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The concept of the limiting step is extended to the asymptotology of multiscale reaction networks.

Complete theory for linear networks with well separated reaction rate constants is developed. We

present algorithms for explicit approximations of eigenvalues and eigenvectors of kinetic matrix.

Accuracy of estimates is proven. Performance of the algorithms is demonstrated on simple examples.

Application of algorithms to nonlinear systems is discussed.
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1. Introduction

Most of mathematical models that really work are simplifica-
tions of the basic theoretical models and use in the backgrounds
an assumption that some terms are big, and some other terms are
small enough to neglect or almost neglect them. The closer
consideration shows that such a simple separation on ‘‘small’’ and
‘‘big’’ terms should be used with precautions, and special culture
was developed. The name ‘‘asymptotology’’ for this direction of
science was proposed by Kruskal (1963), but fundamental
research in this direction are much older, and many fundamental
approaches were developed by I. Newton (Newton polyhedron,
and many other things).

Following Kruskal (1963), asymptotology is ‘‘the art of describ-
ing the behavior of a specified solution (or family of solutions) of a
system in a limiting case. . . . The art of asymptotology lies partly
in choosing fruitful limiting cases to examine. . . . The scientific
element in asymptotology resides in the non-arbitrariness of the
asymptotic behavior and of its description, once the limiting case
has been decided upon’’.

Asymptotic behavior of rational functions of several positive
variables ki40 gives us a toy-example. Let

Rðk1; . . . ; knÞ ¼ Pðk1; . . . ; knÞ=Q ðk1; . . . ; knÞ

be such a function and P;Q be polynomials. To derive fruitful
limiting cases we consider logarithmic straight lines lnki ¼ yix and
study asymptotical behavior of R for x-1. In this asymptotics, for
almost every vector ðyiÞ (outside several hyperplanes) there exists
such a dominant monomial R1ðkÞ ¼ A

Q
ik
ai

i that R¼ R1þoðR1Þ. The
function that associates a monomial with vector ðyiÞ is piecewise
constant: it is constant inside some polyhedral cones.

Implicit functions given by equations which depend on
parameters provide plenty of more interesting examples, espe-
cially in the case when the implicit function theorem is not
applicable. Some analytical examples are presented by Andrianov
and Manevitch (2002) and White (2006). Introduction of algebraic
backgrounds and special software is provided by Greuel and
Pfister (2002).

For a difficult problem, analysis of eigenvalues and eigenvec-
tors of non-symmetric matrices, Vishik and Ljusternik (1960)
studied asymptotic behavior of spectra and spectral projectors
along the logarithmic straight lines in the space of matrices. This
analysis was continued by Lidskii (1965).

We study networks of linear reactions. For a linear system
with reaction rate constants ki all the dynamical information is
contained in eigenvalues and eigenvectors of the kinetic matrix
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or, more precisely, in its transformation to the Jordan normal
form. It is computationally expensive task to find this transfor-
mation for a non-symmetric matrix which is usually stiff (Golub
and VanLoan, 1996). Moreover, the answer could be very
sensitive to the errors in constants ki. Nevertheless, it appears
that stiffness can help us to find a robust approximation, and in
the limit when all constants are very different (well-separated
constants) the asymptotical behavior of eigenvalues and eigen-
vectors follow simple explicit expressions. Analysis of this
asymptotics is our main goal.

In our approach, we study asymptotic behavior of eigenvalues
and eigenvectors of kinetic matrices along logarithmic straight
lines, lnki ¼ yix in the space of constants. We significantly use the
graph representation of chemical reaction networks and demon-
strate, that for almost every vector ðyiÞ there exists a simple
reaction network which describes the dominant term of this
asymptotic. Following the asymptotology terminology (White,
2006), we call this simple network the dominant system. For these
dominant system there are explicit formulas for eigenvalues and
eigenvectors. The topology of dominant systems is rather simple:
they are acyclic networks without branching. This allows us to
construct the explicit asymptotics of eigenvectors and eigenva-
lues. All algorithms are represented topologically by transforma-
tion of the graph of reaction (labeled by reaction rate constants).
The reaction rate constants for dominant systems may not
coincide with constant of original network. In general, they are
monomials of the original constants.

This result fully supports the observation by Kruskal (1963):
‘‘And the answer quite generally has the form of a new system
(well posed problem) for the solution to satisfy, although this is
sometimes obscured because the new system is so easily solved
that one is led directly to the solution without noticing the
intermediate step’’.

The dominant systems can be used for direct computation of
steady states and relaxation dynamics, especially when kinetic
information is incomplete, for design of experiments and mining of
experimental data, and could serve as a robust first approximation
in perturbation theory or for preconditioning. They can be used to
answer an important question: given a network model, which are
its critical parameters? Many of the parameters of the initial model
are no longer present in the dominant system: these parameters
are non-critical. Parameters of dominant subsystems indicate
putative targets to change the behavior of the large network.

Most of reaction networks are nonlinear, it is nevertheless
useful to have an efficient algorithm for solving linear problems.
First, nonlinear systems often include linear subsystems, contain-
ing reactions that are (pseudo)monomolecular with respect to
species internal to the subsystem (at most one internal species is
reactant and at most one is product). Second, for binary reactions
AþB- . . ., if concentrations of species A and B (cA; cB) are well
separated, say cAbcB then we can consider this reaction as B- . . .

with rate constant proportional to cA which is practically constant,
because its relative changes are small in comparison to relative
changes of cB. We can assume that this condition is satisfied for all
but a small fraction of genuinely nonlinear reactions (the set of
nonlinear reactions changes in time but remains small). Under
such an assumption, nonlinear behavior can be approximated as a
sequence of such systems, followed one each other in a sequence
of ‘‘phase transitions’’. In these transitions, the order relation
between some of species concentrations changes. Some applica-
tions of this approach to systems biology are presented by
Radulescu et al. (2008). The idea of controllable linearization
‘‘by excess’’ of some reagents is in the background of the efficient
experimental technique of temporal analysis of products (TAP),
which allows to decipher detailed mechanisms of catalytic
reactions (Yablonsky et al., 2003).

In chemical kinetics various fundamental ideas about asymp-
totical analysis were developed (Klonowski, 1983): quasieqiuli-
brium asymptotic (QE), quasisteady-state asymptotic (QSS),
lumping, and the idea of limiting step.

Most of the works on non-equilibrium thermodynamics deal
with the QE approximations and corrections to them, or with
applications of these approximations (with or without correc-
tions). There are two basic formulation of the QE approximation:
the thermodynamic approach, based on entropy maximum, or the
kinetic formulation, based on selection of fast reversible reactions.
The very first use of the entropy maximization dates back to the
classical work of Gibbs (1902), but it was first claimed for a
principle of informational statistical thermodynamics by Jaynes
(1963). A very general discussion of the maximum entropy
principle with applications to dissipative kinetics is given in the
review by Balian et al. (1986). Corrections of QE approximation
with applications to physical and chemical kinetics were devel-
oped by Gorban et al. (2001) and Gorban and Karlin (2005).

QSS was proposed by Bodenstein (1913) and was elaborated
into an important tool for analysis of chemical reaction mechan-
ism and kinetics (Semenov, 1939; Christiansen, 1953; Helfferich,
1989). The classical QSS is based on the relative smallness of
concentrations of some of ‘‘active’’ reagents (radicals, substrate-
enzyme complexes or active components on the catalyst surface)
(Aris, 1965; Segel and Slemrod, 1989).

Lumping analysis aims to combine reagents into ‘‘quasicom-
ponents’’ for dimension reduction (Wei and Kuo, 1969; Kuo and
Wei, 1969; Li and Rabitz, 1989; Toth et al., 1997).

The concept of limiting step gives the limit simplification: the
whole network behaves as a single step. This is the most popular
approach for model simplification in chemical kinetics and in
many areas beyond kinetics. In the form of a bottleneck approach
this approximation is very popular from traffic management to
computer programming and communication networks. The
proposed asymptotic analysis can be considered as a wide
extension of the classical idea of limiting step (Gorban and
Radulescu, 2008).

The structure of the paper is as follows. In Section 2 we
introduce basic notions and notations. We consider thermody-
namic restrictions on the reaction rate constants and demonstrate
how appear systems with arbitrary constants (as subsystems of
more detailed models). For linear networks, the main theorems
which connect ergodic properties with topology of network, are
reminded. Four basic ideas of model reduction in chemical kinetics
are described: QE, QSS, lumping analysis and limiting steps.

In Section 3, we introduce the dominant system for a simple
irreversible catalytic cycle with limiting step. This is just a chain of
reactions which appears after deletion the limiting step from the
cycle. Even for such simple examples several new observation are
presented:

� The relaxation time for a cycle with limiting step is inverse
second reaction rate constant.
� For chains of reactions with well separated rate constants left

eigenvectors have coordinates close to 0 or 1, and right
eigenvectors have coordinates close to 0 or 71.

For general reaction networks instead of linear chains appear
general acyclic non-branching networks. For them we also provide
explicit formulas for eigenvectors and their 0, 71 asymptotics for
well-separated constants (Section 4). In (Section 5) the main
algorithm is presented. Section 6 is devoted to a simple
demonstration of the algorithm application. In Section 7, we
briefly discuss further corrections to dominant systems. The
estimates of accuracy are given in Appendix A.
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2. Main asymptotic ideas in chemical kinetics

2.1. Chemical reaction networks

To define a chemical reaction network, we have to introduce:

� a list of components (species);
� a list of elementary reactions;
� a kinetic law of elementary reactions.

The list of components is just a list of symbols (labels) A1; . . . ;An.
Each elementary reaction is represented by its stoichiometric

equationX
i

asiAi-
X

si

bsiAi; ð1Þ

where s enumerates the elementary reaction, and the non-
negative integers asi, bsi are the stoichiometric coefficients. A
stoichiometric vector gs with coordinates gsi ¼ bsi � asi is asso-
ciated with each elementary reaction.

For analysis of closed chemical systems with detailed balance it is
usual practice to group reactions in pairs, direct and inverse reactions
together, but in more general settings this is not convenient.

A non-negative real extensive variable NiZ0, amount of Ai, is
associated with each component Ai. It measures ‘‘the number of
particles of that species’’ (in particles, or in moles). The concentra-
tion of Ai is an intensive variable: ci ¼Ni=V , where V is volume. It is
necessary to stress, that in many practically important cases the
extensive variable V is neither constant, nor the same for all
components Ai. For more details see, for example the book of
Yablonskii et al. (1991). For simplicity, we will consider systems
with one constant volume and under constant temperature, but it
is necessary always keep in mind the possibility to return to
general equations. For that conditions, the kinetic equations have
the following form

dc

dt
¼
X

s

wsðc; TÞgsþu; ð2Þ

where u is the vector of external fluxes normalized to unit volume.
It may be useful to represent external fluxes as elementary
reactions by introduction of new component | together with
incoming and outgoing reactions |-Ai and Ai-|.

