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Summary. Multidimensional data distributions can have complex topologies and
variable local dimensions. To approximate complex data, we propose a new type
of low-dimensional “principal object”: a principal cubic complex. This complex is a
generalization of linear and non-linear principal manifolds and includes them as a
particular case. To construct such an object, we combine a method of topological
grammars with the minimization of an elastic energy defined for its embedment into
multidimensional data space. The whole complex is presented as a system of nodes
and springs and as a product of one-dimensional continua (represented by graphs),
and the grammars describe how these continua transform during the process of
optimal complex construction.

The simplest case of a topological grammar (“add a node”, “bisect an edge”) is
equivalent to the construction of “principal trees”, an object useful in many practical
applications. We demonstrate how it can be applied to the analysis of bacterial
genomes and for visualization of cDNA microarray data using the “metro map”
representation.

Key words: principal trees, topological grammars, principal manifolds, elas-
tic functional, data visualization

9.1 Introduction and Overview

In this paper, we discuss a classical problem: how to approximate a finite set
D in Rm for relatively large m by a finite subset of a regular low-dimensional
object in Rm. In application, this finite set is a dataset, and this problem
arises in many areas: from data visualization to fluid dynamics.

The first hypothesis we have to check is: whether the dataset D is situated
near a low–dimensional affine manifold (plane) in Rm. If we look for a point,
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straight line, plane, ... that minimizes the average squared distance to the
datapoints, we immediately come to Principal Component Analysis (PCA).
PCA is one of the most seminal inventions in data analysis. Now it is textbook
material and celebrated the 100th anniversary [26]. Nonlinear generalization
of PCA is a great challenge, and many attempts have been made to answer
it. Two of them are especially important for our consideration: Kohonen’s
Self-Organizing Maps (SOM) and principal manifolds.

With the SOM algorithm [19] we take a finite metric space Y with metric
ρ and try to map it into Rm with (a) the best preservation of initial structure
in the image of Y and (b) the best approximation of the dataset D. The SOM
algorithm has several setup variables to regulate the compromise between
these goals. We start from some initial approximation of the map, φ1 : Y →
Rm. On each (k-th) step of the algorithm we have a datapoint x ∈ D and a
current approximation φk : Y → Rm. For these x and φk we define an “owner”
of x in Y : yx = argminy∈Y ‖x− φk(y)‖. The next approximation, φk+1, is

φk+1(y) = hkw(ρ(y, yx))(x− φk(y)) . (9.1)

Here hk is a step size, 0 ≤ w(ρ(y, yx)) ≤ 1 is a monotonically decreasing
neighbourhood function. There are many ways to combine steps (9.1) in the
whole algorithm. The idea of SOM is flexible and seminal, it has plenty of
applications and generalizations, but, strictly speaking, we don’t know what
we are looking for. We have the algorithm, but no independent definition:
SOM is a result of the algorithm at work. The attempts to define SOM as
solution of a minimization problem for some energy functional were not very
successful [5], however, this led to the development of the optimization-based
Generative Topographic Mapping (GTM) method [1].

For a known probability distribution, principal manifolds were introduced
as lines or surfaces passing through “the middle” of the data distribution
[17]. This intuitive vision was transformed into the mathematical notion of
self-consistency: every point x of the principal manifold M is a conditional
expectation of all points z that are projected into x. Neither manifold, nor
projection need to be linear: just a differentiable projection π of the data
space (usually it is Rm or a domain in Rm) onto the manifold M with the
self-consistency requirement for conditional expectations: x = E(z|π(z) = x).
For a finite dataset D, only one or zero datapoints are typically projected
into a point of the principal manifold. In order to avoid overfitting, we have
to introduce smoothers that become an essential part of the principal manifold
construction algorithms.

