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0. Generalities.

This article follows the lines of [12] in discussing nonequilibrium steady states near
equilibrium. Let (f?) describe the microscopic time evolution of a system submitted to
external forces and the action of a thermostat. We assume that (f*) acts on a compact
phase space M (this is the situation obtained with a so-called Gaussian thermostat [13]). In
general (i.e., outside of equilibrium), (f*) has no invariant measure absolutely continuous
with respect to a Riemannian volume element dr on M. Let us assume that the time
evolution (f*) is strongly chaotic (for instance uniformly hyperbolic), and let p be an SRB
measure (i.e., a limit when ¢ — oo of the image by f! of a measure absolutely continuous
with respect to dz). We assume that a nonequilibrium steady state is described by the
SRB measure p, and study the dependence of p on (f!) near equilibrium.

We call chaotic principle (after Gallavotti and Cohen [11]) the above assumption that
physical time evolution satisfies strong chaoticity (or hyperbolicity) conditions, and that
the nonequilibrium steady state is an SRB measure. The present paper is part of the
rediscussion of fundamental issues of nonequilibrium statistical mechanics currently taking
place on the basis of such ideas. The idea of using SRB measures to describe nonequi-
librium states is not new (see in particular [20]) but has only recently become productive
of specific results when Gallavotti and Cohen [11] proved their fluctuation theorem for
entropy production. There is some question as to what chaoticity assumption one wants
to make*: the maximal requirement that (f*) is an exponentially mixing Anosov flow is
ideal for proving theorems, but physically unrealistic. At the other extreme one may make
only the minimal request that the SRB measures considered have nonzero Lyapunov expo-
nents, and that certain time correlation functions tend to zero sufficiently fast at infinity
to give convergent integrals. These assumptions reflect the idea that the microscopic time
evolution is very chaotic. Note that in physical applications a thermodynamic limit (many
degrees of freedom) is often implied, and this may help in obtaining time correlation func-
tions which tend to zero fast at infinity. Here we shall leave the explicit assumptions at
a minimum, and lay no claim to mathematical rigor. Even with this mathematical hazi-
ness, the chaotic principle yields more definite results than the usual physical approaches.
Specifically, we shall see that it provides explicit expressions for higher order terms in the
expansion of nonequilibrium quantities around equilibrium. These results can probably be
made rigorous for uniformly hyperbolic systems, but should remain exact in more general
(and physically interesting) circumstances.

For the purposes of the present paper the chaotic principle will mostly be invoqued
at equilibrium. We assume that the equilibrium time evolution (f¢) preserves the volume
element dz associated with some Riemann metric. (In coordinates dz = /g [ dz*, where
g is the determinant of the metric tensor (g;;)). Therefore, at equilibrium, dz is an SRB
measure, and we write pg(dr) = dzx. Note that a measure ¢(z)dz with smooth density
¢ > 0 may be rewritten as the Riemann volume for a modified Riemann metric. To justify
our choice of equilibrium SRB measure, notice that for a Hamiltonian time evolution (f?)

* In his chaotic hypothesis Gallavotti usually also assumes (microscopic) reversibility,
which will not be used here.



the microcanonical ensemble, i.e., the Liouville volume element restricted to an energy
surface M, can be written in the form py(dz) = dz.

We refer the reader to the literature for the theory of SRB measures*. Here we recall
a couple of basic facts. For any ergodic measure p one can define Lyapunov exponents
A; (as many as the dimension dimM of M) and, at p-almost every € M, stable and
unstable subspaces V?, V* C T,M (the tangent space to M at z). If £ € V* we have
(1/t)log||Tft&|| — some A; > 0 for t — —oo, and if £ € V5 we have (1/t)log||T f*¢| —
some A\; < 0 for t - +o0o. We assume that only one of the ); vanishes (corresponding
to the direction F(x) = dft(z)/dt|;=o of the flow, so that T,M = R.F(z) ® V @ V.
Through p-almost all points, there is an unstable manifold V* C M. This is a smooth
manifold, with dimension equal to the number of positive Lyapunov exponents, tangent
to V' at each z € V*. There is a natural volume element ¢“(dz) on each V* (defined up
to a multiplicative constant) such that (f¢)*(c“|V) is (up to multiplication by a constant)
o“|f*V*. One can always write a disintegration p = [ do p, where each p, is carrried
by an unstable manifold. The SRB measures p are those for which each p, is absolutely
continuous with respect to the Riemann volume on the unstable manifold carrying it, ¢.e.,
Po is proportional to o* on a piece of unstable manifold.