The most popular kinetic law of elementary reactions is the
mass action law for perfect systems:

wsðc; TÞ ¼ ksðTÞ
Y

casi

i ; ð3Þ

where ‘‘kinetic constant’’ ksðTÞ depends on temperature T. More
general kinetic law, which can be used for most of non-ideal (non-
perfect) systems is

wsðc; TÞ ¼jsexp
1

RT

X
i

asimi

 !
; ð4Þ

where R is the universal gas constant, mi is the chemical potential,
mi ¼ @FðN; T ;VÞ=@Ni ¼ @GðN; T; PÞ=@Ni, F is the Helmgoltz free en-
ergy, G is the Gibbs energy (free enthalpy), P is pressure and js40
is an intensive variable, kinetic factor, which can depend on any
set of intensive variables, first of all, on T.

Chemical thermodynamics (Prigogine and Defay, 1954) provides
tools of choice for stability analysis of reaction networks (Procaccia
and Ross, 1977) and chemical reactors (Aris, 1965). The laws of
thermodynamics have been used for analyzing of structural
stability of process systems by Hangos et al. (2004). In general
reaction network coefficients ks (3) or js (4) are not independent.
In order to respect the second law of thermodynamics, they should
satisfy some equations and inequalities. The most famous sufficient

condition gives the principle of detailed balance. Let us group the
elementary reactions in pairs, direct and inverse reactions, and
mark the variables for direct reactions by superscript þ , and for
inverse reactions by �. Then the principle of detailed balance for
general kinetics (4) reads:

jþs ¼j
�
s ð5Þ

(Feinberg, 1972). For the isothermal mass action law the principle
of detailed balance can be formulated as follows: there exists a
strictly positive point c� of detailed balance, at this point

wþs ðc
�Þ ¼w�s ðc

�Þ ð6Þ

for all s. This is, essentially, the same principle: if we substitute in
the general reaction rate (4) the fraction mi=RT by lnðci=c�i Þ, then we
will get the mass action law, and jþs ¼j�s . The principle of
detailed balance is closely related to the microreversibility and
Onsager relations.

More general condition was invented by Stueckelberg (1952)
for the Boltzmann equation. He produced them from the S-matrix
unitarity (the quantum complete probability formula). For the
general law (4) without direct-inverse reactions grouping for any
state the following identity holds:

X
s

jsexp
1

RT

X
i

asimi

 !
�
X

s

jsexp
1

RT

X
i

bsimi

 !
: ð7Þ

Even more general condition which guarantees the second law
and has clear microscopic sense (the complete probability does
not increase) was obtained by Gorban (1984): for any state

X
s

jsexp
1

RT

X
i

asimi

 !
Z

X
s

jsexp
1

RT

X
i

bsimi

 !
: ð8Þ

To obtain formulas for the isothermal mass action law, it is
sufficient just to apply the general law (4) with constant js to the
perfect free energy F ¼ RT

P
iciðlnciþmi0Þ with constant mi0. More

detailed analysis was presented, by Gorban (1984).
In any case, reaction constants are dependent, and this

dependence guarantees stability of equilibrium and existence of
global thermodynamic Lyapunov functions for closed systems (2)
with u¼ 0. Nevertheless, we often study equations for such
systems with oscillations, bifurcations, chaos, and other effects,
which are impossible in systems with global Lyapunov function.
Usually this means that we study a subsystem of a large system,
where some of concentrations do not change because they are
stabilized by external fluxes or by a large external reservoir. These
constant (or very slow) concentrations are included into new
reaction constants, and after this redefinition they can loose any
thermodynamic property.

2.2. Linear networks and ergodicity

In this section, we consider a general network of linear
reactions. This network is represented as a directed graph
(digraph) (Temkin et al., 1996): vertices correspond to compo-
nents Ai, edges correspond to reactions Ai-Aj with kinetic
constants kji40. For each vertex, Ai, a positive real variable ci

(concentration) is defined. A basis vector ei corresponds to Ai with
components ei

j ¼ dij, where dij is the Kronecker delta. The kinetic
equation for the system is

dci

dt
¼
X

j

ðkijcj � kjiciÞ; ð9Þ

or in vector form: _c ¼ Kc. We do not assume any special relation
between constants, and consider them as independent quantities.
The thermodynamic restrictions on constants are not applicable
here because, in general, we study pseudomonomolecular

A.N. Gorban et al. / Chemical Engineering Science 65 (2010) 2310–23242312
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systems which are subsystems of larger nonlinear systems and do
not represent by themselves closed monomolecular systems.

For any network of linear reactions the matrix of kinetic
coefficients K has the following properties:

� non-diagonal elements of K are non-negative;
� diagonal elements of K are non-positive;
� elements in each column of K have zero sum.

For any K with these properties there exists a network of linear
reactions with kinetic equation _c ¼ Kc. This family of matrices
coincide with the family of generators of finite Markov chains, and
this class of kinetic equations coincide with the class of inverse
Kolmogorov’s equations or master equations for the finite Markov
chains in continuous time (Meyn and Tweedie, 2009; Meyn,
2007).

A linear conservation law is a linear function defined on the
concentrations bðcÞ ¼

P
ibici, whose value is preserved by the

dynamics (9). The conservation laws coefficient vectors bi are left
eigenvectors of the matrix K corresponding to the zero eigenvalue. The
set of all the conservation laws forms the left kernel of the matrix K.
Eq. (9) always has a linear conservation law: b0ðcÞ ¼

P
ici ¼ const. If

there is no other independent linear conservation law, then the
system is weakly ergodic.

A set E is positively invariant with respect to kinetic Eq. (9), if
any solution cðtÞ that starts in E at time t0 (cðt0ÞAE) belongs to E

for t4t0 (cðtÞAE if t4t0). It is straightforward to check that the
standard simplex S¼ fc j ciZ0;

P
ici ¼ 1g is positively invariant

set for kinetic Eq. (9): just to check that if ci ¼ 0 for some i, and all
cjZ0 then _ciZ0. This simple fact immediately implies the
following properties of K:

� All eigenvalues l of K have non-positive real parts, Relr0,
because solutions cannot leave S in positive time.
� If Rel¼ 0 then l¼ 0, because intersection of S with any plane is

a polygon, and a polygon cannot be invariant with respect to
rotations to sufficiently small angles.
� The Jordan cell of K that corresponds to zero eigenvalue is

diagonal—because all solutions should be bounded in S for
positive time.
� The shift in time operator expðKtÞ is a contraction in the l1 norm

for t40: there exists such a monotonically decreasing function
dðtÞ (t40, 0odðtÞo1, dðtÞ-0 when t-1) that for any two
solutions of (9) cðtÞ; c0ðtÞASX

i

jciðtÞ � ci
0 ðtÞjrdðtÞ

X
i

jcið0Þ � ci
0 ð0Þj: ð10Þ

The ergodicity coefficient dðtÞ was introduced by Dobrushin
(1956) (see also a book by Seneta, 1981). It can be estimated using
the structure of the network graph (Gorban et al., 1986b; Meyn,
2007).

Two vertices are called adjacent if they share a common edge.
A path is a sequence of adjacent vertices. A graph is connected if
any two of its vertices are linked by a path. A maximal connected
subgraph of graph G is called a connected component of G. Every
graph can be decomposed into connected components.

A directed path is a sequence of adjacent edges where each
step goes in direction of an edge. A vertex A is reachable from a
vertex B, if there exists a directed path from B to A.

A non-empty set V of graph vertices forms a sink, if there are no
directed edges from AiAV to any Aj=2V. For example, in the
reaction graph A1’A2-A3 the one-vertex sets fA1g and fA3g are
sinks. A sink is minimal if it does not contain a strictly smaller
sink. In the previous example, fA1g, fA3g are minimal sinks.
Minimal sinks are also called ergodic components.

A digraph is strongly connected, if every vertex A is reachable
from any other vertex B. Ergodic components are maximal
strongly connected subgraphs of the graph, but inverse is not
true: there may exist maximal strongly connected subgraphs that
have outgoing edges and, therefore, are not sinks.

The weak ergodicity of the network follows from its topological
properties.

Theorem 1. The following properties are equivalent (and each one of

them can be used as an alternative definition of weak ergodicity):

(i) There exist the only independent linear conservation law for

kinetic Eq. (9) (this is b0ðcÞ ¼
P

ici ¼ const).
(ii) For any normalized initial state cð0Þ (b0ðcÞ ¼ 1) there exists a

limit state

c� ¼ lim
t-1

expðKtÞcð0Þ

that is the same for all normalized initial conditions: For all c,

lim
t-1

expðKtÞc¼ b0ðcÞc�:

(iii) For each two vertices Ai;Aj ðia jÞ we can find such a vertex Ak

that is reachable both from Ai and from Aj. This means that the

following structure exists:

Ai- � � �-Ak’ � � �’Aj:

One of the paths can be degenerated: it may be i¼ k or j¼ k.
(iv) The network has only one minimal sink (one ergodic compo-

nent).

The proof of this theorem could be extracted from detailed
books about Markov chains and networks (Meyn, 2007; Van
Mieghem, 2006). In its present form it was published by Gorban
et al. (1986b) with explicit estimations of ergodicity coefficients.

For every monomolecular kinetic system, the maximal number
of independent linear conservation laws (i.e. the geometric
multiplicity of the zero eigenvalue of the matrix K) is equal to
the maximal number of disjoint ergodic components (minimal
sinks).

2.3. Quasiequilibrium (QE) or fast equilibrium

Quasiequilibrium approximation uses the assumption that a
group of reactions is much faster than other and goes fast to its
equilibrium. We use below superscripts ‘f ’ and ‘s’ to distinguish
fast and slow reactions. A small parameter appears in the
following form

dc

dt
¼
X

s; slow

ws
sðc; TÞg

s
sþ

1

e
X
B; fast

wf
Bðc; TÞg

f
B: ð11Þ

To separate variables, we have to study the spaces of linear
conservation law of the initial system (11) and of the fast
subsystem

dc

dt
¼

1

e
X
B; fast

wf
Bðc; TÞg

f
B:

If they coincide, then the fast subsystem just dominates, and there
is no fast-slow separation for variables (all variables are either
fast, or constant). But if there exist additional linearly indepen-
dent linear conservation laws for the fast system, then let us
introduce new variables: linear functions b1ðcÞ; . . . ; bnðcÞ, where
b1ðcÞ; . . . ;bmðcÞ is the basis of the linear conservation laws for the
initial system, and b1ðcÞ; . . . ; bmþ lðcÞ is the basis of the linear
conservation laws for the fast subsystem. Then bmþ lþ1ðcÞ; . . . ; bnðcÞ

are fast variables, bmþ1ðcÞ; . . . ; bmþ lðcÞ are slow variables, and
b1ðcÞ; . . . ;bmðcÞ are constant. The quasiequilibrium manifold is given

A.N. Gorban et al. / Chemical Engineering Science 65 (2010) 2310–2324 2313
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by the equations
P

Bwf
Bðc; TÞgf

B ¼ 0 and for small e it serves as an
approximation to a slow manifold. In the old and standard
approach it is assumed that system (11) as well as system of fast
reactions satisfies the thermodynamic restrictions, and the
quasiequilibrium is just a partial thermodynamic equilibrium, and
could be defined by conditional extremum of thermodynamic
functions. This guarantees global stability of fast subsystems and
all the classical singular perturbation theory like Tikhonov
theorem could be applied.

