo...0 f_N)

N
=> p-n-1(T(®ofoo...0 foni1)0f-nofn_10...0f N)
n=0
N

= [ oo (grady g (@0 000 fon), (o S o fove)

n=0

N
=Y (fn-- finp-n-1)(grad(®o foo...0 fni1), X n)
n=0

where X, is the vector field 6 f, o fk_l.

Finally, we have thus

5/)0((1)) = Z p_n<grad(<1> © fO ©...0 f—n+1)7 X—n>
n=0
=3 polgrad®, (T(foo -0 fons1)X2n) 0 (foo -0 fontr) ™)
n=0

— > pol®@- ((divX™,) o (foo -0 fopns1)™h)]

Note that this is formally identical with the result of theorem 3.1(b) when we replace py
by p and fi by f.
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5. Formal derivative of p; in the general case.

We assume that the f-invariant state p satisfies the SRB condition, but here we do
not suppose uniform hyperbolicity, (i.e., suppp need not be a hyperbolic invariant set).
Thus we do not know how p will vary with f, but we have a good formal candidate for its
derivative, viz.,

= plgrad(®o f"), X)
n=0
where X = §fo f~1. If there are no vanishing Lyapunov exponents, a measurable splitting
T,M = V*(x) ® V¥(z) is defined p(dx)-a.e., and we may write X (z) = X°(z) + X*(x)
with X*(z) € V*¥(x), X*(z) € V*(x). Then
p(grad(@, fn)a X> = p(grad(q), fn)’ X° + Xu>
= p((grad®) o f", (T f")X?®) — p((® o f")-div*X")
with p(div*X™) = 0 just as in the uniformly hyperbolic case. Formally, we have thus

oo

= Zp((grad@) o fP(TfMX®) =) p((®o f)-diviX")

The convergence of the right-hand side depends on how ( ™)X and p((®o fm)-div* X"¥)
tend to 0 when n — oo.

In the time dependent case, the formula becomes
6po(® ZP (grad(®o foo...of pny1), X n)
where X =4 f; 0 fk_ . In particular, if all f; are equal to f and the p; to p, we obtain

Spo(®) =Y _ plgrad(® o f), X_,)

n=0

o
= Z (grad®) o £, (TfM)X2,)) = D p((® o ") div* X",)
n=0
There are s1m11ar formulae for flows. Suppose for instance that the state p satisfies
the SRB condition for the flow (f?) corresponding to the vector field X. Let X; be a time
dependent perturbation of X', then the derivative of p at time 0 is given formally by

6po(®) = /OOO dt p(grad(® o f*), X )
- / " dt pl(grad®) o 11, (TS X",)

_ /O "t (@ o F)(divh XT,))
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