
DIFFERENTIATING THE ABSOLUTELY CONTINUOUS
INVARIANT MEASURE OF AN INTERVAL MAP f

WITH RESPECT TO f .

by David Ruelle*.

Abstract. Let the map f : [−1, 1] → [−1, 1] have a.c.i.m.
ρ (absolutely continuous f -invariant measure with respect to
Lebesgue). Let δρ be the change of ρ corresponding to a pertur-
bation X = δf ◦ f−1 of f . Formally we have, for differentiable
A,

δρ(A) =

∞
∑

n=0

∫

ρ(dx)X(x)
d

dx
A(fnx)

but this expression does not converge in general. For f real-
analytic and Markovian in the sense of covering (−1, 1) m times,
and assuming an analytic expanding condition, we show that

λ 7→ Ψ(λ) =
∞
∑

n=0

λn

∫

ρ(dx)X(x)
d

dx
A(fnx)

is meromorphic in C, and has no pole at λ = 1. We can thus
formally write δρ(A) = Ψ(1).
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We postpone a discussion of the significance of our result, and start to describe the
conditions under which we prove it. Note that these conditions are certainly too strong:
suitable differentiability should replace analyticity, and a weaker Markov property should
be sufficient. But the point of the present note is to show how it is that Ψ(λ) has no pole
at λ = 1, rather than deriving a very general theorem.

Setup.

We assume that f : [−1, 1] → [−1, 1] is real analytic and piecewise monotone on
[−1, 1] in the following sense: there are points cj (j = 0, . . . ,m, with m ≥ 2) such that
−1 = c0 < c1 < . . . < cm−1 < cm = 1 and, for j = 0, . . . ,m,

f(cj) = (−1)j+1

We assume that on [−1, 1] the derivative f ′ vanishes only on Z = {c1, . . . , cm−1}, and that
f ′′ does not vanish on Z. For j = 1, . . . ,m, we have f [cj−1, cj] = [−1, 1]. In particular,
f is Markovian. We shall also assume that f is analytically expanding in the sense of
Assumption A below. The purpose of this note is to prove the following:

Theorem. Under the above conditions, and Assumption A stated later, there is a
unique f -invariant probability measure ρ absolutely continuous with respect to Lebesgue
on [−1, 1]. If X is real-analytic on [−1, 1], and A ∈ C1[−1, 1], then

Ψ(λ) =
∞
∑

n=0

λn

∫ 1

−1

ρ(dx)X(x)
d

dx
A(fnx)

extends to a meromorphic function in C, without pole at λ = 1.

Our proof depends on a change of variable which we now explain. We choose a
holomorphic function ω from a small open neighborhood U0 of [−1, 1] in C to a small
open neighborhood W of [−1, 1] in a Riemann surface which is 2-sheeted over C near −1
and 1. We call $ = ω−1 : W → U0 the inverse of ω. We assume that ω(−x) = −ω(x),
ω(±1) = ±1, ω[−1, 1] = [−1, 1], ω′(±1) = ω′′′(±1) = 0. We have thus

ω(±(1 − ξ)) = ±(1 − Cξ2 +Dξ4 . . .)

with C > 0 and, if a > 0,

$(±(1 − aξ2 + bξ3 . . .)) = ±(1 −
√

a

C
ξ +

b

2
√
aC

ξ2 . . .)

[We may for instance take

ω(x) = sin
πx

2
, $(x) =

2

π
arcsinx

or

ω(x) =
1

16
(25x− 10x3 + x5) , $(x) =

16

25
x . . . ]
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The function g : $ ◦ f ◦ ω from [−1, 1] to [−1, 1] has monotone restrictions to the
intervals $[cj−1, cj] = [dj−1, dj]. It is readily seen that gj extends to a holomorphic
function in a neighborhood of [dj−1, dj], and that

g1(−1 + ξ) = −1 +
√

f ′(−1)ξ + α−ξ
3 . . .

gm(1 − ξ) = (−1)m+1(1 −
√

|f ′(1)|ξ − α+ξ
3 . . .)

with no ξ2 terms in the right-hand sides [this follows from our choice of ω, which has no
ξ3 term]. One also finds that, for j = 1, . . . ,m− 1

gj(dj − ξ) = (−1)j+1(1 −
√

|f ′′(cj)|
2C

ω′(dj)ξ + γjξ
2 . . .)