Recently, Vora and Daoutidis (2001) took notice that this type
of reasoning does not require classical thermodynamic restric-
tions on constants. For example, let us consider the mass action
law kinetics and group the reactions in pairs, direct and inverse
reactions. If the set of stoichiometric vectors for fast reactions is
linearly independent, then for this system the detailed balance
principle holds (obviously), and it demonstrates the ‘‘thermo-
dynamic behavior’’ without connection to classical thermody-
namics. This case of ‘‘stoichiometrically independent fast
reactions’’ can be generalized for irreversible reactions too (Vora
and Daoutidis, 2001). For such fast system the quasiequilbrium
manifold has the same nice properties as for thermodynamic
partial equilibrium, and approximates slow dynamics for suffi-
ciently small e.

There are other classes of mass action law subsystems with
such a ‘‘quasithermodynamic’’ behavior, which depends on
structure, but not on constants. For example, any system of
reactions without interactions has such a property (Gorban et al.,
1986a). These reactions have the form aAi-

P
� � �: any linear

reaction are allowed, as well as reactions like 2Ai-AjþAk,
3Ai-AjþAkþAl, etc. All such fast subsystems can serve for
quasiequilibrium approximation, because for them dynamics is
globally stable.

Quasiequilibrium manifold approximates exponentially attrac-
tive slow manifold and is used in many areas of kinetics either as
initial approximation for slow motion, or just by itself (more
discussion and further references are presented by Gorban and
Karlin, 2005).

2.4. Quasi-steady state (QSS) or fast species

The quasisteady-state (or pseudo steady state) assumption was
invented in chemistry for description of systems with radicals or
catalysts. In the most usual version the species are split in two
groups with concentration vectors cs (‘‘slow’’ or basic compo-
nents) and cf (‘‘fast intermediates’’). For catalytic reactions there is
additional balance for cf, amount of catalyst, usually it is just a
sum bf ¼

P
ic

f
i . The amount of the fast intermediates is assumed

much smaller than the amount of the basic components, but the
reaction rates are of the same order, or even the same (both
intermediates and slow components participate in the same
reactions). This is the source of a small parameter in the system.
Let us scale the concentrations cf and cs to the compatible
amounts. After that, the fast and slow time appear and we could
write _cs

¼Wsðcs; cf Þ, _c f
¼ ð1=eÞW f ðcs; cf Þ, where e is small para-

meter, and functions Ws;W f are bounded and have bounded
derivatives (are ‘‘of the same order’’). We can apply the standard
singular perturbation techniques. If dynamics of fast components
under given values of slow concentrations is stable, then the slow
attractive manifold exists, and its zero approximation is given by
the system of equations W f ðcs; cf Þ ¼ 0. Bifurcations in fast system
correspond to critical effects, including ignition and explosion.

This scheme was analyzed many times with plenty of details,
examples, and some complications. Exhaustive case study of the
simplest enzyme reaction was provided by Segel and Slemrod
(1989). For heterogenous catalytic reactions, the book by

Yablonskii et al. (1991) gives analysis of scaling of fast inter-
mediates (there are many kinds of possible scaling). In the context
of the Computational Singular Perturbation (CSP) approach, Lam
(1993) and Lam and Goussis (1994) developed concept of the CSP
radicals. Gorban and Karlin (2003, 2005) considered QSS as initial
approximation for slow invariant manifold. Analysis of the error of
the QSS was provided by Turanyi et al. (1993).

The QE approximation is also extremely popular and useful. It
has simpler dynamical properties (respects thermodynamics, for
example, and gives no critical effects in fast subsystems of closed
systems). Nevertheless, neither radicals in combustion, nor
intermediates in catalytic kinetics are, in general, close to
quasiequilibrium. They are just present in much smaller amount,
and when this amount grows, then the QSS approximation fails.

The simplest demonstration of these two approximation gives
the simple reaction: SþE2SE-PþE with reaction rate constants
k7

1 and k2. The only possible quasiequilibrium appears when the
first equilibrium is fast: k7

1 ¼ k
7 =e. The corresponding slow

variable is Cs ¼ cSþcSE, bE ¼ cEþcSE ¼ const. For the QE manifold
we get a quadratic equation k�1 =kþ1 cSE ¼ cScE ¼ ðC

s � cSEÞðbE � cSEÞ.
This equation gives the explicit dependence cSEðC

sÞ, and the slow
equation reads _C

s
¼ � k2cSEðC

sÞ, CsþcP ¼ bS ¼ const.
For the QSS approximation of this reaction kinetics, under

assumption bE5bS, we have fast intermediates E and SE. For the
QSS manifold there is a linear equation kþ1 cScE � k�1 cSE � k2cSE ¼ 0,
which gives us the explicit expression for cSEðcSÞ: cSE ¼

kþ1 cSbE=ðk
þ
1 cSþk�1 þk2Þ (the standard Michaelis–Menten formula).

The slow kinetics reads _cS ¼ � kþ1 cSðbE � cSEðcSÞÞþk�1 cSEðcSÞ. The
difference between the QSS and the QE in this example is obvious.

The terminology is not rigorous, and often QSS is used for all
singular perturbed systems, and QE is applied only for the
thermodynamic exclusion of fast variables by the maximum
entropy (or minimum of free energy, or extremum of another
relevant thermodynamic function) principle (MaxEnt). This
terminological convention may be convenient. Nevertheless,
without any relation to terminology, the difference between these
two types of introduction of a small parameter is huge. There
exists plenty of generalizations of these approaches, which aim to
construct a slow and (almost) invariant manifold, and to
approximate fast motion as well. The following references can
give a first impression about these methods: Method of Invariant
Manifolds (MIM) (Roussel and Fraser, 1991; Gorban and Karlin,
2005), Method of Invariant Grids (MIG), a discrete analogue of
invariant manifolds (Gorban et al., 2004), Computational Singular
Perturbations (CSP) (Lam, 1993; Lam and Goussis, 1994; Zagaris
et al., 2004) Intrinsic Low-Dimensional Manifolds (ILDM) by Maas
and Pope (1992), developed further in series of works by Bykov
et al. (2006), methods based on the Lyapunov auxiliary theorem
(Kazantzis and Kravaris, 2006).

2.5. Lumping analysis

Wei and Prater (1962) demonstrated that for (pseudo)mono-
molecular systems there exist linear combinations of concentra-
tions which evolve in time independently. These linear
combinations (quasicomponents) correspond to the left eigenvec-
tors of kinetic matrix: if lK ¼ ll then dðl; cÞ=dt¼ ðl; cÞl, where the
standard inner product ðl; cÞ is concentration of a quasicomponent.
They also demonstrated how to find these quasicomponents in a
properly organized experiment.

This observation gave rise to a question: how to lump
components into proper quasicomponents to guarantee the
autonomous dynamics of the quasicomponents with appropriate
accuracy. Wei and Kuo studied conditions for exact (Wei and Kuo,
1969) and approximate (Kuo and Wei, 1969) lumping in
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monomolecular and pseudomonomolecular systems. They de-
monstrated that under certain conditions large monomolecular
system could be well-modeled by lower-order system.

More recently, sensitivity analysis and Lie group approach
were applied to lumping analysis (Li and Rabitz, 1989; Toth et al.,
1997), and more general nonlinear forms of lumped concentra-
tions are used (for example, concentration of quasicomponents
could be rational function of c).

Hutchinson and Luss (1970) studied lumping-analysis of
mixtures with many parallel first order reactions. Farkas (1999)
generalized these results and characterized those lumping
schemes which preserve the kinetic structure of the original
system. Coxson and Bischoff (1987) placed lumping analysis in the
linear systems theory and demonstrated the relationships be-
tween lumpability and the concepts of observability, controll-
ability and minimal realization. Djouad and Sportisse (2002)
considered the lumping procedures as efficient techniques leading
to non-stiff systems and demonstrated efficiency of developed
algorithm on kinetic models of atmospheric chemistry. Lin et al.
(2008) formulated an optimal lumping problem as a mixed
integer nonlinear programming (MINLP) and demonstrated that it
can be efficiently solved with a stochastic optimization method,
Tabu Search (TS) algorithm.

The power of lumping using a time-scale based approach was
demonstrated by Liao and Lightfoot (1988) and Whitehouse et al.
(2004). This computationally cheap approach combines ideas of
sensitivity analysis with simple and useful grouping of species
with similar lifetimes and similar topological properties caused by
connections of the species in the reaction networks. The lumped
concentrations in this approach are simply sums of concentrations
in groups. For example, species with similar composition and
functionalities could be lumped into one single representative
species (Pepiot-Desjardins and Pitsch, 2008).

Lumping analysis based both on mathematical arguments and
fundamental physical and chemical properties of the components
is now one of the main tools for model reduction in highly
multicomponent systems, such as the hydrocarbon mixture in
petroleum chemistry (Zavala et al., 2004) or biochemical net-
works in systems biology (Maria, 2006). The optimal solution of
lumping problem often requires the exhaustive search, and
instead of them various heuristics are used to avoid combinatorial
explosion. For the lumping analysis of the systems biology models
Dokoumetzidis and Aarons (2009) developed a heuristic greedy
search strategy which allowed them to avoid the exhaustive
search of proper lumped components.

Procedures of lumping analysis form a part of general algebra
of model building and model simplification transformations.
Hangos and Cameron (2001) applied formal methods of computer
science and artificial intelligence for analysis of this algebra. In
particular, a formal method for defining syntax and semantics of
process models has been proposed.

The modern systems and control theory provides efficient tools
for lumping-analysis. The so-called balanced model reduction was
invented in late 1970s (Moore, 1981). For a linear system a set of
‘‘target variables’’ is selected. The dimension of the system n is
large, while the number of the target variables, for example,
inputs m and outputs p, usually satisfies m; p5n. The balanced

model reduction problem can be stated as follows (Gugercin and
Antoulas, 2004): find a reduced order system such that the
following properties are satisfied:

(i) The approximation error in the target variables is small, and
there exists a global error bound.

(ii) System properties, like stability and passivity, are preserved.
(iii) The procedure is computationally efficient.

In large dimensions, special efforts are needed to resolve the
accuracy/efficiency dilemma and to find efficiently the approx-
imate solution of the model reduction problem (Antoulas and
Sorensen, 2002).

Various methods for balanced truncation are developed:
Lyapunov balancing, stochastic balancing, bounded real balancing,
positive real balancing, and frequency weighted balancing
(Gugercin and Antoulas, 2004). Nonlinear generalizations are
proposed as well (Lall et al., 2002; Condon and Ivanov, 2004).

2.6. Limiting steps

In the IUPAC Compendium of Chemical Terminology (2007)
one can find a definition of limiting steps. Rate-controlling (2007):
‘‘A rate-controlling (rate-determining or rate-limiting) step in a
reaction occurring by a composite reaction sequence is an
elementary reaction the rate constant for which exerts a strong
effect—stronger than that of any other rate constant—on the
overall rate.’’

