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IntroductIon

In many fields of science, one meets with multivariate (multidimensional) distributions of vectors rep-
resenting some observations. These distributions are often difficult to analyse and make sense of due to 
the very nature of human brain which is able to visually manipulate only with the objects of dimension 
no more than three.

This makes actual the problem of approximating the multidimensional vector distributions by objects 
of lower dimension and/or complexity while retaining the most important information and structures 
contained in the initial full and complex data point cloud.

ABStrAct

In many physical, statistical, biological and other investigations it is desirable to approximate a system 
of points by objects of lower dimension and/or complexity. For this purpose, Karl Pearson invented 
principal component analysis in 1901 and found ‘lines and planes of closest fit to system of points’. The 
famous k-means algorithm solves the approximation problem too, but by finite sets instead of lines and 
planes. This chapter gives a brief practical introduction into the methods of construction of general 
principal objects (i.e., objects embedded in the ‘middle’ of the multidimensional data set). As a basis, 
the unifying framework of mean squared distance approximation of finite datasets is selected. Principal 
graphs and manifolds are constructed as generalisations of principal components and k-means principal 
points. For this purpose, the family of expectation/maximisation algorithms with nearest generalisa-
tions is presented. Construction of principal graphs with controlled complexity is based on the graph 
grammar approach.
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The most trivial and coarse approximation is collapsing the whole set of vectors into its mean point. 
The mean point represents the ‘most typical’ properties of the system, completely forgetting variability 
of observations.

The notion of the mean point can be generalized for approximating data by more complex types of 
objects. In 1901 Pearson proposed to approximate multivariate distributions by lines and planes (Pearson, 
1901). In this way the Principal Component Analysis (PCA) was invented, nowadays a basic statistical 
tool. Principal lines and planes go through the ‘middle’ of multivariate data distribution and correspond 
to the first few modes of the multivariate Gaussian distribution approximating the data.

Starting from 1950s (Steinhaus, 1956; Lloyd, 1957; and MacQueen, 1967), it was proposed to ap-
proximate the complex multidimensional dataset by several ‘mean’ points. Thus k-means algorithm was 
suggested and nowadays it is one of the most used clustering methods in machine learning (see a review 
presented by Xu & Wunsch, 2008).

Both these directions (PCA and K-Means) were further developed during last decades following two 
major directions: 1) linear manifolds were generalised for non-linear ones (in simple words, initial lines 
and planes were bended and twisted), and 2) some links between the ‘mean’ points were introduced. This 
led to the appearance of several large families of new statistical methods; the most famous from them 
are Principal Curves, Principal Manifolds and Self-Organising Maps (SOM). It was quickly realized that 
the objects that are constructed by these methods are tightly connected theoretically. This observation 
allows now to develop a common framework called “Construction of Principal Objects”. The geometrical 
nature of these objects can be very different but all of them serve as data approximators of controllable 
complexity. It allows using them in the tasks of dimension and complexity reduction. In Machine Learn-
ing this direction is connected with terms ‘Unsupervised Learning’ and ‘Manifold Learning.’

In this chapter we will overview the major directions in the field of principal objects construction. 
We will formulate the problem and the classical approaches such as PCA and k-means in a unifying 
framework, and show how it is naturally generalised for the Principal Graphs and Manifolds and the 
most general types of principal objects, Principal Cubic Complexes. We will systematically introduce 
the most used ideas and algorithms developed in this field.

Approximations of Finite datasets

Definition. Dataset is a finite set X of objects representing N multivariate (multidimensional) observa-
tions. These objects xi∈X, i =1…N, are embedded in Rm and in the case of complete data are vectors 
xi∈Rm. We will also refer to the individual components of xi as x

k
i  such that xi i i

m
ix x x= ( , ,..., )

1 2
; we 

can also represent dataset as a data matrix X x
j
i= { } .

Definition. Distance function dist(x,y) is defined for any pair of objects x, y from X such that three usual 
axioms are satisfied: dist(x,x) = 0, dist(x,y) = dist(y,x), dist(x,y)+dist(y,z) ≤ dist(x,z).