gj+1(dj + ξ) = (−1)j+1(1 −
√

|f ′′(cj)|
2C

ω′(dj)ξ − γjξ
2 . . .)

where γj is the same in the two relations. We note the following easy consequences of the
above developments:

Lemma 1. Let ψj : [−1, 1] → [dj−1, dj ] be the inverse of gj for j = 1, . . . ,m (increasing
for j odd, decreasing for j even). Then

ψ1(−1 + ξ) = −1 +
1

√

f ′(−1)
ξ + β−ξ

3

ψm((−1)m+1(1 − ξ)) = 1 − 1
√

|f ′(1)|
ξ + β+ξ

3

(there are no ξ2 terms in the right-hand sides). If j < m,

ψj((−1)j+1(1 − ξ)) = dj −
√

2C

|f ′′(cj)|
1

ω′(dj)
ξ + δjξ

2

ψj+1((−1)j+1(1 − ξ)) = dj +

√

2C

|f ′′(cj)|
1

ω′(dj)
ξ + δjξ

2

(with the same coefficient δj).

As inverses of the gj , the functions ψj extend to holomorphic functions on a neigh-
borhood of [−1, 1]. We impose now the condition that f is analytically expanding in the
following sense:

Assumption A We have [−1, 1] ⊂ U ⊂ C, with U bounded open connected, such that
the ψj extend to continuous functions Ū 7→ C, holomorphic in U , and with ψjŪ ⊂ U . [Ū
denotes the closure of U ].
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Let φ be holomorphic on a neighborhood of Ū . Given a sequence j = (j1, . . . , j`, . . .) we
define φj` = φ◦ψj1 · · ·◦ψj`

and note that the φj` are uniformly bounded in a neighborhood
of Ū . We may thus choose `(r) for r = 1, 2 . . . such that the subsequence (φj`(r))

∞
r=1

converges uniformly on Ū to a limit φ̃j. Writing Ũ = ∪m
j=1ψjŪ we have

max
z∈Ū

|φj`(r)| ≥ max
z∈Ũ

|φj`(r)| ≥ max
z∈Ū

|φj`(r+1)|

so that maxz∈Ū |φ̃j| = maxz∈Ũ |φ̃j| and, since Ũ is compact ⊂ U connected, φ̃j is constant.
Therefore φ is constant on ∩∞

`=0ψj1 ◦ · · · ◦ψj`
Ū . Since this is true for all φ, the intersection

∩∞
`=0ψj1 ◦ · · · ◦ ψj`

Ū consists of a single point z̃(j). Given ε > 0 we can thus, for each j,
find ` such that diamψj1 ◦ · · · ◦ψj`

Ū < ε. Hence (using the compactness of the Cantor set
of sequences j) one can choose L so that the mL sets

ψj1 ◦ · · ·ψjL
Ū

have diameter < ε. The open connected set

V = ∪j1,...,jL
ψj1 ◦ · · ·ψjL

U

satisfies [−1, 1] ⊂ V ⊂ U , and ψj V̄ = ∪j1,...,jL
ψj ◦ψj1 ◦ · · ·◦ψjL

Ū ⊂ ∪j0,j1,...,jL−1
ψj0 ◦ψj1 ◦

ψiL−1
U = V . This shows that U can be replaced in Assumption A by a set V contained

in an ε-neighborhood of [−1, 1].

Since we have shown above that diamψj1 ◦ · · ·ψjL
Ū < ε, we see that ψL

1 maps a small
circle around −1 strictly inside itself. We have thus ψ′

1(−1) < 1 (i.e., f ′(−1) > 1) and
similarly, if m is odd, ψ′

m(1) < 1 (i.e., f ′(1) > 1).

The following two lemmas state some easy facts to be used later.

Lemma 2. Let H be the Hilbert space of functions Ū → C which are square integrable
(with respect to Lebesgue) and holomorphic in U . The operator L on H defined by

(LΦ)(z) =

m
∑

j=1

(−1)j+1ψ′
j(z)Φ(ψj(z))

is holomorphy improving. In particular L is compact and trace-class.

Lemma 3. On [−1, 1] we have

(LΦ)(x) =
∑

j

|ψ′
j(x)|Φ(ψj(x))

hence Φ ≥ 0 implies LΦ ≥ 0 (L preserves positivity) and

∫ 1

−1

dx (LΦ)(x) =

∫ 1

−1

dxΦ(x)
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(L preserves total mass).