Let us complement this definition by additional comment:
usually when people are talking about limiting step they expect
significantly more: there exists a rate constant which exerts such
a strong effect on the overall rate that the effect of all other rate
constants together is significantly smaller. For the IUPAC Com-
pendium definition a rate-controlling step always exists, because
among the control functions generically exists the biggest one. On
the contrary, for the notion of limiting step that is used in practice,
there exists a difference between systems with limiting step and
systems without limiting step.

During XX century, the concept of the limiting step was revised
several times. First simple idea of a ‘‘narrow place’’ (the least
conductive step) could be applied without adaptation only to a
simple cycle or a chain of irreversible steps that are of the first
order (see Chapter 16 of the book Johnston, 1966 or the paper by
Boyd, 1978). When researchers try to apply this idea in more
general situations they meet various difficulties such as:

� Some reactions have to be ‘‘pseudomonomolecular.’’ Their
constants depend on concentrations of outer components, and
are constant only under condition that these outer components
are present in constant concentrations, or change sufficiently
slow (i.e. are present in significantly bigger amount).
� Even under fixed or slow outer components concentration, the

simple ‘‘narrow place’’ behavior could be spoiled by branching
or by reverse reactions. The simplest example is given by the
cycle: A12A2-A3-A1. Even if the constant of the last step
A3-A1 is the smallest one, the stationary rate may be much
smaller than k3b (where b is the overall balance of concentra-
tions, b¼ c1þc2þc3), if the constant of the reverse reaction
A2-A1 is sufficiently big.

In a series of papers, Northrop (1981, 2001) clearly explained
these difficulties and suggested that the concept of rate-limiting
step is ‘‘outmoded’’. Nevertheless, the main idea of limiting is so
attractive that Northrop’s arguments stimulated the search for
modification and improvement of the main concept.

Ray (1983) proposed the use of sensitivity analysis. He
considered cycles of reversible reactions and suggested a defini-
tion: The rate-limiting step in a reaction sequence is that forward

step for which a change of its rate constant produces the largest effect

on the overall rate.
Ray’s approach was revised by Brown and Cooper (1993) from

the system control analysis point of view (see the book of Cornish-
Bowden and Cardenas, 1990). They stress again that there is no
unique rate-limiting step specific for an enzyme, and this step,
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even if it exists, depends on substrate, product and effector
concentrations.

Near critical conditions the critical simplification appears,
which is also a type of limitation, because some reactions become
critically important (Yablonsky et al., 2003)

Two classical examples of limiting steps demonstrate us the
chain of linear reaction and the linear catalytic cycle, when they
include a reaction which is significantly slower, than other
reactions.

A linear chain of reactions, A1-A2- � � �An, with reaction rate
constants ki (for Ai-Aiþ1), gives the first example of limiting
steps. Let the reaction rate constant kq be the smallest one. Then
we expect the following behavior of the reaction chain in time
scale \1=kq: all the components A1; . . . ;Aq�1 transform fast into
Aq, and all the components Aqþ1; . . . ;An�1 transform fast into An,
only two components, Aq and An are present (concentrations of
other components are small), and the whole dynamics in this time
scale can be represented by a single reaction Aq-An with reaction
rate constant kq. This picture becomes more exact when kq

becomes smaller with respect to other constants.
The catalytic cycle is one of the most important substructures

that we study in reaction networks. In the reduced form the
catalytic cycle is a set of linear reactions:

A1-A2- � � �An-A1:

Reduced form means that in reality some of these reaction are not
monomolecular and include some other components (not from
the list A1; . . . ;An). But in the study of the isolated cycle dynamics,
concentrations of these components are taken as constant and are
included into kinetic constants of the cycle linear reactions.

For the constant of elementary reaction Ai- we use the
simplified notation ki because the product of this elementary
reaction is known, it is Aiþ1 for ion and A1 for i¼ n. The
elementary reaction rate is wi ¼ kici, where ci is the concentration
of Ai. The kinetic equation is:

_ci ¼ ki�1ci�1 � kici; ð12Þ

where by definition c0 ¼ cn, k0 ¼ kn, and w0 ¼wn. In the stationary
state (_ci ¼ 0), all the wi are equal: wi ¼w. This common rate w we
call the cycle stationary rate, and

w¼
b

1

k1
þ . . .

1

kn

; ci ¼
w

ki
; ð13Þ

where b¼
P

ici is the conserved quantity for reactions in constant
volume. Let one of the constants, kmin, be much smaller than
others (let it be kmin ¼ kn):

kibkmin if ian: ð14Þ

In this case, in linear approximation w¼ knb,

cn ¼ b 1�
X
ion

kn

ki

 !
and ci ¼ b

kn

ki
for ian: ð15Þ

The simplest zero order approximation for the steady state
gives

cn ¼ b; ci ¼ 0 ðianÞ: ð16Þ

This is trivial: all the concentration is collected at the starting
point of the ‘‘narrow place,’’ but may be useful as an origin point
for various approximation procedures.

So, the stationary rate of a cycle is determined by the smallest
constant, kmin, if it is much smaller than the constants of all other
reactions (14):

w� kminb: ð17Þ

In that case we say that the cycle has a limiting step with constant
kmin.

3. Dynamics of catalytic cycle with limiting step

3.1. Eigenvalues

There is significant difference between the examples of
limiting steps for the chain of reactions and for irreversible cycle.
For the chain, the steady state does not depend on non-zero rate
constants. It is just cn ¼ b; c1 ¼ c2 ¼ � � � ¼ cn�1 ¼ 0. The smallest
rate constant kq gives the smallest positive eigenvalue, the
relaxation time is t¼ 1=kq. The corresponding approximation of
eigenmode (right eigenvector) r1 has coordinates: r1

1 ¼ � � � ¼ r1
q�1

¼ 0, r1
q ¼ 1, r1

qþ1 ¼ � � � ¼ r1
n�1 ¼ 0, rn ¼ � 1. This exactly corre-

sponds to the statement that the whole dynamics in the time scale
\1=kq can be represented by a single reaction Aq-An with
reaction rate constant kq. The left eigenvector for eigenvalue kq

has approximation l1 with coordinates l11 ¼ l12 ¼ � � � ¼ l1q ¼ 1, l1qþ1 ¼

� � � ¼ l1n ¼ 0. This vector provides the almost exact lumping on time
scale \1=kq. Let us introduce a new variable clump ¼

P
ilici, i.e.

clump ¼ c1þc2þ � � � þcq. For the time scale \1=kq we can write
clumpþcn � b, dclump=dt� � kqclump, dcn=dt� kqclump.

In the example of a cycle, we approximate the steady state, that
is, the right eigenvector r0 for zero eigenvalue (the left eigenvector
is known and corresponds to the main linear balance b: l0i � 1). In
the zero-order approximation, this eigenvector has coordinates
r0

1 ¼ � � � ¼ r0
n�1 ¼ 0, r0

n ¼ 1.
If kn=ki is small for all ion, then the kinetic behavior of the

cycle is determined by a linear chain of n� 1 reactions
A1-A2- � � �An, which we obtain after cutting the limiting step.
The characteristic equation for an irreversible cycle,Qn

i ¼ 1ðlþkiÞ �
Qn

i ¼ 1 ki ¼ 0, tends to the characteristic equation
for the linear chain, l

Qn�1
i ¼ 1ðlþkiÞ ¼ 0, when kn-0.

The characteristic equation for a cycle with limiting step
(kn=ki51) has one simple zero eigenvalue that corresponds to the
conservation law

P
ci ¼ b and n� 1 non-zero eigenvalues

li ¼ � kiþdi ðionÞ: ð18Þ

where di-0 when
P

ionkn=ki-0.
A cycle with limiting step (12) has real eigenspectrum and

demonstrates monotonic relaxation without damped oscillations.
Of course, without limitation such oscillations could exist, for
example, when all ki � k40, (i¼ 1; . . . ;n).

The relaxation time of a stable linear system (12) is, by
definition, t¼ 1=minfReð�liÞg (la0). For small kn, t� 1=kt, kt ¼

minfkig, (i¼ 1; . . . ;n� 1). In other words, for a cycle with limiting
step, kt is the second slowest rate constant: kmin5ktr � � �.

3.2. Eigenvectors for reaction chain and for catalytic cycle with

limiting step

Let the irreversible cycle include a limiting step: kn5ki

(i¼ 1; . . . ;n� 1) and, in addition, kn5 jki � kjj (i; j¼ 1; . . . ;n� 1,
ia j), then the eigenvectors of the kinetic matrix almost coincide
with the eigenvectors for the linear chain of reactions
A1-A2- � � �An, with reaction rate constants ki (for Ai-Aiþ1)
(Gorban and Radulescu, 2008).

The kinetic equation for the linear chain is

_ci ¼ ki�1ci�1 � kici: ð19Þ

The coefficient matrix K of these equations is very simple. It has
non-zero elements only on the main diagonal, and one position
below. The eigenvalues of K are�ki (i¼ 1; . . . ;n� 1) and 0. The left
and right eigenvectors for 0 eigenvalue, l0 and r0, are

l0 ¼ ð1;1; . . . ;1Þ; r0 ¼ ð0;0; . . . ;0;1Þ; ð20Þ

all coordinates of l0 are equal to 1, the only non-zero coordinate of
r0 is r0

n and we represent vector–column r0 in row.
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Below we use explicit form of K left and right eigenvectors. Let
vector–column ri and vector–row li be right and left eigenvectors of
K for eigenvalue �ki. For coordinates of these eigenvectors we use
notation ri

j and lij. Let us choose a normalization condition ri
i ¼ lii ¼ 1.

It is straightforward to check that ri
j ¼ 0 ðjo iÞ and lij ¼ 0 ðj4 iÞ,

ri
jþ1 ¼ kjrj=ðkjþ1 � kiÞ ðjZ iÞ and lij�1 ¼ kj�1lj=ðkj�1 � kjÞ ðjr iÞ, and

ri
iþm ¼

Ym
j ¼ 1

kiþ j�1

kiþ j � ki
; lii�m ¼

Ym
j ¼ 1

ki�j

ki�j � ki
: ð21Þ

It is convenient to introduce formally k0 ¼ 0. Under selected
normalization condition, the inner product of eigenvectors is:
lirj ¼ dij, where dij is the Kronecker delta.