We shall use below the divergence divXX of a vector field X on M deﬁned With respect
to the volume element dz. (In coordinates, divX = (1/,/g9) >, 9(\/g X*)/0x*, where g is
the determinant of the metric tensor (g;;)). In particular, if p is an SRB measure for the
flow (ft) generated by the vector field F', the corresponding rate of entropy production™*
is

e = p(—divF)

We shall also need the unstable divergence div'X = div* X*. To define this we first take the
component X of X along the unstable subspace V* at z by projecting along R.F(z) ®V;?
(where V;? is the stable subspace, and F(z) = dft(z)/dt|;—o as above). By definition,
div* X" is the divergence of X along an unstable manifold V* , taken with respect to
the volume element o*(dz). In the uniformly hyperbolic case, div* X™ is a honest Hélder
continuous function on the support of p, otherwise little can be said in general.

The dependence of the SRB measure p on (f!) was studied in [23]; in the linear
approximation near equilibrium this yields a justification of the Onsager relations (see
[12], following the earlier [9], [10]). In the present paper we want to go beyond the linear
approximation, and obtain power series expansions for the state p, the rate of entropy
production e, and the thermodynamic fluxes [J around equilibrium. In Section 1, we
discuss the simplest case of a continuous time deterministic evolution or flow (f*). In
order to obtain more explicit formulae, we deal in Section 2 with the special example of
the isokinetic model. In Section 3, we examine the complications that arise when we have

* See Sinai [24], Ruelle [19], Bowen and Ruelle [4] for the uniformly hyperbolic case,
Ledrappier and Strelcyn [17], and Ledrappier and Young [18] for the general theory, and
Eckmann and Ruelle [7] for a physical introduction.

** This formula appears for instance in Andrey [1]; for a general discussion of entropy
production, see Ruelle [21].



random forces, and look in particular at the zero noise limit for a stochastic perturbation
of a deterministic flow. Finally, in Section 4 we consider discrete time dynamics.

I am indebted to Giovanni Gallavotti and Joel Lebowitz for discussions related to the
present paper.



1. Continuous time deterministic evolution.

Let (f%) be the flow associated with the vector field F + AX on M. (The assumed
affine dependence of the vector field on the parameter A simplifies formulae; the isokinetic
example discussed below satisfies this condition). We define operators P, Q! acting on
smooth functions M — R by

PY =) X'0;¥
Q'Y =Vo fl
We have used local coordinates z? to define §; = /0! and the components X* of X.

1.1. SRB states.
If ®: M — R is smooth and independent of A\ we have*

57"
W@OAT)\A:O

:7{/~-/‘ dtr...dt, QT trpQtr—tr—1p . . PQ~t PQ"®
0<t1 <<t <T

From this we can compute formally the derivatives with respect to A of the SRB measure
px for the flow (f?). We assume that (f{)*u — px when T — oo, for a probability measure
p with smooth density**. Thus (formally) at A =0

5 o
(GarPrb=o)(@) = Jim s

(@0 f"))

o0 (o o]
:r!/ dﬁ---/ dry po(PQ™" P ... PQ™®)
0 0

so that -
@ =3 22 @)
AN
:ZX‘/ dTl---/ dr, po(PQ™P...PQ™®) (1.1)
r=0 0 0

This formula deserves a couple of comments.