Lemma 4. L has a simple eigenvalue µ0 = 1 corresponding to an eigenfunction σ0 > 0.
The other eigenvalues µk (k ≥ 1) satisfy |µk| < 1, and their (generalized) eigenfunctions

σk satisfy
∫ 1

−1
dx σk(x) = 0.

Let (µk, σk) be a listing of the eigenvalues and generalized eigenfunctions of the trace-
class operator L. For each µk there is some σk such that Lσk = µkσk, hence

|µk|
∫ 1

−1

dx |σk(x)| =

∫ 1

−1

dx |µkσk(x)| =

∫ 1

−1

dx |(Lσk)(x)|

≤
∫ 1

−1

dx (L|σk|)(x) =

∫ 1

−1

dx |σk(x)|

hence |µk| ≤ 1. Denote by S< and S1 the spectral spaces of L corresponding to eigenvalues
µk with |µk| < 1, and |µk| = 1 respectively. If σk ∈ S< then, for some n ≥ 1,

0 =

∫ 1

−1

dx ((L− µk)nσk)(x) =

∫ 1

−1

dx (1 − µk)nσk(x)

hence
∫ 1

−1
dx σk(x) = 0.

On the finite dimensional space S1, there is a basis of eigenvectors σk diagonalizing
L (if L|S1 had non-diagonal normal form, ||Ln|S1|| would tend to infinity with n, in

contradiction with
∫ 1

−1
dx |(LnΦ)(x)| ≤

∫ 1

−1
dx |Φ(x)|). We shall now show that, up to

multiplication by a constant 6= 0, we may assume σk ≥ 0. If not, because σk is continuous
and the intervals ψj1 ◦ · · · ◦ ψjn

[−1, 1] are small for large n (mixing), we would have

|(Lnσk)(x)| < (Ln|σk|)(x) for some n and x. This would imply
∫ 1

−1
dx |(Lnσk)(x)| <

∫ 1

−1
dx |σk(x)| in contradiction with Lσk = µkσk and |µk| = 1. From σk ≥ 0 we get

µk = 1, and the corresponding eigenspace is at most one dimensional (otherwise it would

contain functions not ≥ 0). But we have 1 /∈ S< because
∫ 1

−1
dx, 1 6= 0, so that S1 6= {0}.

Thus S1 is spanned by an eigenfunction, which we call σ0, to the eigenvalue µ0 = 1. Finally,
σ0 > 0 because if σ0(x) = 0 we would have also σ0(y) = 0 whenever gn(y) = x, which is
not compatible with σ0 continuous 6= 0.

Lemma 5. If we normalize σ0 by
∫ 1

−1
dx σ0(x) = 1, then σ0(dx) = σ0(x)dx is the unique

g-invariant probability measure absolutely continuous with respect to Lebesgue on [−1, 1].
In particular, σ0(dx) is ergodic.

For continuous A on [−1, 1] we have
∫ 1

−1

σ0(dx)(A ◦ g)(x) =

∫ 1

−1

dx σ0(x)A(g(x)) =

∫ 1

−1

dx (Lσ0)(x)A(x) =

∫ 1

−1

σ0(dx)A(x)

so that σ0(dx) is g-invariant. Let σ̃(x)dx be another g-invariant probability measure
absolutely invariant with respect to Lebesgue. Then, if σ̃ 6= σ0

∫ 1

−1

dx |σ0(x) − σ̃(x)| =

∫ 1

−1

dx |(L(σ0 − σ̃))(x)|
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<

∫ 1

−1

dx (L|σ0 − σ̃|)(x) =

∫ 1

−1

dx |σ0(x) − σ̃(x)|

by mixing: contradiction.

Lemma 6. Let H1 ⊂ H consist of those functions Φ with derivatives vanishing at ±1:
Φ′(−1) = Φ′(1) = 0. Then LH1 ⊂ H1 and σ0 ∈ H1.

LH1 ⊂ H1 is an easy calculation using Lemma 1. Furthermore, by Lemma 4, σ0 =
limn→∞ Ln 1

2
, and 1

2
∈ H1 implies σ0 ∈ H1.