SOMs give the most popular approximations for principal manifolds: we
can take for Y a fragment of a regular k-dimensional grid and consider the
resulting SOM as the approximation to the k-dimensional principal manifold
(see, for example, [24, 29]). Several original algorithms for construction of
principal curves [18] and surfaces for finite datasets were developed during
last decade, as well as many applications of this idea. The recently proposed



9 Elastic Cubic Complexes and Principal Trees 225

idea of local principal curves [4] allows to approximate data with nonlinear,
branched, and disconnected one-dimensional continua.

In 1996, in a discussion about SOM at the 5th Russian National Seminar in
Neuroinformatics, a method of multidimensional data approximation based on
elastic energy minimization was proposed (see [8, 30, 14] and the bibliography
there). This method is based on the analogy between the principal manifold
and an elastic membrane (and plate). Following the metaphor of elasticity, we
introduce two quadratic smoothness penalty terms. This allows one to apply
standard minimization of quadratic functionals (i.e., solving a system of linear
algebraic equations with a sparse matrix). The elastic map approach led to
many practical applications, in particular in data visualization and missing
data values recovery. It was applied for visualization of economic and socio-
logical tables [10, 11, 13, 30], to visualization of natural [30] and genetic texts
[12, 31], and to recovering missing values in geophysical time series [3]. Mod-
ifications of the algorithm and various adaptive optimization strategies were
proposed for modeling molecular surfaces and contour extraction in images
[14].

9.1.1 Elastic Principal Graphs

Let G be a simple undirected graph with set of vertices Y and set of edges
E. For k ≥ 2 a k-star in G is a subgraph with k + 1 vertices y0,1,...k ∈ Y and
k edges {(y0, yi) | i = 1, . . . k} ⊂ E. Suppose for each k ≥ 2, a family Sk of
k-stars in G has been selected. We call a graph G with selected families of k-
stars Sk an elastic graph if, for all E(i) ∈ E and S(j)

k ∈ Sk, the correspondent
elasticity moduli λi > 0 and μkj > 0 are defined. Let E(i)(0), E(i)(1) be
vertices of an edge E(i) and S(j)

k (0), . . . S(j)
k (k) be vertices of a k-star S(j)

k

(among them, S(j)
k (0) is the central vertex). For any map φ : Y → Rm the

energy of the graph is defined as

Uφ(G) :=
∑
E(i)

λi

∥∥∥φ(E(i)(0))− φ(E(i)(1))
∥∥∥2 (9.2)

+
∑
S

(j)
k

μkj

∥∥∥∥∥
k∑

i=1

φ(S(j)
k (i))− kφ(S(j)

k (0))

∥∥∥∥∥
2

.

Very recently, a simple but important fact was noticed [16]: every system of
elastic finite elements could be represented by a system of springs, if we allow
some springs to have negative elasticity coefficients. The energy of a k-star sk
inRm with y0 in the center and k endpoints y1,...k is usk

= μsk
(
∑k

i=1 yi−ky0)2,
or, in the spring representation, usk

= kμsk

∑k
i=1(yi−y0)2−μsk

∑
i>j(yi−yj)2.

Here we have k positive springs with coefficients kμsk
and k(k−1)/1 negative

springs with coefficients −μsk
.
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For a given map φ : Y → Rm we divide the datasetD into subsets Ky, y ∈
Y . The set Ky contains the data points for which the node φ(y) is the closest
one in φ(Y ):

Kyj = {xi|yj = arg min
yk∈Y

‖yk − xi‖} . (9.3)

The energy of approximation is:

Uφ
A(G,D) =

1∑
x∈D w(x)

∑
y∈Y

∑
x∈Ky

w(x)‖x − φ(y)‖2 , (9.4)

where w(x) ≥ 0 are the point weights. In the simplest case w(x) = 1 but it
might be useful to make some points ‘heavier’ or ‘lighter’ in the initial data.
The normalization factor 1/

∑
x∈D w(x) in (9.4) is needed for the law of large

numbers4.