(a) We may write (1.1) formally as

p(@) = (12 [ drpQr) )

* § is used to denote differentiation with respect to .
** In the uniformly hyperbolic Axiom A case, one would assume that p; has its support
on an attractor, and that u has support close to this attractor.
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Since the orthogonal projection 7 on constants in L?(pg) is given by

mo® = /po(dx)CI)(a:)
we have
Py =0 , moQ" = Q"o

hence
PQ" =P(1 —7)Q" = PQ"(1 — mp)

Therefore (1.1) may also be rewritten as

oA(®) = po(1— A / T rPQT(1L - )~ '®)

(b) The simplicity of (1.1) is deceptive: it is not clear why the integrals should con-
verge. The following calculation will clarify this point partially. We may take X =
OF + X* + X, where F(z) = df{(z)/dt|t=0, and X*, X* are the components of X in
the (strong) stable and unstable directions with respect to (f¢). Then, if div" denotes the
unstable divergence defined in Section 0, we may write (using as in [23] the fact that pg is
SRB to perform integrations by part)

/000 do /000 dr po(V.Q7PQ™®)

- /Ooo da/ooo dr po((¥ o f37).[(6F + X° + X¥) - grad(® o £7)])

= [ do [ ar (=X rad) (¥ o £ L@ )+ (¥ o Sy (—div XU (@ o )
(T o 7). b(Fgrad(@ o 7))+ (o f577)[(X* grad)(® o 7))
= [T o [ dr (= [T £57)X0)-(grad®)o £ )18 £5) ~ (¥ £y 7)-div ' X¥). (8 £7)

+(Wo f57).0.((F - grad®) o f§) + (¥ o fo).[(Tf§)X*) - ((grad®) o f7)]) (1.2)

If we assume that ®, ¥ are smooth and satisfy po(®) = po(¥) = 0, the chaotic principle
implies that the integrand in the right-hand side tends to 0 rapidly when o, 7 — o0, so
that the double integral is convergent and the above expressions are well defined.

Note that the above formulae do not assume that we have equilibrium at A = 0.
1.2. Entropy production and thermodynamic fluxes.

Let us replace the vector field '+ AX by F + )" Ao X,, and define P, by

PU = ZXgai\y
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We write A = (\) and denote by p) the SRB measure corresponding to F 4+ ) Ao Xq,
obtaining formally

ox(®) = po((1 — Zx\a /000 dTPaQT)—lé)

Let us now assume that we have equilibrium at A = 0, i.e., po(dz) = dz, hence divF = 0.
The entropy production is then

ex = po((1 —Z)\a/ dTP,Q")~ Z/\ divX,)

and can be expanded in powers of the \,. Omitting the index )\, we define the fluzes (see
[9], [10], [12])

To = div(F + ZA Xa))) = —pa(divXa)

0
PG5 (-
so that

e\ = Z AaTa

The J, are nonlinear functions of A vanishing for A = 0 (because pp(divergence) = 0).
The positivity of the entropy production (see [21]) implies that

D Xada >0

identically. We may write

=3 "L + ZLW,A[;A7 T (1.3)
B

where the matrix (Lgﬁ)) of transport coefficients is the object of the Onsager reciprocity

relations L((fﬂ) = iL(;i as discussed in [9], [10], [12] and an expression for L((fﬁ), LS’ﬂ)v,

given below.
1.3. Coefficients for the expansion of ey, J,.

In the simple case of a vector field F' + AX (with po(dx) = dz) we may compute the
entropy production as

o @]
= —Apx(divX) ZN‘“ / dr--- / dry po(PQ™P ... PQ™divX)
0

=> At / dry - / dr, po(divX-Q™P... PQTdivX) =Y LIttt
— 0

0 r=1
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where

oo 1 o0
L® = / drypo(divX.Q™divX) = o / dry po(divX. (divX)o f™)
0

—0o0

LB = / dr / dry po(divX.Q PQ™divX)

/ dn / drs po(((divX) o f7™).P((divX) o f™))

Restoring the vector field '+ Ao X, we may similarly write 7, in the form (1.3), hence

e=> LENAs+ D LE) Xadghy + ...

afy
where
L) = / dry po(divXg.(divXy) o f™) (1.4)
L8, = [T an [T anml(@vxn e B (@D M) 09)

Similar formulae are easily obtained for higher orders. Note that the above expressions for

L® and Lfﬂ)ﬁr can be rewritten following (1.2) yielding, hopefully, convergent integrals.
In practice, however, this rewriting cannot be done explicitly, because of the difficulty of
determining the stable and unstable directions. The point of invoquing (1.2) is to give

evidence that the integrals for L(3), LS’B)7 do in fact converge.