Definition. Mean point MF(X) for X is a vector MF∈Rm such that M y x
y
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In this form the definition of the mean point goes back to Fréchet (1948). Notice that in this definition 
the mean point by Fréchet can be non-unique. However, this definition allows multiple useful gener-
alisations including using it in the abstract metric spaces. It is easy to show that in the case of complete 
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data and the Euclidean distance function dist( , ) ( )x y x y= -
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, or, more generally, in the case 

of any quadratic distance function (for example, Mahalanobis distance), the mean point is the standard 
expectation 
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Definition. Orthogonal projection P(x,Y) (generalised) is defined for an object x and a set (not necessar-
ily finite) of vectors Y as a vector in Y such that P Y dist

Y
( , ) arg min ( , )x x y

y
=

Î
. Notice that in principle, 

one can have non-unique and even infinitely many projections of x on Y.

Definition. Mean squared distance MSD(X,Y) between a dataset X and a set of vectors Y is defined 

as MSD( , ) dist ( , ( , ))X Y
N
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weighted mean squared distance MSD ( , ) dist ( , ( , ))
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x x , where wi > 0 is 
a weight for the object xi.

Our objective in the rest of the chapter is to briefly describe the methods for constructing various 
approximations (principal objects) for a dataset X. In almost all cases the principal objects will be 
represented as a finite or infinite set of vectors Y∈Rm such that 1) it approximates the finite dataset X 
in the sense of minimisation of MSD(X,Y), and 2) it answers some regularity conditions that will be 
discussed below.

probabilistic Interpretation of Statistics and notion of Self-consistency

In his original works, Pearson followed the principle that the only reality in data analysis is the dataset, 
embedded in a multidimensional metric space. This approach can be called geometrical. During the 20th 
century, probabilistic interpretation of statistics was actively developed. Accordingly to this interpreta-
tion, a dataset X is one particular of i.i.d. sample from a multidimensional probability distribution F(x) 
which defines a probability of appearance of a sample in the point x∈Rm.

The probability distribution, if can be estimated, provides a very useful auxiliary object allowing to 
define many notions in the theory of statistical data analysis. In particular, it allows us to define principal 
manifolds as self-consistent objects.

The notion of self-consistency in this context was first introduced by Efron (1967) and developed 
in the works of Flury (Tarpey & Flury, 1996), where it is claimed to be one of the most fundamental in 
statistical theory.

Definition. Given probability distribution F(x) and a set of vectors Y we say that Y is self-consistent with 
respect to F(x) if y E x x y= =

F
P Y( ( , ) )  for every vector y∈Y. In words, it means that any vector y∈Y 

is a conditional mean expectation of point x under condition that x is orthogonally projected in y.
The disadvantage of this definition for finite datasets is that it is not always possible to calculate the 

conditional mean, since typically for points y∈Y it is only one or zero point projected from X. This means 
that for finite datasets we should develop coarse-grained self-consistency notion. Usually it means that 
for every point y∈Y one defines some kind of neighbourhood and introduces a modified self-consistency 
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with respect to this neighbourhood instead of y itself. Concrete implementations of this idea are described 
further in this chapter. In all cases, the effective size of the neighbourhood is a fundamental parameter 
in controlling the complexity of the resulting approximator Y.

Four Approaches to classical pcA

We can define linear principal manifolds as mean squared distance data approximators, constructed 
from linear manifolds embedded in Rm. In fact, this corresponds to the original definition of principal 
lines and planes by Pearson (Pearson, 1901). However, PCA method was re-invented in other fields 
and even obtained different names (Karhunen-Loève or KL decomposition (Karhunen, 1946; Loève, 
1955), Hotteling transform (Hotelling, 1933), Proper Orthogonal Decomposition (Lumley, 1967)) and 
others. Here we formulate four equivalent ways to define principal components that the user can meet 
in different applications.

Let us consider a linear manifold Lk of dimension k in the parametric form Lk = {a0 + β1a1 + … + βkak 
| βi∈R }, a0∈Rm and {a1,…, ak} is a set of orthonormal vectors in Rm.

Definition of PCA problem #1 (data approximation by lines and planes): PCA problem consists in 
finding such sequence Lk (k=1,2,…,m-1) that the sum of squared distances from data points to their 
orthogonal projections on Lk is minimal over all linear manifolds of dimension k embedded in Rm: 
MSD( , ) minX L

k
®  (k=1,2,…,m-1).

Definition of PCA problem #2 (variance maximisation): For a set of vectors X and for a given ai, let us 
construct a one-dimensional distribution Βi = {β: β = (x,ai), x∈X} where (·,·) denotes scalar vector prod-
uct. Then let us define empirical variance of X along ai as Var(Bi), where Var() is the standard empirical 
variance. PCA problem consists in finding such Lk that the sum of empirical variances of X along a1,…, 
ak would be maximal over all linear manifolds of dimension k embedded in Rm: Var( ) max

..