9.2 Optimization of Elastic Graphs
for Data Approximation

9.2.1 Elastic Functional Optimization

The simple algorithm for minimization of the energy Uφ = Uφ
A(G,D)+Uφ(G)

is the splitting algorithm, in the spirit of classical K-means clustering:

1. For a given system of sets {Ky | y ∈ Y } we minimize Uφ (it
is the minimization of a positive quadratic functional). This is
done by solving a system of linear algebraic equations for finding
new positions of nodes {φ(yi)}:

p∑
k=1

ajkφ(yk) =
1∑

x∈D w(x)

∑
x∈Kyj

w(x)x . (9.5)

2. For a given φ we find new {Ky} (9.3).
3. Go to step 1 and so on; stop when there are no significant

changes in φ.

Here,

ajk =
njδjk∑

x∈D w(x)
+ ejk + sjk, nj =

∑
x∈Kyj

w(x) (j = 1 . . . p) , (9.6)

4 For more details see Gorban & Zinovyev paper in this volume.
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δjk is Kronecker’s δ, and matrices ejk and sjk depend only on elasticity mod-
ules and on the content of the sets {E(i)} and {S(i)

k }, thus they need not be
recomputed if the structure of the graph was not changed.

Matrix ajk is sparse. In practical computations it is easier to compute
only non-zero entries of the ejk and sjk matrices. This can be done using the
following scheme:

1. Initialize the sij matrix to zero.
2. For each k-star S(i)

k with weight μi, outer nodes yN1, . . . , yNk

and central node yN0 , the sij matrix is updated as follows (1 ≤
l,m ≤ k):

s′N0N0
= sN0N0 + k2μi, s

′
NlNm

= sNlNm + μi ,
s′N0Nl

= sN0Nl
− kμi, s

′
NlN0

= sNlN0 − kμi .

3. Initialize the eij matrix to zero.
4. For each edge E(i) with weight λi, one vertex yk1 and the other

vertex yk2, the ejk matrix is updated as follows:

ek1k1 = ek1k1 + λi , ek2k2 = ek2k2 + λi ,
ek1k2 = ek1k2 − λi , ek2k1 = ek2k1 − λi .

This algorithm gives a local minimum, and the global minimization prob-
lem arises. There are many methods for improving the situation, but without
guarantee of finding the global minimization (see, for example, accompanying
paper [15]).

9.2.2 Optimal Application of Graph Grammars

The next problem is the elastic graph construction. Here we should find a com-
promise between simplicity of graph topology, simplicity of geometrical form
for a given topology, and accuracy of approximation. Geometrical complexity
is measured by the graph energy Uφ(G), and the error of approximation is
measured by the energy of approximation Uφ

A(G,D). Both are included in
the energy Uφ. Topological complexity will be represented by means of ele-
mentary transformations: it is the length of the energetically optimal chain
of elementary transformation from a given set applied to the initial simple
graph.

The graph grammars [28, 21] provide a well-developed formalism for the
description of elementary transformations. An elastic graph grammar is pre-
sented as a set of production (or substitution) rules. Each rule has a form
A → B, where A and B are elastic graphs. When this rule is applied to an
elastic graph, a copy of A is removed from the graph together with all its
incident edges and is replaced with a copy of B with edges that connect B
to the graph. For a full description of this language we need the notion of a
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Fig. 9.1. Cartesian product of graphs

labeled graph. Labels are necessary to provide the proper connection between
B and the graph.

A link in the energetically optimal transformation chain is constructed
by finding a transformation application that gives the largest energy descent
(after an optimization step), then the next link, and so on, until we achieve
the desirable accuracy of approximation, or the limit number of transforma-
tions (some other termination criteria are also possible). The selection of an
energetically optimal application of transformations by the trial optimization
steps is time-consuming. There exist alternative approaches. The preselection
of applications for a production rule A → B can be done through the com-
parison of the energy of copies of A with its incident edges and stars in the
transformed graph G.