2. Application to the isokinetic model.

Consider the 2N —1-dimensional manifold S x M, where S = {p € R" : p-p/2m = K}
and M is a bounded open subset of RY or of the torus TY, with piecewise smooth boundary
OM. A time evolution (f?) is defined on (a large subset of) S x M by

dt \ q p/m
when (p,q) is in S x M, and by elastic reflection at S x M. In (2.1), £ is a smooth
vector field and a = p-&/p-p = p-£/2mK. This isokinetic time evolution is of particular
interest when ¢ is locally a gradient, in view of the pairing property which then holds for
Lyapunov exponents®*. When A\ = 0, the time evolution is that of a billiard (or of a hard
sphere system). For A # 0 it includes the model studied in [5].

We have here
X E—ap
N < 0

so that (without the assumption that £ is locally a gradient):

divX = —(N - 1)a (2.2)
Define N x N matrices Lpy(t), Lpq(t), Lpg(t), Lqgq(t), depending on p = p(0), q = q(0)
and t, so that

(dp(t)) _ (Lpp(t) qu(t)> (dp(O))
dq(t) Lap(t)  Lgq(t) dq(0)

[This is obtained by solving the ”linearized equation” corresponding to (2.1) with the initial
conditions L,,(0) =1, Ly,(0) =0, L,;(0) = 0, Lge(0) = 1]. The gradient of £ isa N x N

matrix M(q) such that
M(q)u = gradg(£(q) - u)

With this notation we have

P((aivx) o 1) = - =1 pp(e) - e(q)
= -0 Vie(q) - ap) - rady (pl1) - £(a(0)

(J;[m_ Kl ) [(a(t) - Lpp()(€(aq) — ap) + (M (a(t))p(t)) - Lep(t)(E(a) —ap)]  (2.3)

Using (2.2) and (2.3) one can compute the coefficients L(?) and L®) in the M\-expansion of

the entropy production ey, and similarly for Lgﬂ), LS’ﬁ)v'

* The pairing, observed empirically by Evans, Cohen and Morriss [8], was proved by
Dettmann and Morriss [6], and also Wojtkowski and Liverani [25].
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3. Continuous time random dynamical systems.

Here we start with a probability space (2, P) and a continuous one-parameter group
(6%) of transformations of Q with respect to which P is ergodic. A one-parameter group (f?)
of transformations of Q x M is given such that f*(w,z) = (6*w, fix). One can again define
SRB states under suitable hyperbolicity conditions (the discrete time case is discussed in

[3])-
3.1. \-expansions.

In what follows we shall forget about hyperbolicity, and discuss the Markov case,
which is realized by stochastic differential equations, (see for instance Ikeda and Watanabe
[14], Arnold [2]). This situation gives simple formulae, which will again be derived only
formally (in particular we sail clear off the subtleties of stochastic integration). Let thus
fi = (0%, ft,) where (f!,) is a family of diffeomorphisms obtained by integrating the
stochastic differential equation (Langevin equation) dz(t)/dt = F(0'w,x) + AX (z). Define

P =) X;0;X
Q(tu‘p = \I’ O f}o
Then
.
G (@0 fT))|amo = r!/.../ dty...dt Qg PQY P ... PQL®
0<t1 <<t <T

Let p denote a probability measure with smooth density on M and let an ”SRB stationary
measure” py on M be given by the weak limit [ P(dw)(f )*p — px when T — co. Using
the Markov property we have then (formally), at A = 0,