If the rate constants any two constants, ki, kj are connected by
relation kibkj or ki5kj (i.e. they are well separated), then

ki�j

ki�j � ki
�

1 if ki5ki�j;

0 if kibki�j:

(
ð22Þ

Hence, jlii�mj � 1 or jlii�mj � 0. To demonstrate that also jri
iþmj � 1 or

jri
iþmj � 0, we shift nominators in the product (21) on such a way:

ri
iþm ¼

ki

kiþm � ki

Ym�1

j ¼ 1

kiþ j

kiþ j � ki
:

Exactly as in (22), each multiplier kiþ j=ðkiþ j � kiÞ here is either
almost 1 or almost 0, and ki=ðkiþm � kiÞ is either almost 0 or
almost �1. In this zero-one asymptotics

lii ¼ 1; lii�m � 1

if ki�j4ki for all j¼ 1; . . . ;m else lii�m � 0;

ri
i ¼ 1; ri

iþm � � 1

if kiþ j4ki for all j¼ 1; . . .m� 1

and kiþmoki else ri
iþm � 0: ð23Þ

In this asymptotic (Fig. 1), only two coordinates of right
eigenvector ri can have non-zero values, ri

i ¼ 1 and ri
iþm � � 1

where m is the first such positive integer that iþmon and
kiþmoki. Such m always exists because kn ¼ 0. For left eigenvector
li, lii � � � � l

i
i�q � 1 and lii�q�j � 0 where j40 and q is the first such

positive integer that i� q� 140 and ki�q�1oki. It is possible that
such q does not exist. In that case, all lii�j � 1 for jZ0. It is
straightforward to check that in this asymptotic lirj ¼ dij.

The simplest example gives the order k1bk2b � � �bkn�1:
lii�j � 1 for jZ0, ri

i ¼ 1, ri
iþ1 � � 1 and all other coordinates of

eigenvectors are close to zero. For the inverse order,
k15k25 � � �5kn�1, lii ¼ 1, ri

i ¼ 1, ri
n � � 1 and all other coordi-

nates of eigenvectors are close to zero.
For less trivial example, let us find the asymptotic of left and

right eigenvectors for a chain of reactions:

A1-
5

A2-
3

A3-
4

A4-
1

A5-
2

A6;

where the upper index marks the order of rate constants:
k4bk5bk2bk3bk1 (ki is the rate constant of reaction Ai- � � �).

For left eigenvectors, rows li, we have the following asympto-
tics:

l1 � ð1;0;0;0;0;0Þ; l2 � ð0;1;0;0;0;0Þ;

l3 � ð0;1;1;0;0;0Þ; l4 � ð0;0;0;1;0;0Þ;

l5 � ð0;0;0;1;1;0Þ: ð24Þ

For right eigenvectors, columns ri, we have the following
asymptotics (we write vector–columns in rows):

r1 � ð1;0;0;0;0;�1Þ; r2 � ð0;1;�1;0;0;0Þ;

r3 � ð0;0;1;0;0;�1Þ; r4 � ð0;0;0;1;�1;0Þ;

r5 � ð0;0;0;0;1;�1Þ: ð25Þ

The corresponding approximation to the general solution of the
kinetic equations is

cðtÞ ¼ ðl0; cð0ÞÞr0þ
Xn�1

i ¼ 1

ðlicð0ÞÞriexpð�kitÞ; ð26Þ

where cð0Þ is the initial concentration vector, and for left and right
eigenvectors li and ri we use their zero-one asymptotic. In other
words, approximation of the left eigenvectors provides us with
almost exact lumping (for analysis of exact lumping see the paper
by Li and Rabitz, 1989).

4. Acyclic non-branching network: explicit formulas for
eigenvectors

So, to analyze asymptotic of eigenvalues and eigenvectors for a
irreversible cycle, we cut the reaction with the smallest constant,
get a linear chain, and analyze the eigenvalues and eigenvectors
for this chain. For a general multiscale reaction network (instead
of a cycle) we will come, after some surgery, to acyclic non-
branching reaction networks (instead of a linear chain).

For any network without branching, we can simplify the notation
for the kinetic constants, by introducing ki ¼ kji for the only reaction
Ai-Aj, or ki ¼ 0, if there is no such a reaction. Also it is useful to
introduce a map f on the set of vertices: fðiÞ ¼ j, if there exist
reaction Ai-Aj, and fðiÞ ¼ i if there are no outgoing reactions from
the Ai-Aj. For iterations of the map f we use notation fq.

For an acyclic non-branching reaction network, for any vertex
Ai there is an eigenvalue �ki and the corresponding eigenvector. If
Ai is a sink vertex, then this eigenvalue is zero. For left and right
eigenvectors of K that correspond to Ai we use notations li (vector-
row) and ri (vector–column), correspondingly.

Let us suppose that Af is a sink vertex of the network. Its
associated right and left eigenvectors corresponding to the zero
eigenvalue are given by: ri

j ¼ dij; lij ¼ 1 if and only if fq
ðjÞ ¼ i for

some q40.
For non-zero eigenvalues, right eigenvectors will be con-

structed by recurrence starting from the vertex Ai and moving in
the direction of the flow. The construction is in opposite direction
for left eigenvectors.

For right eigenvector ri only coordinates ri
fk
ðiÞ

(k¼ 0;1; . . . ; ti)
could have non-zero values, and

ri
fkþ 1

ðiÞ
¼

kfk
ðiÞ

kfkþ 1
ðiÞ
� ki

ri
fk
ðiÞ
¼
Yk

j ¼ 0

kfj
ðiÞ

kfjþ 1
ðiÞ
� ki

¼
ki

kfkþ 1
ðiÞ
� ki

Yk�1

j ¼ 0

kfjþ 1
ðiÞ

kfjþ 1
ðiÞ
� ki

: ð27Þ

For left eigenvector li coordinate lij could have non-zero value only
if there exists such qZ0 that fq

ðjÞ ¼ i (this q is unique because the

  
 -< k < k

l

k
r

Fig. 1. Graphical representation of eigenvectors approximation for the linear chain

of reactions with well separated constants. To find the left (l) and right (r)

eigenvectors for eigenvalue k it is necessary to delete from the chain all the

reactions with the rate constants ok (dashed lines) and to find the maximal

connected interval, where the reaction with constant k (bold arrow) is situated.

The right eigenvector r has coordinate 1 for the vertex, which is the beginning of

the reaction with constant k, and coordinate �1 for the vertex, which is end of the

interval in the direction of reactions. The left eigenvector l has coordinate 1 for the

beginning of the reaction with constant k and for all preceding vertices from the

connected interval. All other coordinates of r and l are zero.
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system is acyclic):

lij ¼
kj

kj � ki
lifðjÞ ¼

Yq�1

k ¼ 0

kfk
ðjÞ

kfk
ðjÞ
� ki

: ð28Þ

For well separated constants, we can write the asymptotic
representation explicitly, analogously to (23) (Fig. 2). For left
eigenvectors, lii ¼ 1 and lij ¼ 1 (for ia j) if there exists such q that
fq
ðjÞ ¼ i, and kfd

ðjÞ
4ki for all d¼ 0; . . . ;q� 1, else lij ¼ 0. For right

eigenvectors, ri
i ¼ 1 and ri

fk
ðiÞ
¼ � 1 if kfk

ðiÞ
oki and for all positive

mok inequality kfm
ðiÞ4ki holds, i.e. k is first such positive integer

that kfk
ðiÞ
oki (for fixed point Ap we use kp ¼ 0). Vector ri has not

more than two non-zero coordinates. It is straightforward to
check that in this asymptotic lirj ¼ dij.

For example, let us find that asymptotic for a branched acyclic
system of reactions:

A1-
7

A2-
5

A3-
6

A4-
2

A5-
4

A8; A6-
1

A7-
3

A4:

where the upper index marks the order of rate constants:
k64k44k74k54k24k34k1 (ki is the rate constant of
reaction Ai- � � �).

For zero eigenvalue, the left and right eigenvectors are

l8 ¼ ð1;1;1;1;1;1;1;1;1Þ; r8 ¼ ð0;0;0;0;0;0;0;1Þ:

For left eigenvectors, rows li, that correspond to non-zero
eigenvalues we have the following asymptotics:

l1 � ð1;0;0;0;0;0;0;0Þ; l2 � ð0;1;0;0;0;0;0;0Þ;

l3 � ð0;1;1;0;0;0;0;0Þ; l4 � ð0;0;0;1;0;0;0;0Þ;

l5 � ð0;0;0;1;1;1;1;0Þ; l6 � ð0;0;0;0;0;1;0;0Þ:

l7 � ð0;0;0;0;0;1;1;0Þ: ð29Þ

For the corresponding right eigenvectors, columns ri, we have the
following asymptotics (we write vector–columns in rows):

r1 � ð1;0;0;0;0;0;0;�1Þ; r2 � ð0;1;�1;0;0;0;0;0Þ;

r3 � ð0;0;1;0;0;0;0;�1Þ; r4 � ð0;0;0;1;�1;0;0;0Þ;

r5 � ð0;0;0;0;1;0;0;�1Þ; r6 � ð0;0;0;0;0;1;�1;0Þ;

r7 � ð0;0;0;0;�1;0;1;0Þ: ð30Þ

5. Calculating the dominant system for a linear multiscale
network

5.1. Problem statement

We study asymptotical behavior of the transformation of the
kinetic matrix K to the normal form along the lines lnkij ¼ yijx

when x-1. For almost all direction vectors ðyijÞ (outside several
hyperplanes) there exists a minimal reaction network which
reaction rate constants are monomials of kij (

Q
ijk

fij

ij , where fij are
not obligatory positive numbers) and eigenvectors and eigenva-
lues approximate the eigenvectors and eigenvalues when x-1
with arbitrary high relative accuracy. We call this minimal system
the dominant system. Existence of dominant systems is proven by
direct construction (this Section) and estimates of accuracy of
approximations (Appendix).

The dominant systems coincide for vectors ðyijÞ from some
polyhedral cones. Therefore, we do not need to study a given value
of ðyijÞ but rather have to build these cones together with the
correspondent dominant systems. The following formal rule
(‘‘assumption of well separated constants’’) allows us to simplify
this task: if in construction of dominant systems we need to
compare two monomials, Mf ¼

Q
ijk

fij

ij and Mg ¼
Q

ijk
gij

ij then we can
always state that either Mf bMg or Mf 5Mg and consider the
logarithmic hyperplane Mf ¼Mg as a boundary between different
cones. At the end, we can join all cones with the same dominant
system. We are interested in robust asymptotic and do not analyze
directions ðyijÞ which belong to the boundary hyperplanes. This
robust asymptotic with well separated constants and acyclic
dominant systems is typical because the exclusive direction
vectors belon to a finite number of hyperplanes.

There may be other approaches based on: (i) the Maslov
dequantization and idempotent algebras (Litvinov and Maslov,
2005), (ii) the limit of log-uniform distributions in wide boxes of
constants under some conditions (Feng et al., 2004; Gorban and
Radulescu, 2008), or (iii) on consideration of all possible orderings
of all monomials with integer exponents and construction of
correspondent dominant systems (Robbiano, 1985 proved that
there exists only a final number of such orderings and enumerated
all of them, see also the book by Greuel and Pfister, 2002). They
give the same final result but with different intermediate steps.

5.2. Auxiliary operations

5.2.1. From reaction network to auxiliary dynamical system

Let us consider a reaction network W with a given structure
and fixed ordering of constants. The set of vertices of W is A and
the set of elementary reactions is R. Each reaction from R has the
form Ai-Aj, Ai;AjAA. The corresponding constant is kji. For each
AiAA we define ki ¼maxjfkjig and fðiÞ ¼ arg maxjfkjig. In addition,
fðiÞ ¼ i if kji ¼ 0 for all j.