Bi

i k=
å ®

1

. 

Let us also consider an orthogonal complement {ak+1, …, am} of the basis {a1, …, ak}. Then an equivalent 
definition (minimization of residue variance) is

Var( ) minBi

i k

m
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1 . 

Definition of PCA problem #3 (mean point-to-point squared distance maximisation): PCA problem 
consists in finding such sequence Lk that the mean point-to-point squared distance between the orthogo-
nal projections of data points on Lk is maximal over all linear manifolds of dimension k embedded in 
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lower-dimensional space lead to contraction of all point-to-point distances (except for some that do not 
change), this is equivalent to minimisation of mean squared distance distortion:
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In the three above mentioned definitions, the basis vectors are defined up to an arbitrary rotation that 
does not change the manifold. To make the choice less ambiguous, in the PCA method the following 
principle is applied: given {a0, a1,…,ak}, any ‘embedded’ linear manifold of smaller dimension s in the 
form Ls = {a0 + β1a1 + …+ βsas| βi∈R,s < k}, must be itself a linear principal manifold of dimension s 
for X (a flag of principal subspaces).

Definition of PCA problem #4 (correlation cancellation): Find such an orthonormal basis (a1,…, as) in 
which the covariance matrix for x is diagonal. Evidently, in this basis the distributions (ai,x) and (aj,x), 
for i ≠ j, have zero correlation.

Definitions 1-3 were given for finite datasets while definition 4 is sensible both for finite datasets and 
random vector x. For finite datasets the empiric correlation should be cancelled. The empiric principal 
components which annul empiric correlations could be considered as an approximation to the principal 
components of the random vector.

Equivalence of the above-mentioned definitions in the case of complete data and Euclidean space 
follows from Pythagorean Theorem and elementary algebra. However, in practice this or that definition 
can be more useful for computations or generalisations of the PCA approach. Thus, only definitions #1 
and #3 are suitable for working with incomplete data since they are defined with use of only distance 
function that can be easily calculated for the ‘gapped’ data vectors (see further). The definition #1 can be 
generalized by weighting data points (Cochran & Horne, 1977), while the definition #3 can be generalized 
by weighting pairs of data points (Gabriel & Zamir, 1979). More details about PCA and generalisations 
could be found in the fundamental book by Jollliffe (2002).

Basic expectation/maximisation Iterative Algorithm 
for Finding principal objects

Most of the algorithms for finding principal objects for a given dataset X are constructed accordingly 
to the classical expectation/maximisation (EM) splitting scheme that was first formulated as a generic 
method by Dempster et al (1977):

Generic Expectation-Maximisation algorithm for estimating principal objects
1)  Initialisation step. Some initial configuration of the principal object Y is generated;
2)  Expectation (projection) step. Given configuration of Y, calculate orthogonal projections P(x,Y), 

for all x∈X;
3)  Maximisation step. Given the calculated projections, find more optimal configuration of Y with 

respect to X.
4)  (Optional) adaptation step. Using some strategy, change the properties of Y (typically, add or 

remove points to Y).
5)  ℜepeat steps 2-4 until some convergence criteria would be satisfied.

For example, for the principal line, we have the following implementation of the above mentioned 
bi-iteration scheme (Bauer, 1957; for generalisations see works of ℜoweis (1998) and Gorban & ℜossiev 
(1999)).
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Iterative algorithm for calculating the first principal component
1)  Set a0 = MF(X) (i.e., zero order principal component is the mean point of X);
2)  Choose randomly a1;

3)  Calculate b
i
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5)  ℜe-normalize a a a

1 1 1
: || ||= .

6)  ℜepeat steps 3-5 until the direction of a1 do not change more than on some small angle ε.

Remark. To calculate all other principal components, deflation approach is applied: after finding a1, 
one calculates new X(1) = X - a0 - a1(x,a1), and the procedure is repeated for X(1).

Remark. The basic EM procedure has good convergence properties only if the first eigenvalues of 
the empirical covariance matrix XTX are sufficiently well separated. If this is not the case, more sophis-
ticated approaches are needed (Bau & Trefethen, 1997).

