
NONEQUILIBRIUM:

FROM HEAT TRANSPORT TO TURBULENCE (TO LIFE).

by David Ruelle†.

Abstract: We review some problems in nonequilibrium physics from the point
of view of statistical physics and differentiable dynamics. Specifically, we dis-
cuss the mathematical difficulties which inherently underlie applications to
heat transport, to hydrodynamic turbulence, and to the study of life. The
microscopic dynamics of transport phenomena (in particular heat transport)
is necessarily non hyperbolic, which explains why it is a difficult problem.
The 3D turbulent energy cascade can be analyzed formally as a heat flow,
and experimental intermittency data indicate that this requires discussing a
Hamiltonian system with 104 degrees of freedom. Life is a non-equilibrium
statistical physics phenomenon which involves chemical reactions and not just
transport. Considering life as a problem in nonequilibrium statistical mechan-
ics at least shows how complex and difficult the study of nonequilibrium can
be.

1. Nonequilibrium and linear response theory.

The aim of nonequilibrium statistical mechanics is to understand the properties of mat-
ter outside of equilibrium, starting from microscopic dynamics. At this time nonequilib-
rium statistical mechanics of transport phenomena close to equilibrium is a well-developed
physical theory (due to the work of Onsager, Green, Kubo, etc. in the 1950’s, see for
instance [5]). Away from this area, the theory of nonequilibrium is a program, or a variety
of programs, rather than a theory. Here I shall make a choice, and describe an approach
starting with classical Hamiltonian microscopic dynamics. From my point of view this
approach has the interest that it uses nontrivial recent results in the theory of smooth dy-
namical systems, and that it sheds light on interesting physical phenomena: heat transport,
hydrodynamic turbulence, and life.

A general study of nonequilibrium should begin with equilibrium statistical mechanics
and nonequilibrium close to equilibrium, which are reasonably well understood physical
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theories, but for lack of time I shall skip those here. For my purposes I shall start with
the microscopic evolution equations
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dt
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On the left is the Hamiltonian evolution equation. To obtain nonequilibrium I have
replaced on the right the gradient force by a more general force ξ(q). But energy is then
no longer conserved, so that p · p/2m would probably grow indefinitely with time for the
modified system (the system heats up). An extra term −αp (isokinetic or IK thermostat)
has thus been introduced so that p · p/2m is constant in time. We have now a smooth
time evolution (f t) defined by

dx

dt
= X (x) (1)

on a compact manifold M = {x = (p, q) : p · p/2m = constant}. To avoid unphysical
behavior, it is necessary to assume that the time evolution (1) is sufficiently chaotic: this is
the chaotic hypothesis of Gallavotti and Cohen [9]*. A nonequilibrium steady state (NESS)
is now a probability measure ρ0 on M invariant under (f t). In fact we shall assume that,
starting from an absolutely continuous probability measure m on M , time evolution will
yield the NESS ρ0 in the infinite time limit:

ρ0 = lim
t→∞

(f t)∗m in a suitable sense (2)

The limit ρ0 is in general no longer absolutely continuous on M .

It is of great physical interest to understand how ρ0 is changed (to ρt) when when the
time evolution (1) is perturbed to

dx

dt
= X (x) + λXt(x) (3)

If we assume a time periodic force Xτ = Xeiω(t0−τ), a formal first-order perturbation
calculation yields the linear response formula for the expectation value of an observable A:

ρt0(A) = ρ0(A) + λκ̂(ω) where κ̂(ω) =

∫ ∞
0

dt eiωt
∫
M

ρ0(dx)X(x) · ∂x(A ◦ f t) (4)

Here A is a smooth function on M and κ̂ is known as the susceptibility. If Xt = X is
independent of t, the perturbation λX replaces ρ0 by ρ0 + κ̂(0).

Nonequilibrium close to equilibrium is obtained when ρ0 is an equilibrium state, as-
sumed to be absolutely continuous on M . As to a rigorous proof of (4), it can be obtained
for “very chaotic” systems, namely Anosov with exponentially decaying correlations. This
gives some useful examples (like the geodesic flow on a manifold of negative curvature, see

* technically, one assumes that the time evolution is Anosov or hyperbolic in some sense.
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[14], [4], [12]) but the linear response formula us believed to hold much more generally. In
fact we shall refer later to an application of a linear response formula proved by Dolgopyat
[7] for time evolutions which are not Anosov but only partially hyperbolic.

2 A model of heat transport.*

Consider a chain of N + 1 nodes:

• —– • — · · · — •
0 1 N

At each node there is a Hamiltonian system with n degrees of freedom, and the systems
at j − 1 and j are weakly coupled to each other (with a coupling ∼ λ) for j = 1, . . . , N .
Furthermore, the systems at 0 and N are coupled to external sources and one wants to
study the heat flow (i.e., the energy flow) from 0 to N . A natural idea is to start with
uncoupled systems at the nodes 0, 1, . . . , N for λ = 0, and to use some sort of perturbation
theory to study the coupled system for λ 6= 0. The dynamics of the uncoupled system
at node j takes place at fixed energy, i.e., on an energy shell of dimension 2n − 1. After
coupling, the phase space has dimension ≈ (N +1)2n, so that we have a dimensional jump
≈ N between the uncoupled and the coupled situation: this prevents a straight use of
perturbation theory, which should take place on a manifold of fixed dimension.