57“

(o) (@) = i [ Pdo)u(s- (@0 f2)) ams

=r!/P(dw1)/ dTl.../P(dwr)/ drrpo(PQG. P ... PQg, ®)
0 0
and therefore

pA(@) = pof(1-) [ Plao) / T arPQr) e (3.1)

The diffusion process associated with the Langevin equation dz/dt = F(0'w,z) is
defined by the operators p” (for 7 > 0) such that

([ Plao)Q@)@) = rr@)@) = [ (. 0)Bw)dy

We have

=1

10



d
—p" =p" A= Ap” 2
P =D p (3.2)

where the second order elliptic differential operator A (infinitesimal generator of the dif-
fusion process) is given in coordinates by

29 i

Here the a'/, b’ are functions on M, (a*) is a positive definite matrix, and a is the inverse
of the determinant of (a™). The second term (b-grad) in the expression for A corresponds
to a drift. The absence of term of order 0 means that

%/\/@Hdzﬂp’(w y) =

because, writing ®(-) = p”(z,-) we have dp”(z,-)/dT = A*® where, in coordinates,
A*® = 9;(v/aa'9;) 9;(v/ab'®)
L Saae- S a

We choose the metric on M such that (g;;) is proportional to the inverse of (a*/), obtaining
AP =eAD + b - grad®

A*® = eAD — div(Db)

where A is the Laplace-Beltrami operator, € a constant, and div the divergence with respect
to the volume element dx = /g [] dz*.

We assume now that at A = 0 we have equilibrium, ¢.e., the measure dx is stationary
for the diffusion process (p'), or A*1 = 0, or divb = 0, so that

A*® = AP — b - gradd

In the present situation, we have po(dz) = dz; furthermore the operator A vanishes on
constants and maps the space {® : po(®) = 0} (orthogonal to constants with respect to
po) to itself. We have in L?(dz)

d * *\ T T * T
P ®1” = po((p7®)"(A + A")p" @) = 2¢((p” @) Ap” @)

Assuming M to be a connected compact manifold, we have —A > ¢ > 0on {® : po(P) = 0},
so that

d
I @2 < —2ec]” @]

hence
[p"®|| < e || @
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If 7 denotes the orthogonal projection on constants in L?(dz), we have thus ||p” (1—mg)|| <
e~ T in the operator norm on L?(dr) and we can thus define

R= [ dr [P)Qu-m) = [dr(1-m)

so that R has operator norm < 1/ce on L?(dz). From (3.2) we see that
1+RA=1+ AR =

hence
P(1+RA)=0 (3.3)

Since

P/OOo dT/P(dw)Q; = PR

(3.1) yields
pA(®) = po((1 — APR)™'®)

It is satisfactory to check that py is invariant under the diffusion process (p}) associated
with the elliptic operator

Ay =eA+ (b+AX)-grad = A+ AP

We have indeed

d
%px(pt@) = po((1 = APR)™ (A + AX - grad)py®) = 0

because, using (3.3),
(1—=APR)""(A+AP)=[1+ (1 - APR)"'APR](A+ \P)

=A+AP+ (1 =APR)"Y=AP +APRAP)=A+) P - (1-APR)"'(1 - APR)AP=A
and po(A®) =0].

The formula expected for the entropy production is
ey = / P (dw)py (—divF, (£) — AdivX)

(the discrete time version of this formula is discussed in [22]). Since the measure dz is
stationary for the process associated with F,, we write f P(dw)divF,, = 0 so that

ex = —Apa(divX) = =Apo((1 = APR)'divX)
==Y NHpo((PR)"divX) =) A" po(divX.RP... PRdivX)
r=1 r=1

12



_ ZE(T+1))\T+1
r=1
Let us now replace AX by > Ao X, and define the fluxes

Jo = —pa(divXa) =Y LN + 3L Ashy + ...
B By

€N = Z AaTa

We have then

The coefficients of 7, are given by

Lag = po(divXg.RdivX,) (3.4)
L$) = po(divXs.RPyRdivX,) (3.5)

and similarly for higher order.
3.2. Small random perturbations.