The PCA method can be treated as spectral decomposition of the symmetric and positively de-

fined empirical covariance data matrix (defined in the case of complete data) C
N
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, where without loss of generality we suppose that the data are centered.

Definition. We call σ > 0 a singular value for the data matrix X iff there exist two vectors of unit 
length aσ and bσ such that X Ta bs ss=  and b as ssX T= . Then the vectors aσ = {a a

m1
( ) ( ), ,s s
 } and 

bσ = {b b
N1

( ) ( ), ,s s
 } are called left and right singular vectors for the singular value σ.

If we know all p singular values of X, where p = rank(X) ≤ min(N, m), then we can represent X as 
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. It is called the singular value decomposition (SVD) of X. It is 

easy to check that the vectors a(l) correspond to the principal vectors of X and the eigenvectors of the 
empirical covariance matrix C, whereas b(l) contain projections of N points onto the corresponding prin-

cipal vector. Eigenvalues λl of C and singular values σl of X and are connected by l s
l lN
=

-
( )1

1

2
.

The mathematical basis for SVD was introduced by Sylvester (1889) and it represents a solid math-
ematical foundation for PCA (Strang, 1993). Although formally the problems of spectral decomposition 
of X and eigen decomposition of C are equivalent, the algorithms for performing singular decomposition 
directly (without explicit calculation of C) can be more efficient and robust (Bau III & Trefethen, 1997). 
Thus, the iterative EM algorithm for calculating the first principal component described in the previous 
chapter indeed performs singular decomposition (for centered data we simply put a0 = 0) and finds right 
singular (principal) and left singular vectors one by one.

k-means and principal points

K-means clustering goes back to 1950s (Steinhaus (1956); Lloyd (1957); and MacQueen (1967)). It is 
another extreme in its simplicity case of finding a principal object. In this case it is simply an unstructured 
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finite (and usually, much smaller than the number of points N in the dataset X) set of vectors (centroids). 
One can say that the solution searched by the k-means algorithm is a set of k principal points (Flury, 
1990).

Definition. A set of k points Y={y1,..,yk}, yi∈Rm is called a set of principal points for dataset X if it 
approximates X with minimal mean squared distance error over all sets of k-points in Rm (distortion):

dist2( , ( , )) minx x
x

P Y
XÎ

å ® , where P(x,Y) is the point from Y closest to x. Note that the set of principal 

points can be not unique.
The simplest implementation of the k-means procedure follows the classical EM scheme:

Basic k-means algorithm
1)  Choose initial position of y1,..,yk randomly from xi∈X (with equal probabilities);
2)  Partition X  into subsets Ki,  i=1..k  of data points by their proximity to yk: 

K
i i Y j

j

= =
Î

{ : arg min ( , )}x y x y
y

dist ;

3)  ℜe-estimate y x
x

i
i KK

i

=
Î
å1

| |
, i = 1..k;

4)  ℜepeat steps 2-3 until complete convergence.

The method is sensitive to the initial choice of y1,..,yk . Arthur & Vassilvitskii (2007) demonstrated 
that the special construction of probabilities instead of equidistribution gives serious advantages. The 
first centre, y1, they select equiprobable from X. Let the centres y1,..,yj are chosen (j < k) and D(x) be 
the squared shortest distance from a data point x to the closest centre we have already chosen. Then, we 
select the next centre, yj+1, from xi∈X with probability

p D D
i i

X

( ) ( ) ( )x x x
x

=
Î
å . 

Evidently, any solution of k-means procedure converges to a self-consistent set of points Y={y1,..,yk} 
(because Y = E[P(X,Y)]), but this solution may give a local minimum of distortion and is not necessary 
the set of principal points (which is the globally optimal approximator from all possible k-means solu-
tions).

Multiple generalisations of k-means scheme have been developed (see, for example, a book of 
Mirkin (2005) based on the idea of ‘data recovering’). The most computationally expensive step of the 
algorithm, partitioning the dataset by proximity to the centroids, can be significantly accelerated using 
kd-tree data structure (Pelleg & Moore, 1999). Analysis of the effectiveness of EM algorithm for the 
k-means problem was given by Ostrovsky et al. (2006).