The auxiliary discrete dynamical system for the reaction network
W is the dynamical system F¼FW defined by the map f on the
finite set A. The auxiliary reaction network (Fig. 3) V ¼ VW has the
same set of vertices A and the set of reactions Ai-AfðiÞ with
reaction constants ki. Auxiliary kinetics is described by _c ¼ ~K c,
where ~K ij ¼ � kjdijþkjdifðjÞ.

5.2.2. Decomposition of discrete dynamical systems on finite sets

Discrete dynamical system on a finite set V ¼ fA1;A2; . . . ;Ang is
a semigroup 1;f;f2; . . ., where f is a map f : V-V . AiAV is a
periodic point, if fl

ðAiÞ ¼ Ai for some l40; else Ai is a transient
point. A cycle of period l is a sequence of l distinct periodic points
A;fðAÞ;f2

ðAÞ; . . . ;fl�1
ðAÞ with fl

ðAÞ ¼ A. A cycle of period one
consists of one fixed point, fðAÞ ¼ A. Two cycles, C;C 0 either
coincide or have empty intersection.

The set of periodic points, Vp, is always non-empty. It is a union
of cycles: Vp ¼[jCj. For each point AAV there exist such a positive
integer tðAÞ and a cycle CðAÞ ¼ Cj that fq

ðAÞACj for qZtðAÞ. In that
case we say that A belongs to basin of attraction of cycle Cj and use
notation AttðCjÞ ¼ fA jCðAÞ ¼ Cjg. Of course, Cj � AttðCjÞ. For different

< k
1

l

r
1 1

-11
1

1
1

< k

< k

k

Fig. 2. Graphical representation of eigenvectors approximation for the acyclic non-

branching reaction network with well separated constants (compare to Fig. 1). The

eigenvalue �k corresponds to the reaction Ai-AfðiÞ (bold arrow). To the right from

Ai are vertices Afq
ðiÞ and to the left are those Aj , for which there exists such q that

fq
ðjÞ ¼ i. The reactions with the rate constants ok (dashed lines) are deleted from

the network. The right and left eigenvectors could have non-zero coordinates only

for vertices from the maximal connected subgraph of the presented graph, where

the Ai is situated. The right eigenvector r has coordinate 1 for Ai (beginning of the

bold arrow), and coordinate �1 for the vertex, which is the minimal in that

connected subgraph. The left eigenvector l has coordinate 1 for the beginning of

the reaction with constant k and for all preceding vertices from the subgraph. All

other coordinates of r and l are zero.
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cycles, AttðCjÞ \ AttðClÞ ¼ |. If A is periodic point then tðAÞ ¼ 0. For
transient points tðAÞ40.

So, the phase space V is divided onto subsets AttðCjÞ (Fig. 4).
Each of these subsets includes one cycle (or a fixed point, that is a
cycle of length 1). Sets AttðCjÞ are f-invariant: fðAttðCjÞÞ � AttðCjÞ.
The set AttðCjÞ\Cj consist of transient points and there exists such
positive integer t that fq

ðAttðCjÞÞ ¼ Cj if qZt.
Discrete dynamical systems on a finite sets correspond to

graphs without branching points. Notice that for the graph that
represents a discrete dynamic system, attractors are ergodic
components, while basins are connected components.

5.3. Algorithm for calculating the dominant system

For this general case, the algorithm consists of two main
procedures: (i) cycles gluing and (ii) cycles restoration and cutting.

5.3.1. Cycles gluing

Let us start from a reaction network W with a given structure
and fixed ordering of constants. The set of vertices of W is A and
the set of elementary reactions is R.

If all attractors of the auxiliary dynamic system FW are fixed
points Af 1;Af 2; . . . ; AA, then the auxiliary reaction network is
acyclic, and the auxiliary kinetics approximates relaxation of the
whole network W .

In general case, let the system FW have several attractors that
are not fixed points, but cycles C1;C2; . . . with periods
t1; t2; . . .41. By gluing these cycles in points, we transform the
reaction network W into W1. The dynamical system FW is
transformed into F1. For these new system and network, the
connection F1

¼FW1 persists: F1 is the auxiliary discrete
dynamical system for W1.

For each cycle, Ci, we introduce a new vertex Ai. The new set of
vertices, A1

¼A [ fA1;A2; . . .g\ð[iCiÞ (we delete cycles Ci and add
vertices Ai).

All the reaction A-B from the initial set R, (A;BAA) can be
separated into 5 groups:

(i) both A;B=2[iCi;
(ii) A=2[iCi, but BACi;

(iii) AACi, but B=2[iCi;

(iv) AACi, BACj, ia j;
(v) A;BACi.

Reactions from the first group do not change. Reaction from the
second group transforms into A-Ai (to the whole glued cycle)
with the same constant. Reaction of the third type changes into
Ai-B with the rate constant renormalization: let the cycle Ci be the
following sequence of reactions A1-A2- � � �Ati

-A1, and the
reaction rate constant for Ai-Aiþ1 is ki (kti

for Ati
-A1). For the

limiting reaction of the cycle Ci we use notation klim i. If A¼ Aj and
k is the rate reaction for A-B, then the new reaction Ai-B has the
rate constant kklim i=kj. This corresponds to a quasistationary
distribution on the cycle (15). The new rate constant is smaller
than the initial one: kklim i=kjok, because klim iokj due to
definition of limiting constant. The same constant renormaliza-
tion is necessary for reactions of the fourth type. These reactions
transform into Ai-Aj. Finally, reactions of the fifth type vanish.

After we glue all the cycles (Fig. 5) of auxiliary dynamical
system in the reaction network W, we get W1. Let us assign
W :¼W1, A :¼ A1 and iterate until we obtain an acyclic network
and exit. This acyclic network is a ‘‘forest’’ and consists of trees
oriented from leafs to a root. The number of such trees coincide
with the number of fixed points in the final network.

After gluing we can identify the reactions, which will be
included into the dominant system. Their constants are the critical

parameters of the networks. The list of these parameters, consists
of all reaction rates of the final acyclic auxiliary network, and of
the rate constants of the glued cycles, but without their limiting
steps. Some of these parameters are rate constants of the initial
network, other have the monomial structure. Other constants and
corresponding reactions do not participate in the following
operations. To form the structure of the dominant network, we
need one more procedure.

5.3.2. Cycles restoration and cutting

We start the reverse process from the glued network Vm onAm.
On a step back, from the set Am to Am�1 and so on, some of glued
cycles should be restored and cut. On the q th step we build an
acyclic reaction network on Am�q, the final network is defined on
the initial vertex set and approximates relaxation of W.

To make one step back from Vm let us select the vertices of Am

that are glued cycles from Vm�1. Let these vertices be Am
1 ;A

m
2 ; . . . :

Each Am
i corresponds to a glued cycle from Vm�1, Am�1

i1

-Am�1
i2 - � � �Am�1

iti
-Am�1

i1 , of the length ti. We assume that the
limiting steps in these cycles are Am�1

iti
-Am�1

i1 . Let us substitute each
vertex Am

i in Vm by ti vertices Am�1
i1 ;Am�1

i2 ; . . .Am�1
iti

and add to Vm

reactions Am�1
i1 -Am�1

i2 - � � �Am�1
iti

(that are the cycle reactions
without the limiting step) with corresponding constants from Vm�1.

If there exists an outgoing reaction Am
i -B in Vm then we

substitute it by the reaction Am�1
iti

-B with the same constant, i.e.
outgoing reactions Am

i - � � � are reattached to the heads of the
limiting steps (Fig. 6). Let us rearrange reactions from Vm of the form

C1 C2 Cq

Att(C2)Att(C1) Att(Cq)

Fig. 4. Decomposition of a discrete dynamical system.

Ai

Aj
kji

A1

Aj
QSkjici

1
QS

CAl

cl

C

Fig. 5. Gluing a cycle with rate constants renormalization. cQS
l

are the quasista-

tionary concentrations on the cycle. After gluing, we have to leave the outgoing

from A1 reaction with the maximal renormalized rate constant, and delete others.

Ai

Aj

maxl {kli}kji

Fig. 3. Construction of the auxiliary reaction network by pruning. For every vertex,

it is necessary to leave the outgoing reaction with maximal reaction rate constant.

Other reactions should be deleted.
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B-Am
i . These reactions have prototypes in Vm�1 (before the last

gluing). We simply restore these reactions. If there exists a reaction
Am

i -Am
j then we find the prototype in Vm�1, A-B, and substitute

the reaction by Am�1
iti

-B with the same constant, as for Am
i -Am

j .
After that step is performed, the vertices set is Am�1, but the

reaction set differs from the reactions of the network Vm�1: the
limiting steps of cycles are excluded and the outgoing reactions of
glued cycles are included (reattached to the heads of the limiting
steps). To make the next step, we select vertices of Am�1 that are
glued cycles from Vm�2, substitute these vertices by vertices of
cycles, delete the limiting steps, attach outgoing reactions to the
heads of the limiting steps, and for incoming reactions restore
their prototypes from Vm�2, and so on.

After all, we restore all the glued cycles, and construct an
acyclic reaction network on the set A. This acyclic network
approximates relaxation of the network W . We call this system
the dominant system of W and use notation dom modðWÞ.

In the simplest case, the dominant system is determined by the
ordering of constants. But for sufficiently complex systems we need
to introduce auxiliary elementary reactions. They appear after cycle
gluing and have monomial rate constants of the form kB ¼

Q
ik
Bi

i ,
where Bi are integers, but not mandatory positive. The dominant
system depends on the place of these monomial values among the
ordered constants. For systems with well separated constants we
can also assume that each of these new constants will be well
separated from other constants (Gorban and Radulescu, 2008).

5.4. Example

To demonstrate a possible branching of described algorithm for
cycles surgery (gluing, restoring and cutting) with necessity of
additional orderings, let us consider the following system:

A1-
1

A2-
6

A3-
2

A4-
3

A5-
4

A3; A4-
5

A2 ð31Þ

where the upper index marks the order of rate constants. The
auxiliary discrete dynamical system for reaction network (31) is

A1-
1

A2-
6

A3-
2

A4-
3

A5-
4

A3:

It has only one attractor, a cycle A3-
2

A4-
3

A5-
4

A3. This cycle is not
a sink for the whole network (31) because reaction A4-

5
A2 leads

from that cycle. After gluing the cycle into a vertex A1
3 we get the

new network A1-
1

A2-
6

A1
3-
?

A2. The rate constant for the reaction
A1

3-A2 is k1
23 ¼ k24k35=k54, where kij is the rate constant for the

reaction Aj-Ai in the initial network (k35 is the cycle limiting
reaction). The new network coincides with its auxiliary system
and has one cycle, A2-

6
A1

3-
?

A2. This cycle is a sink, hence, we can

start the back process of cycles restoring and cutting. One
question arises immediately: which constant is smaller, k32 or
k1

23. The smallest of them is the limiting constant, and the answer
depends on this choice. Let us consider two possibilities
separately: (1) k324k1

23 and (2) k32ok1
23.