Various results are known showing that the SRB states for uniformly hyperbolic sys-
tems are stable under small random perturbations (see [15], [16]). Comparison of the
formulae in Sections 1.3 and 3.1 yield a result of this type for the coefficients L, L of the
A-expansions of ey and the J,. In fact, inspection of (1.4), (1.5) and (3.4), (3.5) shows
that the coefficients L corresponding to a deterministic evolution are obtained from the
coefficients L corresponding to a random evolution by the replacement

R= /Ooo dr/P(dw)QZ,(l “m) — /Ooo drQ™(1 — mo)

This means that the limit ¢ — 0 (zero noise limit) of the coefficients L reproduces the
coefficients L. At least this holds formally, and assuming that the integrals defining the
coefficients L converge, as discussed in Section 1. The introduction of the term e/ in A is
however a singular perturbation, and the analysis of the e-dependence of the coefficients
L near ¢ = 0 would require more definite mathematical assumption than we have chosen
to make.
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4. Diffeomorphism case.

In this Section we derive the formulae which correspond for diffeomorphisms to those
established in Section 1 for flows. While it was natural in Section 1 to assume an affine
dependence on the parameter A, this is no longer possible in the discrete time situation
studied here. The formulae obtained will therefore be somewhat more complicated.

Let the diffeomorphism f : M — M depend on the real parameter A\, and let X, be
the vector field on M such that 6f o = = X.6\. We write Xy, = 6*71X,/6\F~1, and
define operators Py, @ acting on smooth functions M — R by

Py¥ =) X3,0,9

Q¥ =Vof

[We have used local coordinates z; to define §; = 9/0x; and the components X};k of X x;
also 0 denotes differentiation with respect to A]. By induction on k, we define operators
Ry such that Ry1 = Py and

)
(k + 1)R,\(k+1) = Py1. Ry + [a, R)\k]

Since [%, Py] = Px(k+1), we see that the Ry; are polynomials in the Py.
We claim that, if ® : M — R is smooth and independent of A,

6’!‘

N
o (@)

k%

- n Ng—1 ni N— g
> > Q) Rk, Q)" - Q) Rk, @y Ly (4.1)
ki,...,ks>1

n1,...,ns>1

T
=rl

s=1

where " is subjected to the condition >~ k; = r, while >_** is subjected to the condition
> n; < N. We have indeed

N-1

D 1X30:(@ 0 fM(FN ")

n=0

5 N
5@0}0 )

N-—1 N
=) QY "PuQh =) QiPuQy "
n=0 n=1

which proves (4.1) for » = 1. Note the identities

5 = ,
(50 @3 = D Q3" BuQ} + Q3 Rx

n'=1
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)
[5, Ry] = (kK + 1)Ry(og1) — Ra1 Rk

and therefore also

n—1

0 —n' n' n
[a, QYR = Z QY " RaiQY Rk + (b + 1)QYRak+1)

n'=1

The proof of (4.1) for higher r is then readily obtained by induction.
Note that, to third order, we have

1
Ryi=Pu , Ry = §(P,\1P,\1 + Py2) (4.2)
1
Ry3 = E(P,\1P,\1P>\1 + 2Px1Pxa + Px2Px1 + Pas)

We shall now compute formally the derivatives of the SRB measure p) associated with
f. We assume that f*¥u — p) when N — oo, for a probability measure y with smooth
density*. Thus (formally)

and, using (4.1),

r=0
= Z Z )\kl e Z )\ks Z Z e Z po(ROstgs_l s ‘QSIROlego@)
s=0k;1=1 ks=1 nog=0n1=1 ng_1=1
=po((1 =) _NQoRox > _ Q)" @) (4.3)
k=1 n=0