9.2.3 Factorization and Transformation of Factors

If we approximate multidimensional data by a k-dimensional object, the num-
ber of points (or, more generally, elements) in this object grows with k expo-
nentially. This is an obstacle for grammar–based algorithms even for modest
k, because for analysis of the rule A → B applications we should investigate
all isomorphic copies of A in G. The natural way to avoid this obstacle is the
principal object factorization. Let us represent an elastic graph as a Cartesian
product of graphs (Fig. 9.1).

The Cartesian product G1 × . . . × Gr of elastic graphs G1, . . .Gr is an
elastic graph with vertex set V1 × . . .× Vr. Let 1 ≤ i ≤ r and vj ∈ Vj (j 	= i).
For this set of vertices, {vj}j 
=i, a copy of Gi in G1 × . . .×Gr is defined with
vertices (v1, . . . vi−1, v, vi+1, . . . vr) (v ∈ Vi), edges

((v1, . . . vi−1, v, vi+1, . . . vr), (v1, . . . vi−1, v
′, vi+1, . . . vr)), (v, v′) ∈ Ei ,

and, similarly, k-stars of the form (v1, . . . vi−1, Sk, vi+1, . . . vr), where Sk is a
k-star in Gi. For any Gi there are

∏
j,j 
=i |Vj | copies of Gi in G. Sets of edges

and k-stars for Cartesian product are unions of that set through all copies of
all factors. A map φ : V1 × . . .× Vr → Rm maps all the copies of factors into
Rm too. The energy of the elastic graph product is the energy sum of all factor
copies. It is, of course, a quadratic functional of φ.
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The only difference between the construction of general elastic graphs and
factorized graphs is in the application of the transformations. For factorized
graphs, we apply them to factors. This approach significantly reduces the
amount of trials in selection of the optimal application. The simple grammar
with two rules, “add a node to a node, or bisect an edge,” is also powerful
here, it produces products of primitive elastic trees. For such a product, the
elastic structure is defined by the topology of the factors.

9.3 Principal Trees (Branching Principal Curves)

9.3.1 Simple Graph Grammar (“Add a Node”, “Bisect an Edge”)

As a simple (but already rather powerful) example we use a system of two
transformations: “add a node to a node” and “bisect an edge.” These transfor-
mations act on a class of primitive elastic graphs: all non-terminal nodes with
k edges are centers of elastic k-stars, which form all the k-stars of the graph.
For a primitive elastic graph, the number of stars is equal to the number of
non-terminal nodes – the graph topology prescribes the elastic structure.

The transformation “add a node” can be applied to any vertex y of G: add
a new node z and a new edge (y, z). The transformation “bisect an edge” is
applicable to any pair of graph vertices y, y′ connected by an edge (y, y′):
Delete edge (y, y′), add a vertex z and two edges, (y, z) and (z, y′). The
transformation of the elastic structure (change in the star list) is induced
by the change of topology, because the elastic graph is primitive. This two–
transformation grammar with energy minimization builds principal trees (and
principal curves, as a particular case) for datasets. A couple of examples are
presented on Fig. 9.3. For applications, it is useful to associate one-dimensional
continua with these principal trees. Such a continuum consists of node images
φ(y) and of pieces of straight lines that connect images of linked nodes.

9.3.2 Visualization of Data Using
“Metro Map” Two-Dimensional Tree Layout

A principal tree is embedded into a multidimensional data space. It approx-
imates the data so that one can project points from the multidimensional
space into the closest node of the tree (other projectors are also possible, for
example, see the accompanying paper [15]). The tree by its construction is
a one-dimensional object, so this projection performs dimension reduction of
the multidimensional data. The question is how to represent the result of this
projection? For example, how to produce a tree layout on the two-dimensional
surface of paper sheet? Of course, there are many ways to layout a tree on
a plane. It is always possible to find a tree layout without edge intersection.
But it would be very nice if both some tree properties and global distance
relations would be represented using the layout. We can require that
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Op1
Op2 

Op3

 

a) b)

 

c)