(1) Let as assume that k324k1
23. The final auxiliary system after

gluing cycles is A1-
1

A2-
6

A1
3-
?

A2. Let us delete the limiting
reaction A1

3-
?

A2 from the cycle. We get an acyclic system
A1-

1
A2-

6
A1

3. The component A1
3 is the glued cycle A3-

2

A4-
3

A5-
4

A3. Let us restore this cycle and delete the limiting
reaction A5-

4
A3. We get the dominant system A1-

1
A2

-
6

A3-
2

A4-
3

A5. Relaxation of this system approximates relaxation
of the initial network (31) under additional condition k324k1

23.
(2) Let as assume now that k32ok1

23. The final auxiliary system
after gluing cycles is the same, A1-

1
A2-

6
A1

3-
?

A2, but the limiting
step in the cycle is different, A2-

6
A1

3. After cutting this step, we get
acyclic system A1-

1
A2’

?A1
3, where the last reaction has rate

constant k1
23.

The component A1
3 is the glued cycle

A3-
2

A4-
3

A5-
4

A3:

Let us restore this cycle and delete the limiting reaction A5-
4

A3.
The connection from glued cycle A1

3-
?

A2 with constant k1
23

transforms into connection A5-
?

A2 with the same constant k1
23.

We get the dominant system:

A1-
1

A2; A3-
2

A4-
3

A5-
?

A2:

The order of constants is now known: k214k434k544k1
23, and

we can substitute the sign ‘‘?’’ by ‘‘4’’: A3-
2

A4-
3

A5-
4

A2.
For both cases, k324k1

23 (k1
23 ¼ k24k35=k54) and k32ok1

23 it is
easy to find the eigenvectors explicitly and to write the solution to
the kinetic equations in explicit form.

6. The reversible triangle of reactions

In this section, we illustrate the analysis of dominant systems
on a simple example, the reversible triangle of reactions.

A12A22A32A1: ð32Þ

This triangle appeared in many works as an ideal object for a case
study. Our favorite example is the work of Wei and Prater (1962).
Now in our study the triangle (32) is not necessarily a closed
system. We can assume that it is a subsystem of a larger system,
and any reaction Ai-Aj represents a reaction of the form
� � � þAi-Ajþ � � �, where unknown but slow components are
substituted by dots. This means that there are no mandatory
relations between reaction rate constants, and six reaction rate
constants are arbitrary non-negative numbers.

Let the reaction rate constant k21 for the reaction A1-A2 be the
largest.

Let us describe all possible auxiliary dynamical systems for the
triangle (32). For each vertex, we have to select the fastest
outgoing reaction. For A1, it is always A1-A2, because of our
choice of enumeration (the higher scheme in Fig. 7). There exist
two choices of the fastest outgoing reaction for two other vertices
and, therefore, only four versions of auxiliary dynamical systems
for (32) (Fig. 7). Let us analyze in detail case (a). For the cases (b)
and (c) the details of computations are similar. The irreversible
cycle (d) is even simpler and was already discussed.

6.1. Auxiliary system (a): A12A2’A3; k124k32, k234k13

6.1.1. Gluing cycles

The attractor is a cycle (with only two vertices) A12A2. This is
not a sink, because two outgoing reactions exist: A1-A3 and

A

k

k2
A

A2

k

k2


klim

kklim / ki

A

A2

Ai

Aj

Aj

k

ki

k
A

Fig. 6. The main operation of the cycle surgery: on a step back we get a cycle

A1- � � �-At-A1 with the limiting step At-A1 and one outgoing reaction Ai-Aj.

We should delete the limiting step, reattach (‘‘recharge’’) the outgoing reaction

Ai-Aj from Ai to At and change its rate constant k to the rate constant kklim=ki . The

new value of reaction rate constant is always smaller than the initial one:

kklim=ki ok if klim aki . For this operation only one condition k5ki is necessary (k

should be small with respect to reaction Ai-Aiþ1 rate constant, and can exceed

any other reaction rate constant).
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A2-A3. They are relatively slow: k315k21 and k325k12. The
limiting step in this cycle is A2-A1 with the rate constant k12. We
have to glue the cycle A12A2 into one new component A1

1 and to
add a new reaction A1

1-A3 with the rate constant (see Fig. 5)

k1
31 ¼maxfk32; k31k12=k21g: ð33Þ

As a result, we get a new system, A1
12A3 with reaction rate

constants k1
31 (for A1

1-A3) and initial k23 (for A1
1’A3). This cycle is

a sink, because it has no outgoing reactions (the whole system is a
trivial example of a sink).

6.1.2. Dominant system

At the next step, we have to restore and cut the cycles. First
cycle to cut is the result of cycle gluing, A1

12A3. It is necessary to
delete the limiting step, i.e. the reaction with the smallest rate
constant. If k1

314k23, then we get A1
1-A3. If, inverse, k234k1

31,
then we obtain A1

1’A3.
After that, we have to restore and cut the cycle which was

glued into the vertex A1
1. This is the two-vertices cycle A12A2. The

limiting step for this cycle is A1’A2, because k21bk12. If k1
314k23,

then following the rule visualized by Fig. 6, we get the dominant
system A1-A2-A3 with reaction rate constants k21 for A1-A2

and k1
31 for A2-A3. If k234k1

31 then we obtain A1-A2’A3 with
reaction rate constants k21 for A1-A2 and k23 for A2’A3. All the
procedure is illustrated by Fig. 8.

6.1.3. Eigenvalues and eigenvectors

The eigenvalues and the corresponding eigenvectors for
dominant systems in case (a) are represented below in zero-one
asymptotic.

(i) k1
314k23,

the dominant system A1-A2-A3:

l0 ¼ 0; r0 � ð0;0;1Þ; l0 ¼ ð1;1;1Þ;

l1 � � k21; r1 � ð1;�1;0Þ; l1 � ð1;0;0Þ;

l2 � � k1
31; r2 � ð0;1;�1Þ; l2 � ð1;1;0Þ: ð34Þ

(ii) k234k1
31,

the dominant system A1-A2’A3:

l0 ¼ 0; r0 � ð0;1;0Þ; l0 ¼ ð1;1;1Þ;

l1 � � k21; r1 � ð1;�1;0Þ; l1 � ð1;0;0Þ;

l2 � � k23; r2 � ð0;�1;1Þ; l2 � ð0;0;1Þ: ð35Þ

Here, the value of k1
31 is given by formula (33).

Analysis of examples provided us by an important conclusion:
the number of different dominant systems in examples was less

than the number of all possible orderings. For many pairs of
constants kij; klr it is not important which of them is larger. There
is no need to consider all orderings of monomials. We have to
consider only those inequalities between constants and mono-
mials that appear in the construction of the dominant systems.

7. Corrections to dominant dynamics

The hierarchy of systems W, W1, W2, . . . can be used for
multigrid correction of the dominant dynamics. The simple
example of multigrid approach gives the algorithm of steady
state approximation (Gorban and Radulescu, 2008). For this
purpose, on the way up (cycle restoration and cutting, Section
5.3.2) we calculate distribution in restoring cycles with higher
accuracy, by exact formula (13), or in linear approximation (15)
instead of the simplest zero-one asymptotic (16). Essentially, the
way up remains the same.

After termination of the gluing process, we can find all steady
state distributions by restoring cycles in the auxiliary reaction
network Vm . Let Am

f 1;A
m
f 2; . . . be fixed points of Fm. The set of steady

states for Vm is the set of all distributions on the set of fixed points
fAm

f 1;A
m
f 2; . . .g.

Let us take one of the basis distributions, cm
fi ¼ 1, other ci ¼ 0 on

Vm. If the vertex Am
fi is a glued cycle, then we substitute them by all

the vertices of this cycle. Redistribute the concentration cm
fi

between the vertices of the corresponding cycle by rule (13) (or
by an approximation). As a result, we get a set of vertices and a
distribution on this set of vertices. If among these vertices there
are glued cycles, then we repeat the procedure of cycle restora-
tion. Terminate when there is no glued cycles in the support of the
distribution.

The resulting distribution is the approximation to a steady
state of W, and the basis of steady states for W can be
approximated by this method.

For example, for the system Fig. 8 we have, first of all, to
compute the stationary distribution in the cycle A1

12A3, c1
1 and c3.

On the base of the general formula for a simple cycle (13) we
obtain

w¼
1

1

k1
31

þ
1

k23

; c1
1 ¼

w

k1
31

; c3 ¼
w

k23
: ð36Þ

After that, we have to restore the cycle glued into A1
1. This

means to calculate the concentrations of A1 and A2 with normal-
ization c1þc2 ¼ c1

1. Formula (13) gives

w0 ¼
c1

1

1

k21
þ

1

k12

; c1 ¼
w0

k21
; c2 ¼

w0

k12
: ð37Þ

For eigenvectors, there appear two operations of corrections:
(i) correction for an acyclic network without branching (43), (45),
and (ii) corrections for a cycle with relatively slow outgoing

A1

A3

A2

A1

A3

A2 A1

A3

A2A1

A3

A2 A1

A3

A2
(a) (d)(b) (c)

Attractors

Fig. 7. Four possible auxiliary dynamical systems for the reversible triangle of

reactions with k21 4kij for ði; jÞað2;1Þ: (a) k12 4k32, k23 4k13; (b) k12 4k32,

k13 4k23; (c) k32 4k12, k23 4k13; (d) k32 4k12, k13 4k23. For each vertex the

outgoing reaction with the largest rate constant is represented by the solid bold

arrow, and other reactions are represented by the dashed arrows. The digraphs

formed by solid bold arrows are the auxiliary discrete dynamical systems.

Attractors of these systems are isolated in frames.

A1

A3

A2
(a)

1A1

A3

k23
1k31

A2

1A1

A3

k21
1k31

A3
1 k23if k31

A2

k21
A3

1k31if k23

A1

A1

k23

1k31

1A1

A3

k23

Fig. 8. Dominant systems for case (a) (defined in Fig. 7).

A.N. Gorban et al. / Chemical Engineering Science 65 (2010) 2310–2324 2321



Author's personal copy
ARTICLE IN PRESS

reactions (49). These corrections are by-products of the accuracy
estimates given in Appendix.

8. Conclusion

Now, the idea of limiting step is developed to the asymptotol-
ogy of multiscale reaction networks. We found the main terms of
eigenvectors and eigenvalues asymptotic on logarithmic straight
lines lnkij ¼ yijx when x-1. These main terms could be
represented by acyclic dominant system which is a piecewise
constant function of the direction vectors ðyijÞ. This theory gives
the analogue of the Vishik and Ljusternik (1960) theory for
chemical reaction networks. We demonstrated also how to
construct the accuracy estimates and the first order corrections
to eigenvalues and eigenvectors.