A natural physical idea is to determine somehow a temperature β−1j for the system
at node j in the coupled situation. We may then hope to apply perturbation theory to
obtain a NESS ρ in dimension (N + 1)(2n − 1). Afterwards there remains the problem
of studying the fluctuations in full-dimensional phase space. In what follows we shall see
how to determine the NESS ρ in dimension (N + 1)(2n − 1), leaving open the problem
of fluctuations in full dimension, for which we know no rigorous approach**. In order to
fix the temperature β−1j at the node j we use an isokinetic thermostat, i.e., a term in
the evolution equation such that the kinetic energy at the node j remains constant, see
Section 1. The temperature profile, i.e., the choice of the βj is obtained by fixing β0, βN ,
and requiring that the net rate of energy transfer from the IK thermostat to the node j
vanishes for j = 1, . . . , N − 1 (the IK thermostat removes thus the energy fluctuations
which occur for the full Hamiltonian time evolution of the chain under study).

To make our model specific we take the uncoupled dynamics at the jth node to cor-
respond to the geodesic flow at a velocity which is fixed at any value (not necessarily 1)
on some compact manifold of negative curvature. This dynamics corresponds to a Hamil-
tonian Hj(pj ,qj) which is pure kinetic energy. The coupling between j − 1 and j is given

* In this Section we follow [15]. See the recent paper by Li and Young [11] for a number
of references to other approaches (by Eckmann and coworkers, Young and coworkers, etc.)
** An approximate description of fluctuations is provided by equilibrium fluctuation

theory at temperature β−1j for the node j, but this ignores the long range correlations
known to be present (see [3] and [6]). Note that an approach to the problem of heat
transport by Dolgopyat and Liverani [8] uses a macroscopic limit in which the fluctuations
vanish. We shall however want to discuss fluctuations in the problem of turbulence, see
Section 3.
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by a potential energy term λW (qj−1,qj). Introducing IK thermostats gives the final dy-
namics, for which dHj/dt = 0: the kinetic energy at j is fixed at a value Kj corresponding
to a temperature* β−1j = 2Kj/(n − 1). Dolgopyat’s perturbation result [7] referred to
in Section 1 may be applied here to obtain the NESS ρ for the coupled thermostatted
dynamics from the uncoupled state ρ0 to first order in λ, see formula (4). Since κ̂(0) in
(4) is explicitly known, one can determine to first order in λ the temperature profile β−1j
so that there is no net flux of energy from the thermostats to our system. As discussed
above, this gives a description of heat transport along a coupled chain when energy fluc-
tuations at each node are removed. We must refer to [15] for a detailed discussion**. In
any case, our presentation shows the difficulty of a rigorous approach to the problem of
heat transport: even choosing the unperturbed dynamics at the nodes to be Anosov, even
removing energy fluctuations by IK thermostats, we face a difficult perturbation problem
for a non-hyperbolic system. The non-hyperbolicity of the unperturbed system is because
a product of Anosov dynamical systems (with continuous time) at each of our N +1 nodes
is no longer hyperbolic. This has a physical basis since it reflects the near translation
invariance of the chain of small systems which transport heat.

3. Hydrodynamic turbulence.

We discuss now a physical system formed by a finite volume of incompressible fluid,
as described by the 3-dimensional Navier-Stokes equation (or an analogous equation: the
precise form of the dissipation term will not be important in what follows). A traditional
view of developed hydrodynamic turbulence is that energy is supplied to the fluid at
large spatial wavelengths, cascades down to small wavelengths, and is dissipated there by
viscosity: this is the turbulent energy cascade. The fluid motion is assumed to have a
spatially homogeneous and isotropic probability distribution, and as a consequence many
features of the fluid motion can be determined by dimensional arguments (i.e., the scaling
properties of the hydrodynamic equation imply that physical quantities scale in a definite
manner with space and time). This is the heart of Kolmogorov theory [10], a very successful
theory which fails however to predict correctly some velocity correlations. The reason of
the failure is intermittency: turbulence is actually not homogeneous.

The following is an attempt at a physical understanding of the energy cascade and
intermittency, as proposed in [16]. The degrees of freedom of our fluid which correspond
to sufficiently large spatial wavelengths constitute the inertial range, where viscous dissi-
pation is deemed unimportant. The degrees of freedom in the inertial range constitute in
principle a finite Hamiltonian system*** coupled on one side to a source of energy (at large
wavelength) and on the other side to dissipation (at small wavelength). An explicit Hamil-
tonian using a wavelet description of the degrees of freedom of the fluid and respecting the

* One can argue that in the presence of the IK thermostat, a denominator n− 1 should
occur in the following formula rather than n as expected.
** In particular, choosing the βj such that the energy flux from the thermostats vanishes

exactly and not just to first order requires a uniformity result for o(λ) which has not been
proved at this time.
*** A Hamiltonian description of fluid motion without dissipation has been given by
Arnold [2] (the Hamiltonian is the total kinetic energy of the fluid).
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inviscid scaling should be possible to construct, but the construction will not be attempted
here. Our point is that in this description the turbulent energy cascade is equivalent to a
heat flow though a collection of coupled Hamiltonian systems.