Fig. 9.2. Illustration of the simple “add node to a node” or “bisect an edge” graph
grammar application. a) We start with a simple 2-star from which one can generate
three distinct graphs shown. The “Op1” operation is adding a node to a node, oper-
ations “Op1” and “Op2” are edge bisections (here they are topologically equivalent
to adding a node to a terminal node of the initial 2-star). For illustration let us
suppose that the “Op2” operation gives the biggest elastic energy decrement, thus
it is the “optimal” operation. b) From the graph obtained one can generate 5 dis-
tinct graphs and choose the optimal one. c) The process is continued until a definite
number of nodes is inserted

1) In a two-dimensional layout, all k-stars should be represented equiangu-
lar, because the ideal configuration of a k-star with small energy is equiangular
and with equal edge lengths.

2) The edge lengths should be proportional to their length in the multi-
dimensional embedding; thus one can represent between-node distances.

This defines a tree layout up to global rotation and scaling and also up
to changing the order of leaves in every k-star. We can change this order to
eliminate edge intersections, but the result can not be guaranteed. In order to
represent the global distance structure, we found that a good approximation
for the order of k-star leaves can be taken from the projection of every k-star
on the linear principal plane calculated for all data points, or on the local
principal plane in the vicinity of the k-star, calculated only for the points
close to this star.

In the current implementation of the method, after defining the initial ap-
proximation, a user manually modifies the layout switching the order of k-star
leaves to get rid of edge intersections. The edge lengths are also modifiable.
Usually it is possible to avoid edge intersections in the layout after a small
number of initial layout modifications. This process could be also fully auto-
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Iteration 1 Iteration 5 Iteration 50

Iteration 1 Iteration 10 Iteration 50

Fig. 9.3. Applying a simple “add a node to a node or bisect an edge” grammar
to construct principal elastic trees (one node is added per iteration). Upper row:
an example of two-dimensional branching distribution of points. Lower row: the
classical benchmark, the “iris” four-dimensional dataset (point shapes distinguish
three classes of points), the dataset and principal tree are presented in projection
onto the plane of the first two principal components

mated, by a greedy optimization algorithm, for example, but this possibility
is not yet implemented.

The point projections are then represented as pie diagrams, where the size
of the diagram reflects the number of points projected into the corresponding
tree node. The sectors of the diagram allow us to show proportions of points
of different classes projected into the node (see an example on Fig. 9.4).

We call this type of visualization a “metro map” since it is a schematic and
“idealized” representation of the tree and the data distribution with inevitable
distortions made to produce a nice 2D layout, but using this map one can still
estimate the distance from a point (tree node) to a point passing through other
points. This map is inherently unrooted (as a real metro map). It is useful to
compare this metaphor with trees produced by hierarchical clustering where
the metaphor is closer to a “genealogy tree”.

9.3.3 Example of Principal Cubic Complex:
Product of Principal Trees

Principal trees are one-dimensional objects. To illustrate the idea of a d-
dimensional principal cubic complex that is a cartesian product of graphs (see
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Iris-virginica 

Iris-versicolor 

Iris-setosa 

Fig. 9.4. Two-dimensional layout of the principal tree constructed for the iris
dataset. In this layout all stars are equiangular and the edge lengths are propor-
tional to the real edge lengths in the multidimensional space. The data points were
projected into the closest tree nodes. The circle radii are proportional to the num-
ber of points projected into each node. Three different colors (or gray tints on the
gray version of the image) denote three point classes. If points of different classes
were projected into the same tree node then the number of points of every class is
visualized by the pie diagram

Fig. 9.1), we implemented an algorithm, constructing products of principal
trees. The pseudocode for this algorithm is provided below:

1. Initialize one factor graph consisting of one edge connecting
two nodes positioned half a standard deviation around the data
mean.