There are several ways of using the developed theory and
algorithms:

� For direct computation of steady states and relaxation
dynamics; this may be useful for complex systems because
of the simplicity of the algorithm and resulting formulas and
because often we do not know the rate constants for complex
networks, and kinetics that is ruled by orderings rather than by
exact values of rate constants may be very useful in practically
frequent situation when the values of the various reaction
constants are unknown or poorly known.
� For planning experiments and mining the experimental

data—the observable kinetics is more sensitive to reactions
from the dominant network, and much less sensitive to other
reactions, the relaxation spectrum of the dominant network is
explicitly connected with the correspondent reaction rate
constants, and the eigenvectors (‘‘modes’’) are sensitive to
the constant ordering, but not to exact values.
� The steady states and dynamics of the dominant system could

serve as a robust first approximation in perturbation theory or
as a preconditioning in numerical methods.

The next step should be development of asymptotic estimates
for networks with modular structure and time separations
between modules, not between individual reactions. But now it
seems that the most important further development should be
the asymptotology of nonlinear reaction networks. For multiscale
nonlinear reaction networks the expected dynamical behavior is
to be approximated by the system of dominant networks. These
networks may change in time (this is the significant difference
from the linear case) but remain relatively simple.

Appendix A. Mathematical backgrounds of accuracy
estimation

A.1. Estimates for perturbed acyclic networks

The famous Gerschgorin theorem (Marcus and Minc, 1992; Varga,
2004) gives estimates of eigenvalues. We need also estimates of
eigenvectors. Below A¼ ðaijÞ is a complex n	 n matrix, Qi ¼

P
j;ja i

jajij (sums of non-diagonal elements in columns).
Gerschgorin theorem (Marcus and Minc, 1992, p. 146): The

characteristic roots of A lie in the closed region GQ of the z-plane

GQ ¼
[

i

GQ
i ðG

Q
i ¼ fz j jz� aiijrQig: ð38Þ

Areas GQ
i are the Gerschgorin disks. (The same estimate are valid

for sums in rows, Pi. Here and below we do not duplicate the
estimates.)

Gerschgorin disks GQ
i (i¼ 1; . . . ;n) are isolated, if GQ

i \ GQ
j ¼ |

for ia j. If disks GP
i (i¼ 1; . . . ;n) are isolated, then the spectrum of

A is simple, and each Gerschgorin disk GQ
i contains one and only

one eigenvalue of A (Marcus and Minc, 1992, p. 147).
We assume that Gerschgorin disks GQ

i (i¼ 1; . . .n) are isolated:
for all i; j (ia j)

jaii � ajjj4QiþQj: ð39Þ

Let us introduce the following notations:

Qi

jaiij
¼ ei; e¼max

i
ei;

jaijj

jajjj
¼ wij; w¼max

i;j;ia j
wij;

gi ¼min
j;ja i

jaii � ajjj

jaiij
; g ¼min

i
gi: ð40Þ

Usually, we consider ei and wij as sufficiently small numbers. In
contrary, the diagonal gap g should not be small, (this is the gap

condition). For example, if for any two diagonal elements aii, ajj

either aiibajj or aii5ajj, then gi\1 for all i.
Let liAGQ

i be the eigenvalue of A (jli � a11joQ1). Let us
estimate the corresponding right eigenvector rðiÞ. We take ri

i ¼ 1
and for ja i introduce a ðn� 1Þ-dimensional vector ~xi: ~xi

j ¼ ri
jðajj �

aiiÞ (ia j). For ~xi we get equation

ð1� BðiÞÞ ~xi ¼ � ~ai ð41Þ

where ~ai is a vector of the non-diagonal elements of the i th
column of A ( ~ai

j ¼ aij, ja i), and the ðn� 1Þ 	 ðn� 1Þ matrix Bi has
matrix elements (j; la i)

bðiÞjj ¼
li � aii

ajj � aii
; bðiÞjl ¼

ajl

all � aii
ðla jÞ: ð42Þ

Due to the Gerschgorin estimate, jbðiÞjj joQi=jajj � aiij. From Eq. (41)
we obtain

~xi ¼ � ~ai � BðiÞð1� BðiÞÞ�1 ~ai: ð43Þ

From this definition and simple estimates in l1 norm, we get the
following estimate of eigenvectors.

Theorem 2. Let the Gerschgoring disks be isolated, and the diagonal

gap be big enough: g4ne. Then for the ith eigenvector of A the

following uniform estimate holds:

jri
j jr

w
g
þ

ne2

gðg � neÞ ðja1; ri
i ¼ 1Þ: ð44Þ

So, if the matrix A is diagonally dominant and the diagonal gap g

is big enough, then the eigenvectors are proven to be close to the
standard basis vectors with explicit evaluation of accuracy.

The first correction to eigenvectors is also given by Eq. (43). If
for the iteration we use the Gerschgorin estimates for eigenvalue
li � aii, then we can write in the next approximation for
eigenvectors ðri

i ¼ 1; ja iÞ:

ri
j ¼ �

aji

ajj � aii
�
ðBðiÞndð1� BðiÞndÞ

�1 ~aiÞj

ajj � aii
; ð45Þ

where BðiÞnd is the non-diagonal part of BðiÞ: it has the same non-
diagonal elements and zeros on diagonal. There exists plenty of
further simplifications for this iteration formula. For example, one
can leave just the first term, that gives the first order approxima-
tion in the power of e (wre).

To apply these estimates to an acyclic network supplemented
by additional reactions, we have to use the eigenbasis of this
acyclic network (Section 4). Direct use of this theorem and
estimates for a kinetic matrix K in the standard basis
is impossible, the diagonal dominance in this coordinate system
is not large, and sums of elements in columns are zero. To apply
this theorem we need two lemmas.
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Let W be a reaction network without branching (a finite
dynamical system) with n vertices. Then the number of reactions
in W is n� f , where f is the number of fixed points (the vertices
without outgoing reactions). Let G be the set of stoichiometric
vectors for W.

Lemma 1. G forms a basis in the subspace fc j
P

ici ¼ 0g if and only if

the reaction network W is acyclic and connected (has only one fixed

point).

Let us consider a general reaction network on the set A1; . . . ;An.
For stoichiometric vector of reaction Ai-Al we use notation gli.
Assume that the auxiliary dynamical system i8fðiÞ for a given
reaction network is acyclic and has only one attractor, a fixed
point. For this auxiliary network, we use notation: ki ¼ kji for the
only reaction Ai-Aj, or ki ¼ 0.

For every reaction of the initial network, Ai-Al, a linear
operators Qil can be defined by its action on the basis vectors,
gfðiÞi:

QilðgfðiÞ iÞ ¼ gli; QilðgfðpÞ pÞ ¼ 0 for pa i: ð46Þ

Lemma 2. The kinetic equation for the whole reaction network (9)
could be transformed to the form

dc

dt
¼
X

i

1þ
X

l;lafðiÞ

kli

ki
Qil

0
@

1
AgfðiÞ ikici

¼ 1þ
X

j;l ðlafðjÞÞ

klj

kj
Qjl

0
@

1
AX

i

gfðiÞ ikici

¼ 1þ
X

j;l ðlafðjÞÞ

klj

kj
Qjl

0
@

1
A ~K c; ð47Þ

where ~K is kinetic matrix of the kinetic equation for the auxiliary

network.

By construction of auxiliary dynamical system, klioki if lafðiÞ,
and for reaction networks with well separated constants kli5ki.
Notice also that the matrix Qjl does not depend on rate constants
values.

For matrix ~K we have the eigenbasis in explicit form. Let us
represent system (47) in this eigenbasis of ~K . Any matrix B in this
eigenbasis has the form B¼ ð ~bijÞ,

~b ij ¼ liBrj
¼
P

qsl
i
qbqsr

j
s, where ðbqsÞ

is matrix B in the initial basis, li and rj are left and right
eigenvectors of ~K (27), (28). In eigenbasis of ~K the estimates of
eigenvalues and estimates of eigenvectors are much more efficient
than in original coordinates: the system is strongly diagonally
dominant. Transformation to this basis is an effective precondi-
tioning for the perturbation theory that uses auxiliary kinetics as
a first approximation to the kinetics of the whole system.

A.2. Estimates for perturbed ergodic systems

Let us consider a strongly connected network with kinetic
matrix K. The corresponding kinetics is ergodic and there exists
unique normalized steady state c�i 40,

P
ic
�
i ¼ 1. For each i we

define ki ¼
P

jkji. The number �ki is the ii th diagonal element of
unperturbed kinetic matrix K.

Let this network be perturbed by outgoing reactions Ai-0. The
perturbation has the ‘‘loss form’’: the perturbed matrix is
K � diagðeikiÞ, perturbation of each diagonal element is relatively
small (diag is the diagonal matrix).

The perturbations eiki are relatively small with respect to ki,
but not obligatory small with respect to other rate constants.

First, we do not assume anything about value of eiZ0 and
make the following transformation. For an arbitrary normalized
vector r (riZ0,

P
iri ¼ 1) we add to the network reactions Ai-Aj

with reaction rates qji ¼ rjeiki. We use Q ðrÞ for the kinetic matrix of
this additional network. Simple algebra gives

Q ðrÞþdiagðeikiÞ ¼ ½e1k1r; e2k2r; . . . ; enknr


¼ rðe1k1; e2k2; . . . ; enknÞ: ð48Þ

Here, in the right hand side we have a matrix, all columns of
which are proportional to the vector r, this is a product of r on the
vector-raw of coefficients. We represent the perturbed matrix in
the form K � diagðeikiÞ ¼ KþQ ðrÞ � ðQ ðrÞþdiagðeikiÞÞ.

Theorem 3. There exists such normalized positive r� that

ðKþQ ðr�ÞÞr� ¼ 0. This r� is an eigenvector of the perturbed network

with the eigenvalue l¼
P

ir
�
i eiki, and, at the same time, it is a

steady-state for the network with kinetic matrix KþQ ðr�Þ.

To prove existence it is sufficient to mention, that for any r the

network with kinetic matrix KþQ ðrÞ has unique positive normalized

steady state c�ðrÞ, which depends continuously on r. The map r8c�ðrÞ

has a fixed point r� (the Brouwer fixed point theorem).

This representation allows us to produce useful estimates, for
example, when the unperturbed system is a cycle, we find jr�i �
c�i jo3ejc�i j under condition eo0:25, where e¼

P
ei. Formula for

the first correction gives ðr� ¼ c�i þdri; w¼ kic
�
i Þ:

dri ¼
vi

ki
; vi ¼ vþw

Xi

j ¼ 1

ðec�j � ejÞ;

v¼
w

n

Xn

i ¼ 1

iðec�i � eiÞ: ð49Þ

For more complex networks, the explicit formulas for corrections
could be produced on the base of the network graphs, similar to
the steady-state formulas, presented, for example, by Yablonskii et
al. (1991).

So, the asymptotic analysis gives good approximation of
eigenvectors and eigenvalues for kinetic matrix. The condition
number is big (unbounded) but these estimates work even better
when the constants become more separated. Nevertheless, some
caution is needed: the error is proven to be small, but the
residuals (the values JKr � lrJ for approximations of r and l) may
be not small (Gorban and Radulescu, 2008).
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