The image ρ(dx) = ρ(x)dx of σ0(x)dx by ω is the unique f -invariant probability
measure absolutely continuous with respect to Lebesgue on [−1, 1]. We have

ρ(x) = σ0($x)$
′(x)

Consider now the expression

Ψ(λ) =

∞
∑

n=0

λn

∫ 1

−1

ρ(dx)X(x)
d

dx
A(fnx)

where we assume that X extends to a holomorphic function in a neighborhood of [−1, 1]
and A ∈ C1[−1, 1]. For sufficiently small |λ|, the series defining Ψ(λ) converges. Writing
B = A ◦ ω and x = ωy we have

X(x)
d

dx
A(fnx) = X(ωy)

1

ω′(y)

d

dy
B(gny)

hence

Ψ(λ) =

∞
∑

n=0

λn

∫ 1

−1

dy σ0(y)
X(ωy)

ω′(y)

d

dy
B(gny)

Defining Y (y) = σ0(y)X(ωy)/ω′(y), we see that Y extends to a function holomorphic in a
neighborhood of [−1, 1], which we may take to be U , except for simple poles at −1 and 1.
We may write

∫ 1

−1

dy σ0(y)
X(ωy)

ω′(y)

d

dy
B(gny) =

∫ 1

−1

dy Y (y)g′(y) · · ·g′(gn−1y)B′(gny)

=

∫ 1

−1

ds (Ln
0Y )(s)B′(s)

where

(L0Φ)(s) =
m

∑

j=1

(−1)j+1Φ(ψjs)

and we have thus

Ψ(λ) =

∞
∑

n=0

λn

∫ 1

−1

ds (Ln
0Y )(s)B′(s)
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Lemma 7. LetH0 ⊂ H be the space of functions vanishing at −1 and 1. Then L0H0 ⊂ H0.

This follows readily from Lemma 1.

Lemma 8. There are meromorphic functions Φ± with Laurent series

Φ±(z) =
1

z ∓ 1
+ O(z ∓ 1)

at ±1 and Φ±(∓1) = 0 such that

L0Φ− =
√

f ′(−1)Φ−

{ L0Φ+ =
√

f ′(1)Φ+ if m is odd

L0(Φ+/
√

|f ′(1)| + Φ−/
√

f ′(−1)) = Ỹ ∈ H0 if m is even

Define

p±(z) =
1

z ∓ 1
− 1

4
(z ∓ 1)

then Lemma 1 yields
(L0 −

√

f ′(−1))p− = u− ∈ H0

{

(L0 −
√

f ′(1))p+ = u+ ∈ H0 if m is odd

L0p+ +
√

|f ′(1)|p− = u0 ∈ H0 if m is even

Since f ′(−1) > 1, Lemma 4 shows that L−
√

f ′(−1) is invertible on H, hence there is v−
such that

(L−
√

f ′(−1))v− = u′−

and since
∫ 1

−1
dx u′−(x) = 0, also

∫ 1

−1
dx v−(x) = 0 and we can take w− ∈ H0 such that

w′
− = v−. Then

((L0 −
√

f ′(−1))w−)′ = (L−
√

f ′(−1))w′
− = (L −

√

f ′(−1))v− = u′−

so that
(L0 −

√

f ′(−1))w− = u−

without additive constant because the left-hand side is in H0 by Lemma 7. In conclusion

(L0 −
√

f ′(−1))(p− − w−) = 0

and we may take Φ− = p− − w−.

If m is odd, Φ+ is handled similarly. If m is even, taking Φ+ = p+ and writing
Ỹ = u0/

√

|f ′(1)| − w− we obtain

L0(
Φ+

√

|f ′(1)|
+

Φ−
√

f ′(−1)
) = Ỹ ∈ H0
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which completes the proof.

We have σ0 ∈ H1 (Lemma 6), and X ◦ ω ∈ H1 by our choice of ω. Also

ω′(±(1 − ξ)) = 2Cξ − 4Dξ3 . . .

so that
Y = CΦ− + CΦ+ +H0

If m is odd let Y = c−Φ− + c+Φ+ + Y0, with Y0 ∈ H0. Then

Ψ(λ) =
c−

1 − λ
√

f ′(−1)

∫ 1

−1

dsΦ−(s)B′(s) +
c+

1 − λ
√

f ′(1)

∫ 1

−1

dsΦ+(s)B′(s) + Ψ0(λ)

where Ψ0 is obtained from Ψ when Y is replaced by Y0.