2. Optimize the node positions.
3. Test the addition of a node to each star in each factor, optimizing

the node postions of the Cartesian product.
4. Test the bisection of each edge in each factor, optimising the

node positions of the Cartesian product.
5. Test the initialisation of another factor graph consisting of one

edge using the scheme:-
a) For each node use the k-means algorithm with k=2 on the

data class associated with the node, intializing using the
mean of the data class and the node position.

b) Normalize the vector between the 2 centres thus obtained
and scale it to the size of the mean of the edge lengths
already incident with the node.

c) Optimize the node positions.
6. Choose the transformation from steps (3) to (5) which gives the

greatest energy descent.
7. Until the stopping criteria are met repeat steps (3) - (6).
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Fig. 9.5. A cubic complex (2-dimensional, “add a node, bisect an edge” graph
grammar) constructed for a distribution of points on the Van-der-Waals surface of
a fragment of a DNA molecule (dots). The result is the product of two unbranched
trees which “discovers” the double-helical DNA structure

Thus, the structure of a principal cubic complex is defined by its dimension
and the graph grammar applied for its construction. A simple example of 2-
dimensional principal tree, i.e. cubic complex constructed with the simplest
“add a node or bisect an edge” grammar (see Fig. 9.2) is given in Fig. 9.5. Here
the cubic complex is constructed for a distribution of points on the molecular
surface of a fragment of a DNA molecule (compare with the application of
the method of elastic maps to the same dataset, given in the accompanying
paper [15]). The method of topological grammars [9] “discovers” the double-
helical structure of the DNA molecule. Note that in this example the energy
optimization gave no branching in both factors (trees) and as a result we
obtained a product of two simple poly-lines. In other situations, the resulting
cubic complex could be more complicated, with branching in one or both
factors.

9.4 Analysis of the Universal 7-Cluster Structure
of Bacterial Genomes

In this section we describe the application of the method of topological gram-
mars to the analysis of the cluster structure of bacterial genomes. This struc-
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ture appears as a result of projecting a genome sequence into a multidimen-
sional space of short word frequencies [6, 7]. In particular, we show that a one-
dimensional principal tree can reveal a signal invisible when three-dimensional
PCA is applied.

9.4.1 Brief Introduction

One of the most exciting problems in modern science is to understand the
organization of living matter by reading genomic sequences. The information
that is needed for a living cell to function is encoded in a long molecule of
DNA. It can be presented as a text that has only four letters A, C, G and T.

One distinctive message in a genomic sequence is a piece of text, called
a gene. Genes can be oriented in the sequence in the forward and backward
directions. In bacterial genomes genes are always continuous from their start
to the stop signal.

It was one of many great discoveries of the twentieth century that biological
information is encoded in genes by means of triplets of letters, called codons
in the biological literature. In the famous paper by Crick et al. [2], this fact
was proven by genetic experiments carried out on bacteria mutants.

In nature, there is a special mechanism that is designed to read genes. It
is evident that as the information is encoded by non-overlapping triplets, it
is critical for this mechanism to start reading a gene without a shift, from
the first letter of the first codon to the last one; otherwise, the information
decoded will be completely corrupted.

A word is any continuous piece of text that contains several subsequent
letters. As there are no spaces in the text, separation into words is not unique.

The method we use to “decipher” genomic sequences is the following. We
clip the whole text into fragments of 300 letters in length and calculate the
frequencies of short words (of length 1–4) inside every fragment. This gives
a description of the text in the form of a numerical table (word frequency vs
fragment number).

As there are only four letters, there are four possible words of length 1
(singlets), 16 = 42 possible words of length 2 (duplets), 64 = 43 possible words
of length 3 (triplets) and 256 = 44 possible words of length 4 (quadruplets).
The first table contains four columns (frequency of every singlet) and the
number of rows equals the number of fragments. The second table has 16
columns and the same number of rows, and so on.

These tables can be visualized by means of standard PCA. The result
of such visualization is given on Fig. 9.6. As one can see from PCA plots,
counting triplets gives an interesting flower-like pattern (described in details
in [6, 7]), which can be interpreted as the existence of non-overlapping triplet
code.