Notice that the case of principal points is the only in this chapter when self-consistency and coarse-
grained self-consistency coincide: centroid yk is the conditional mean point for the data points belonging 
to the Voronoi region associated with yk.
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local pcA

The term ‘Local PCA’ was first used by Braverman (1970) and Fukunaga & Olsen (1971) to denote the 
simplest cluster-wise PCA approach which consists in 1) applying k-means or other type of clustering to 
a dataset and 2) calculating the principal components for each cluster separately. However, this simple 
idea performs rather poorly in applications, and more interesting approach consists in generalizing k-
means by introducing principal hyperplane segments proposed by Diday (1979) and called ‘k-segments’ 
or local subspace analysis in a more advanced version (Liu, 2003). The algorithm for their estimation 
follows the classical EM scheme.

Further development of the local PCA idea went in two main directions. First, Verbeek (2002) pro-
posed a variant of the ‘k-segment’ approach for one-dimensional segments accompanied by a strategy 
to assemble disconnected line segments into the global piecewise linear principal curve. Einbeck et al 
(2008) proposed an iterative cluster splitting and joining approach (recursive local PCA) which helps 
to select the optimal number and configuration of disjoined segments.

Second direction is associated with a different understanding of ‘locality’. It consists in calculating 
local mean points and local principal directions and following them starting from (may be multiple) 
seed points. Locality is introduced using kernel functions defining the effective radius of neighborhood 
in the data space. Thus, Delicado (2001) introduced principal oriented points (POP) based on the vari-
ance maximisation-based definition of PCA (#2 in our chapter). POPs are different from the principal 
points introduced above because they are defined independently one from another, while the principal 
points are defined globally, as a set. POPs can be assembled into the principal curves of oriented points 
(PCOP). Einbeck (2005) proposed a simpler approach based on local tracing of principal curves by 
calculating local centers of mass and the local first principal components.

Som Approach for principal manifold Approximation and its generalisations

Kohonen in his seminal paper (Kohonen, 1982) proposed to modify the k-means approach by introduc-
ing connections between centroids such that a change in the position of one centroid would also change 
the configuration of some neighboring centroids. Thus Self-Organizing Maps (SOM) algorithm was 
developed.

With the SOM algorithm (Kohonen, 1982) we take a finite metric space V with metric ρ and try 
to map it into Rm with combinations of two criteria: (1) the best preservation of initial structure in the 
image of V and (2) the best approximation of the dataset X. In this way, SOMs give the most popular 
approximations for principal manifolds: we can take for V a fragment of a regular s-dimensional grid 
and consider the resulting SOM as the approximation to the s-dimensional principal manifold (Mulier 
& Cherkassky, 1995; ℜitter et al, 1992; Yin H. 2008).

The SOM algorithm has several setup variables to regulate the compromise between these goals. 
In the original formulation by Kohonen, we start from some initial approximation of the map, φ1: V → 
Rm. Usually this approximation lies on the s-dimensional linear principal manifold. On each k-th step 
of the algorithm we have a chosen datapoint x∈X and a current approximation φk: V → Rm. For these 
x and φk we define an ‘owner’ of x in V: v v

x v V k
= -Îarg min ( )x j . The next approximation, φk+1, is 

φk+1(v) = hk×w(ρ(v,vx))(x− φk(v)). Here hk is a step size, 0 ≤ w(ρ(v,vx)) ≤ 1 is a monotonically decreasing 
neighborhood function. This process proceeds in several epochs, with neighborhood radius decreasing 
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during each next epoch.
The idea of SOM is flexible, was applied in many domains of science, and it lead to multiple gener-

alizations (see the review paper by Yin (2008)). Some of the algorithms for constructing SOMs are of 
EM type described above, such as the Batch SOM Algorithm (Kohonen, 1997): it includes projecting 
step exactly the same as in k-means and the maximization step at which all φk(v) are modified simul-
taneously.

One source of theoretical dissatisfaction with SOM is that it is not possible to define an optimal-
ity criterion (Erwin et al, 1992): SOM is a result of the algorithm at work and there does not exist any 
objective function that is minimized by the training process.

In attempt to resolve this issue, Bishop et al. (1998) developed the optimization-based Generative 
Topographic Mapping (GTM) method. In this setting, it is supposed that the observed data is i.i.d. 
sample from a mixture of Gaussian distributions with the centers aligned along a two-dimensional grid, 
embedded in the data space. Parameters of this mixture are determined by EM-based maximization of 
the likelihood function (probability of observing X within this data model).

principal manifolds by hastie and Stuelze

Principal curves and principal two-dimensional surfaces for a probability distribution F(x) were introduced 
in the PhD thesis by Trevor Hastie (1984) as a self-consistent (non-linear) one- and two-dimensional 
globally parametrisable smooth manifolds without self-intersections.