If m is even let Y = c−Φ− + c̃(Φ+/
√

|f ′(1)| + Φ−/
√

f ′(−1)) + Y0, with Y0 ∈ H0.
Then

Ψ(λ) =
c−

1 − λ
√

f ′(−1)

∫ 1

−1

dsΦ−(s)B′(s) + c̃

∫ 1

−1

ds (
Φ+

√

|f ′(1)|
+

Φ−
√

f ′(−1)
)B′(s)

+λΨ̃(λ) + Ψ0(λ)

where Ψ̃(λ) is obtained from Ψ when Y is replaced by Ỹ .

Writing µ± =
√

f ′(±1) we see that Ψ(λ) has two poles at µ−1
± if m is odd, and one

pole at µ−1
− if m is even; the other poles are those of Ψ0(λ) and possibly Ψ̃(λ). Since

Y0 ∈ H0 and L0H0 ⊂ H0, we have

Ψ0(λ) =

∞
∑

n=0

λn

∫ 1

−1

ds (Ln
0Y0)(s)B

′(s) = −
∞
∑

n=0

λn

∫ 1

−1

ds (Ln
0Y0)

′(s)B(s)

= −
∞
∑

n=0

λn

∫ 1

−1

ds (LnY ′
0)(s)B(s)

It follows that Ψ0(λ) extends meromorphically to C with poles at the µ−1
k . We want to

show that the residue of the pole at µ−1
0 = 1 vanishes . By Lemma 4,

∫ 1

−1
dx σk(x) = 0 for

k ≥ 1. Thus, up to normalization, the coefficient of σ0 in the expansion of Y ′
0 is

∫ 1

−1

dx Y ′
0(x) = Y0(1) − Y0(−1) = 0

because Y0 ∈ H0. Therefore Ψ0(z) is holomorphic at z = 1, and the same argument applies
to Ψ̃(z), concluding the proof of the theorem.

Discussion.
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It can be argued that the physical measure describing a physical dynamical system is
an SRB (Sinai-Ruelle-Bowen) measure ρ (see the recent reviews [11], [2] which contain a
number of references), or an a.c.i.m. ρ in the case of a map of the interval. But, typically,
physical systems depend on parameters, and it is desirable to know how ρ depends on
the parameters (i.e., on the dynamical system). The dependence is smooth for uniformly
hyperbolic dynamical systems (see [5], [6] and references given there), but discontinuous
in general.

The present note is devoted to an example in support of an idea put forward in [8]:
that derivatives of ρ(A) with respect to parameters can be meaningfully defined in spite of
discontinuities. An ambitious project would be to have Taylor expansions on a large set Σ
of parameter values and, using a theorem of Whitney [10], to connect these expansions by
a function extrapolating ρ(A) smoothly outside of Σ. In a different dynamical situation,
that of KAM tori, a smooth extension à la Whitney has been achieved by Chierchia and
Gallavotti [3], and Pöschel [4].

In our study we have considered only a rather special set Σ consisting of maps satis-
fying a Markov property. (Reference [1] should be consulted for a discussion of the poles
encountered in the study of a Markovian map f). Note that the studies of a.c.i.m. for
maps of the interval, and of SRB measures for Hénon-like maps, are typically based on
perturbations of a map satisfying a Markov property (for the use of slightly more general
Misiurewicz-type maps see [9], which also gives references to earlier work).

The function Ψ(λ) that we have encountered is related to the susceptibility ω 7→ Ψ(eiω)
giving the response of a system to a periodic perturbation. The existence of a holomor-
phic extension of the susceptibility to the upper half complex plane is expected to follow
from causality (causality says that cause preceeds effect, resulting in a response function κ
having support on the positive half real axis, and its Fourier transform κ̂ extending holo-
morphically to the upper half complex plane). A discussion of nonequilibrium statistical
mechanics [7] shows that the expected support and holomorphy properties hold close to
equilibrium, or if uniform hyperbolicity holds. In the example discussed in this note, κ
has the right support property, but increases exponentially at infinity, and holomorphy in
the upper half plane fails, corresponding the existence of a pole of Ψ at λ = 1/

√

f ′(−1).
This might be expressed by saying that ρ is not linearly stable. The physically interesting
situation of large systems (thermodynamic limit) remains quite unclear at this point.

Acknowledgments. For many discussions on the subject of this note, I am indebted to
V. Baladi, M. Benedicks, G. Gallavotti, M. Viana, and L.-S. Young.
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