The triplet picture evidently contains 7 clusters, and it is more structured
in the space than 1,2- and 4-tuples. To understand the 7-cluster structure, let
us make some explanations.
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Let us blindly cut the text into fragments. Any fragment can contain:
(a) piece of gene in the forward direction; (b) piece of gene in the backward
direction; (c) no genes (non-coding part); (d) a mixture of coding and non-
coding.

Consider case (a). The fragment can overlap with a gene in three possible
ways, with three possible shifts. If we start to read the information one triplet
after another starting from the first letter of the fragment then we can read
the gene correctly only if the fragment overlaps it with a correct shift. In
general, if the start of the fragment is chosen randomly then we can read the
gene in three possible ways. Thus, case a) generates three possible frequency
distributions, “shifted” one with respect to another.

Case (b) is quite analogous and also gives three possible triplet distribu-
tions. They are not quite independent from the ones obtained at the step (a)
for the following reason. The frequency of triplets is in fact the same as in the
case (a), the difference is the triplets are read “from the end to the beginning”
which produces a kind of mirror reflection of the triplet distributions from the
case (a).

Case (c) will produce only one distribution which will be symmetrical
with respect to the “shifts” (or rotations) in the first two cases, and there is a
hypothesis that this is a result of genomic sequence evolution. Let us explain
it.

The vitality of a bacterium depends on the correct functioning of all biolog-
ical mechanisms. All these mechanisms are encoded in genes, and if something
wrong happens with gene sequences (for example there is an error when DNA
is duplicated), then the organism risks becoming non-vital. Nothing is perfect
in our world and errors happen all the time, and in the DNA duplication
process as well. These errors are called mutations.

The most dangerous mutations are those which change the reading frame,
i.e. letter deletions or insertions. If such a mutation happens in the middle of
a gene sequence, the rest of the gene becomes corrupted: the reading mech-
anism (which reads the triplets one by one and does not know about the
mutation) will read it with a shift. Because of this the organisms with such
mutations often die without leaving their off-spring. Conversely, if such a mu-
tation happens in the non-coding part, where there are no genes, this does not
lead to problems, and the organism leaves off-spring. Thus such mutations are
constantly accumulated in the non-coding part making all three phase-specific
distributions identical. The (d) case also produces mix of triplet distributions.

As a result, we have three distributions for case (a), three for case (b)
and one, symmetrical for the “non-coding” fragments (case (c)). Because of
natural statistical deviations and other reasons we have 7 clusters of points
in the multidimensional space of triplet frequencies.
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Fig. 9.6. PCA plots of word frequencies of different length. In c) one can see the
most structured distribution. The structure is interpreted as the existence of a non-
overlapping triplet code

9.4.2 Visualization of the 7-Cluster Structure

It happens that the flower-like pattern of the 7-cluster structure is only one
of several possible [6, 7] when we observe many bacterial genomes. Four “typ-
ical” configurations of 7-clusters observed in bacterial genomes are shown on
Fig. 9.7.

Among these four typical configurations, there is one called “degenerative”
(Ercherichia coli in Fig. 9.7). In this configuration three clusters correspond-
ing to reading genes in the backward direction (reddish clusters) overlap with
three clusters corresponding to reading genes in the forward direction (green-
ish clusters), when the distribution is projected in the three-dimensional space
of the first principal components. It allows us to make a hypothesis that the
usage of triplets is symmetrical with respect to the operation of “complemen-
tary reversal”.