Definition. Let G be the class of differentiable 1-dimensional curves in Rm, parameterized by λ∈R1 and 
without self-intersections. The Principal Curve of the probability distribution F(x) is such a Y(λ)∈G 
that is self-consistent.

Remark. Usually, a compact subset of Rm and a compact interval of parameters λ∈R1 are considered. 
To discuss unbounded regions, it is necessary to add a condition that Y(λ) has finite length inside any 
bounded subset of Rm (Kégl, 1999).

Definition. Let G2 be the class of differentiable 2-dimensional surfaces in Rm, parameterized by λ∈R2 and 
without self-intersections. The Principal Surface of the probability distribution F(x) is such a Y(λ)∈G2 
that is self-consistent. (Again, for unbounded regions it is necessary to assume that for any bounded set 
B from Rm the set of parameters λ for which Y(λ)∈B is also bounded.)

First, Hastie and Stuelze proposed an algorithm for finding the principal curves and principal surfaces 
for a probability distribution F(x), using the classical EM splitting. We do not provide this algorithm 
here because for a finite dataset X it can not be directly applied because in a typical point on Y(λ) only 
zero or one data point is projected, hence, one can not calculate the expectation. As mentioned above, 
in this case we should use some kind of coarse-grained self-consistency. In the original approach by 
Hastie (1984), this is done through introducing smoothers. This gives the practical formulation of the 
HS algorithm for estimating the principal manifolds from a finite dataset X:

Hastie and Stuelze algorithm for finding principal curve for finite dataset
1)  Initialize Y(λ) = a0+λa1, where a0 is a mean point and a1 is the first principal component;
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2)  Project every data point xi onto Y(λ): i.e., for each xi find λi such that Y Y
i i

( ) arg inf || ( ) ||l l= -
»

x 2 . 

In practice it requires interpolation procedure because Y(λ) is determined in a finite number of 
points {λ1,...,λN}. The simplest is the piecewise interpolation procedure, but more sophisticated 
procedures can be proposed (Hastie, 1984);

3)  Calculate new Y′(λ) in the finite number of internal coordinates {λ1,...,λN} (found at the previous 
step) as the local average of points xi and some other points, that have close to λi projections onto 
Y. To do this, 1) a span [w×N] is defined ([.] here is integer part), where 0 < w << 1 is a parameter 
of the method (coarse-grained self-consistency neighbourhood radius); 2) for [w×N] internal co-
ordinates { }l l

i i1 [w N]
,...,

´
 closest to λi and the corresponding { }x x

i i1 [w N]
,...,

´
 calculate weighted least 

squares linear regression y(λ) = a(i)λ+b(i); 3) define Y′(λi) as the value of the linear regression in λi: 
Y′(λi) = a(i)λi+b(i).

4)  ℜeassign Y(λ) ← Y′(λ)
5)  ℜepeat steps 2)-4) until Y does not change (approximately).

Remark. For the weights in the regression at the step 3) Hastie proposed to use some symmetric 
kernel function that vanishes on the borders of the neighbourhood. For example, for xi let us denote as 
l

i[w N]´
 the most distant value of the internal coordinate from [w×N] ones closest to λi. Then we can define 

weight for the pair (l
i ij j
,x ) as
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| / | | , if | | | |,

 

Remark. At the step 3) an alternative approach was also proposed with use of cubic splines to ap-
proximate the smooth function Y′(λ) from all pairs (λi,xi), i = 1..N.

Non-linear Principal Manifolds constructed by this algorithm are usually called Hastie-Stuelze (HS) 
principal manifolds. However, the global optimality of HS principal manifolds is not guaranteed (only 
self-consistency in the case of distribution or coarse-grained self-consistency in the case of dataset is 
guaranteed by construction). For example, the second principal component of a sample X from a normal 
distribution is self-consistent and will be correct HS principal curve but of course not the optimal one.

We should also underline that our view on what is the object constructed by the HS algorithm for a 
dataset X depends on 1) probabilistic interpretation of the nature of X, and 2) the chosen heuristic approach 
to coarse-grained self-consistency. If we do not suppose that the dataset is generated by i.i.d. sampling 
from F(x) then the definition of HS principal manifold is purely operational: HS principal manifold for 
X is the result of application of HS algorithm for finite datasets. Analogous remark is applicable for all 
principal manifold approximators constructed for finite datasets and described further in this chapter.