As in Section 1, one could further rewrite the above formula by separating the stable
and unstable directions. Let us write Xy, = X ,gs) +X ,iu) where X ,gs) and X ,gu) are re-
spectively in the stable and unstable subbundles of T'M. Then Py, = P,és) + P,iu) where
P,gs) = X,gs)-grad = X,gs)-grads, P,gu) = X,gu)-grad = X,gu)-grad“, and grad®, grad" are
the gradients in the stable and unstable directions. We have for example

PEQI® = X©). grad®(® o f*) = (T X)) - (grad®®) o f*

* In the uniformly hyperbolic Axiom A case, one would assume that p, has its support
on an attractor, and that p has support close to this attractor. For this case, a rigorous
proof of differentiability with respect to A has been given in [23].
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Using the fact that py is SRB we also have
pa(TQTP™ ) = pr((To f~™)X ™. grad®...) = —px(div*((T o f7) - X®) )
= —pa((To f™)div* X @ . .) — pa(((grad®®) o ) - (Tf"XW) .. )

We evaluate now the derivatives of log Jy(z), where Jy(z) is the Jacobian of f. We
have .
Ja(z) = | det(A3)]

where A%(z) = 0;f*(x), hence

2 log Ja(w) = i log(d; (@) = (AN 2 (849 ()

i,J

= Z )50 XK (f(2))0f () = Y (8: X5)(£(2)) = (QadivX))()

%

We have (using (1) with N = 1)

5k k—1

5k r—1
oo 08N = g

5)\k o ldIVX)\

k—1
k—1
——Q\divX) = Q) \divX i + E ( )T‘!QR)\T
T

r=1

= (k1)

= QadivEi + ), i QaRardiv Ry
r=1 )

so that

(51.]—00)\k1 div.X, (k- 1)! Ry, divX
I3\ 0og A—I;( )(Qo v 0k+271)!Q0 ordlv O,k—r)

Z QoleXo s+1 T+ Z Z QoRordivXo,st1
s=0 s! r=1 s=0
oo oo AS
= (Qo + 2_; A"QoRoy) z_jo 7 divXo o (4.4)

We shall now for simplicity drop the indices 0, so that @, X, Xk, P, are taken at
A = 0 in accordance with the notation of Section 1. We shall however write pg, fo, Jx for
Pxs fa, Jx at A = 0. To second order (4.4) gives then, using (4.2),

3\ log J
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1
= QdivX +AQ(PidivX +divXy) + S A Q((PLPy + P)divX + 2PidivXy + divXs)

and therefore to third order
)\2
log Jy = log Jo + AQodivX + ?Q(PldivX + divXs)

)\3

We assume now that pg(dz) = dz, so that Jy = 1, and pg(divergence) = 0. To third
order (4.3) and (4.5) give thus

1 . = n s
pa(log Jy) = )\Z[EPO(Pldle) + Z po(P1Q"divX)]

n=1

1 . . - 1. . .
+)\3[6 po((PLPy + Py)divX + 2P1divXs) + ) po(PLQ" 5 (PrdivX + divXy))

n=1

oo 1 ) oo (o.o] .
+) po(5 (PLPy + P2)Q"divX) + YD po(PQMPQ™ divX))
n=1 n=1n'=1

Therefore the entropy production, to third order, is

1 (o]
ex = pa(—log Jy) = )\Z[Epo(divX.divX) +) " po(divX.Q divX)]

n=1

1
+A3[6 po(divX.PydivX + divX,.divX + 2divX.divXs)

=1
+ Z 2P0 (divX.Q"PidivX + divX.Q"divXs) + divX.P,Q"divX + divX,.Q"divX

n=1

0 o0
+3 ) po(divX.Q"PQ™ divX)]
n=1ln'=1
This can be rewritten as
ex=LPIN2+ LGN 4 .

where
L® = % > po(divX.((divX) o fm))
L® — [% po(divX.PdivX) + % n; po(((divX)o f™).PdivX)
+% > po(divX.Pi((divX) o f) + > Y po(((divX) o f7").Py((divX) o f™))
+% 3 po((divXo)-(divX) o £7))
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