However, for a real genome of Ercherichia coli, we can observe, using the
“metro map” representation, that the clusters are in fact rather well separated
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Fig. 9.7. Seven cluster structures presented for 4 selected genomes. A genome is rep-
resented as a collection of points (text fragments represented by their triplet frequen-
cies) in a multidimensional space. Color codes correspond to 6 possible frameshifts
when a random fragment overlaps with a gene (3 in the forward and 3 in the back-
ward direction of the gene), and the black color corresponds to non-coding regions.
For every genome a principal tree (“metro map” layout) is shown together with 2D
PCA projection of the data distribution. Note that the clusters that are mixed in
the PCA plot for Ercherichia coli (they remain mixed in 3D PCA as well, see [32])
are well separated on the “metro map”

in space. This signal is completely hidden in the PCA plot. This is even more
interesting since we are comparing data approximation and visualization by a
one-dimensional object (principal tree) with one made by a three-dimensional
linear manifold (PCA).
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9.5 Visualization of Microarray Data

9.5.1 Dataset Used

DNA microarray data is a rich source of information for molecular biology (for
a recent overview, read [20]). This technology found numerous applications in
understanding various biological processes including cancer. It allows screen-
ing of the expression of all genes simultaneously in a cell exposed to some
specific conditions (for example, stress, cancer, normal conditions). Obtain-
ing a sufficient number of observations (chips), one can construct a table of
”samples vs genes”, containing logarithms of the expression levels of typically
several thousands (n) of genes in typically several tens (m) of samples.

We use data published in [27] containing gene expression values for 10401
genes in 103 samples of normal human tissues. The sample labels correspond
to the tissue type from which the sample was taken. This dataset was pro-
posed for analysis for the participants of the international workshop ”Principal
manifolds-2006” which took place in Leicester, UK, in August of 2006. It can
be downloaded from the workshop web-page [25].

9.5.2 Principal Tree of Human Tissues

On Fig. 9.8 a metro map representation of the principal tree calculated for
the human tissue data is shown. To reduce the computation time we first
calculated a new spatial basis by calculating 103 linear principal components
and projected samples from the full-dimensional space into this basis. The
missing values in the dataset were treated as described in the accompanying
paper [15] (a data point with missing value(s) is represented as a line or a
(hyper)plane parallel to the corresponding coordinate axes, for which we have
missing information, and then projected into the closest point on the linear
manifold). The principal tree was then constructed using the vdaoengine Java
package available from the authors by request. We stopped construction of
the optimal principal tree when 70 nodes were added to the tree.

One can see from the figure that most of the tissues are correctly clustered
on the tree. Moreover, tissues of similar origin are grouped closely.

9.6 Discussion

In the continuum representation, factors are one-dimensional continua, hence,
a product of r factors is represented as an r-dimensional cubic complex [23]
that is glued together from r-dimensional parallelepipeds (“cubes”). Thus, the
factorized principal elastic graphs generate a new and, as we can estimate now,
useful construction: a principal cubic complex. One of the obvious benefits
from this construction is adaptive dimension: the grammar approach with
energy optimization develops the necessary number of non-trivial factors, and
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Fig. 9.8. Principal tree of human tissues, constructed from the gene expression
microarray data. The size of the circles corresponds to the number of points projected
into this node. The sectors show the proportion of different tissue types projected
into a node

not more. These complexes can approximate multidimensional datasets with
complex, but still low-dimensional topology. The topology of the complex is
not prescribed, but adaptive. In that sense, they are even more flexible than
SOMs. The whole approach can be interpreted as an intermediate between
absolutely flexible neural gas [22] and significantly more restrictive elastic
map [14]. It includes as simple limit cases the k-means clustering algorithm
(low elasticity moduli) and classical PCA (high μ for S2 and μ → ∞ for Sk,
k > 2).

We demonstrated how application of the simplest “add a node, bisect an
edge” grammar leads to the construction of a useful “principal tree” object
(more precisely, branching principal curve) which can be advantageous over
the application of customary linear PCA. Of course, more work is required
to evaluate all advantages and disadvantages which this approach gives in
comparison with existing and widely used techniques (for example, with hi-
erarchical clustering). However, it is clear that the principal tree approach



240 A.N. Gorban, N.R. Sumner, and A.Y. Zinovyev

accompanied by the “metro map” representation of data, can provide addi-
tional insights into understanding the structure of complex data distributions
and can be most suitable in some particular applications.
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