In his PhD thesis Hastie noticed that the HS principal curve does not coincide with the generating 
curve in a very simple additive data generation model

X = f(λ)+ε,  (1)
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where f(λ) is some curve embedded in data space and ε is noise distribution independent on λ. Because of 
the fact that if f(λ) is not a straight line then it is not self-consistent, HS principal curves were claimed to 
be ‘biased’. This inspired Tibshirani (1992) to introduce an alternative definition of the principal curve, 
based directly on a continuous mixture model (1) and maximising regularized likelihood.

kégl-kryzhak Improvement

Kégl in his PhD thesis supervised by Kryzhak (Kégl, 1999) revised the existing methods for estimating 
the principal curves. In particular, this led to the definition of principal curves with limited length.

Definition.Principal curve YL(λ) of length L is such a curve that the mean squared distance 
from the dataset X to the curve YL(λ) is minimal over all curves of length less than or equal to L: 

dist ( , ( , )) min2

1

x xi i
L

i

N

P Y
=
å ®

Theorem. Assume that X has finite second moments, i.e. x xi i
T

i

N

( ) < ¥
=
å

1

. Then for any L > 0 there 
exists a principal curve of length L.

Principal curves of length L as defined by Kégl, are globally optimal approximators as opposite to the 
HS principal curves that are only self-consistent. However, all attempts to construct a practical algorithm 
for finding globally optimal principal curves of length L were not successful. Instead Kégl developed an 
efficient heuristic Polygonal line algorithm for constructing piecewise linear principal curves.

Let us consider a piecewise curve Y composed from vertices located in points {y1,…,yk+1} and k seg-
ments connecting pairs of vertices {yj,yj+1}, j=1..k. Kégl’s algorithm searches for a (local) optimum of 
the penalised mean squared distance error function:
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 is the cosines of the angle between two neighbouring 

segments at the vertex i, r X
X

=
Î

maxdist( , ( ))
x Fx M  is the ‘radius’ of the dataset X, and λ is a parameter 

controlling the curve global smoothness.
The Polygonal line algorithm (Kégl, 1999) follows the standard EM splitting scheme:
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Polygonal line algorithm for estimating piece-wise linear principal curve
1)  The initial approximation is constructed as a segment of principal line. The length of the segment 

is the difference between the maximal and the minimal projection value of X onto the first principal 
component. The segment is positioned such that it contains all of the projected data points. Thus 
in the initial approximation one has two vertices {y1,y2} and one segment between them (k = 1).

2)  Projection step. The dataset X is partitioned into 2k+1 K z z
z z
= =

Î Ç
{ : arg min ( , )}x x

vertices segments
dist  

subsets constructed by their proximity to k+1 vertices and k segments. If a segment i and a vertex 
j are equally distant from x then x is placed into Kj only.

3)  Optimisation step. Given partitioning obtained at the step 2, the functional U(X,Y) is optimised by 
use of a gradient technique. Fixing partitioning into Ki is needed to calculate the gradient of U(X,Y) 
because otherwise it is not a differentiable function with respect to the position of vertices {yi}.

4)  Adaptation step. Choose the segment with the largest number of points projected onto it. If more 
than one such segment exists then the longest one is chosen. The new vertex is inserted in the 
midpoint of this segment; all other segments are renumerated accordingly.

5)  Stopping criterion. The algorithm stops when the number of segments exceeds 

b × ×N
r
X Y

1 3/

MSD( , )

Heuris t ica l ly,  the  defaul t  parameters  of  the  method have been proposed 

β = 0.3, l l= × ×'
MSD( , )

/

k

N

X Y
r1 3 , λ′ = 0.13. The details of implementation together with convergence 

and computational complexity study are provided elsewhere (Kégl, 1999).
Smola et al. (2001) proposed a regularized principal manifolds framework, based on minimization of 

quantization error functional with a large class of regularizers that can be used and a universal EM-type 
algorithm. For this algorithm, the convergence rates were analyzed and it was showed that for some regu-
larizing terms the convergence can be optimized with respect to the Kegl’s polygonal line algorithm.