The heat flow obtained here to describe turbulence differs from the heat flow model
discussed in Section 2 in two main respects: geometric structure and dynamical assump-
tions. As to geometric structure, instead of coupled nodes forming a chain, we have now
a hierarchy of nodes with a scaling such that the dimensional arguments of Kolmogorov
should be applicable (in particular we want the same number of degrees of freedom at each
node). The nearest neighbor interaction postulated between nodes in Section 2 would be
reflected in our hierarchy by locality (like the locality of the interaction of Fourier modes
usually assumed by turbulence theorists). The possibility to describe our system as a scal-
ing hierarchical collection of Hamiltonian subsystems with weak local interactions remains
to be assessed, but we shall assume it in the following discussion. As to dynamical assump-
tions, we cannot realistically suppose that the Hamiltonian subsystems in our hierarchical
collection are Anosov. We cannot therefore hope at this time for a rigorous dynamical
analysis of our system.

Although a rigorous analysis escapes us, we have sufficient physical understanding
of heat transport to draw some useful conclusions. The input of energy at large wave-
length gives a macroscopic kinetic energy to a system with a relatively small number of
degrees of freedom. In view of the smallness of the Boltzmann constant this corresponds
to a huge temperature. We expect thus the energy cascade to go from large to small spa-
tial wavelengths because this corresponds to heat going from large to small temperature
(ultimately this is because entropy must increase with time). Our argument about heat
flows requires some chaoticity assumption. Indeed it is known that heat transport can be
pathological in completely integrable Hamiltonian systems [17]. The difference between 2-
and 3-dimensional hydrodynamics with respect to the energy cascade can thus be under-
stood because 2-dimensional inviscid flows have many conserved quantities (contrary to
3-dimensional flows).

Identifying the turbulent energy cascade with a heat flow gives the correct direction
of the cascade, but if we ignore microscopic fluctuations we cannot expect a description
of this cascade other than that given by Kolmogorov theory, and dictated by dimensional
arguments. Taking into account the microscopic fluctuations, we can however hope to
understand intermittency. Since there is no good microscopic theory of nonequilibrium
fluctuations, we shall use equilibrium fluctuation theory in the following manner. We
assume that the ratio κ of sizes of subsystems in our hierarchy of nodes is such that
a fluctuating temperature β−1j can be attributed to each node j (temperature imposed
mostly by the node of the next larger size) in such a way that the degrees of freedom at j
have a Boltzmannian energy distribution corresponding to the temperature β−1j . Such an
assumption is clearly approximate, but physically not unreasonable. The assumed local
equilibrium fluctuations lead to fluctuating velocity differences over finite distances, which
correspond to intermittency and deviate from the predictions of Kolmogorov theory. We
have called κ the ratio of the linear size associated with one node in the hierarchy, and
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the size of the next smaller node. Our predictions for intermittency* depend on κ, and
comparison with experimental results [1] yield κ ≈ 20 or 25.

The above estimate for κ , which corresponds to κ3 ≈ 104, may appear very large.
It does however make sense if we realize that the intermittency effects we are trying to
understand have a complicated physical basis consisting of vorticity tubes being formed,
stretched, folded, etc. In conclusion we have a physically reasonable understanding of
turbulence based on nonequilibrium statistical mechanics.

Apparently simple problems often lead to very complicated developments. Gödel’s
incompleteness theorem says something of that sort. Dynamical systems (for example
z 7→ λz(1−z) in the complex plane) give many examples of this situation. The evidence is
that turbulence, if one goes beyond Kolmogorov theory, is a very complicated phenomenon,
although based on simple equations. This is probably a warning that nonequilibrium
problems must often lead to intrinsic and unavoidable complications.

4. Life.

One can readily argue that the phenomena of life belong to nonequilibrium. Here we
propose a definition of life based on nonequilibrium statistical mechanics:

a slowly evolving nonequilibrium state contains life if, using a source of negentropy at
atomic level, it steadily maintains structures containing a large amount of information.

Living structures belong thus to the class of dissipative structures**: their existence
depends on entropy production, i.e., on a source of negentropy (or a source of Gibbs free
energy in the isothermal isobaric situation appropriate to the life forms that we know).
Structures containing a large amount of information are necessarily of relatively large scale.
In the case familiar to us, the large scale structures are the living structures necessary to
maintain and propagate genetic information, and this information is slowly evolving. A
slow evolution appears necessary for the creation of life (of any kind) because it takes
time to invent self-sustaining structures with a large amount of information. Eventually,
the appearance of intelligence changes the nature of the problem: think of the evermore
efficient creation and transmission of information that humans have achieved.
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