elastic maps Approach

In a series of works (Gorban & ℜossiev, 1999;Gorban et al., 2001, 2003; Gorban & Zinovyev, 2005, 
2008a; Gorban et al., 2007, 2008), the authors of this chapter used metaphor of elastic membrane and plate 
to construct one-, two- and three-dimensional principal manifold approximations of various topologies. 
Mean squared distance approximation error combined with the elastic energy of the membrane serves 
as a functional to be optimised. The elastic map algorithm is extremely fast at the optimisation step due 
to the simplest form of the smoothness penalty. It is implemented in several programming languages as 
software libraries or front-end user graphical interfaces freely available from the web-site http://bioinfo.
curie.fr/projects/vidaexpert. The software found applications in microarray data analysis, visualization 
of genetic texts, visualization of economical and sociological data and other fields (Gorban et al, 2001, 
2003; Gorban & Zinovyev 2005, 2008a; Gorban et al, 2007, 2008).

Let G be a simple undirected graph with set of vertices V and set of edges E.

Definition. k-star in a graph G is a subgraph with k + 1 vertices v0,1,...,k ∈ V and k edges {(v0, vi)|i = 1, .., 
k} ∈ E. The rib is by definition a 2-star.
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Definition. Suppose that for each k ≥ 2, a family Sk of k-stars in G has been selected. Then we define an 
elastic graph as a graph with selected families of k-stars Sk and for which for all E(i) ∈ E and S

k
j( ) ∈ Sk, 

the corresponding elasticity moduli λi > 0 and μkj > 0 are defined.

Definition. Primitive elastic graph is an elastic graph in which every non-terminal node (with the 
number of neighbours more than one) is associated with a k-star formed by all neighbours of the node. 
All k-stars in the primitive elastic graph are selected, i.e. the Sk sets are completely determined by the 
graph structure.

Definition. Let E(i)(0), E(i)(1) denote two vertices of the graph edge E(i) and S
k
j( ) (0), ...,S

k
j( ) (k) denote 

vertices of a k-star S
k
j( )  (where S

k
j( ) (0) is the central vertex, to which all other vertices are connected). 

Let us consider a map φ:V →Rm which describes an embedding of the graph into a multidimensional 
space. The elastic energy of the graph embedding in the Euclidean space is defined as

U G U G U G
E R

j j j( ) : ( ) ( )= + ,  (3)
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Definition. Elastic net is a particular case of elastic graph which (1) contains only ribs (2-stars) (the 
family Sk are empty for all k>2); and (2) the vertices of this graph form a regular small-dimensional 
grid (Figure 1).

The elastic net is characterised by internal dimension dim(G). Every node vi in the elastic net is in-
dexed by the discrete values of internal coordinates { ,..., }

dim( )
l l

1
i

G
i  in such a way that the nodes close 

on the graph have similar internal coordinates.
The purpose of the elastic net is to introduce point approximations to manifolds. Historically it was 

first explored and used in applications. To avoid confusion, one should notice that the term elastic net 
was independently introduced by several groups: for solving the traveling salesman problem (Durbin 
&Willshaw, 1987), in the context of principal manifolds (Gorban et al, 2001) and recently in the context 
of regularized regression problem (Zhou & Hastie, 2005). These three notions are completely indepen-
dent and denote different things.

Definition.Elastic map is a continuous manifold Y∈Rm constructed from the elastic net as its grid 
approximation using some between-node interpolation procedure. This interpolation procedure con-
structs a continuous mapping φc:{λ1,…, λdim(G)} →Rm from the discrete map φ:V →Rm, used to embed 
the graph in Rm, and the discrete values of node indices { ,..., }

dim( )
l l

1
i

G
i , i = 1...|V|. For example, the 

simplest piecewise linear elastic map is built by piecewise linear map φc.

Definition.Elastic principal manifold of dimension s for a dataset X is an elastic map, constructed from 
an elastic net Y of dimension s embedded in Rm using such a map φopt:Y →Rm that corresponds to the 
minimal value of the functional
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U X Y X Y U Gj j( , ) MSD ( , ) ( )
W

= + ,  (6)

where the weighted mean squared distance from the dataset X to the elastic net Y is calculated as the 
distance to the finite set of vertices {y1=φ(v1),..., y

k=φ(vk)}.
In the Euclidean space one can apply an EM algorithm for estimating the elastic principal manifold 

for a finite dataset. It is based in turn on the general algorithm for estimating the locally optimal embed-
ding map φ for an arbitrary elastic graph G, described below.

Optimisation of the elastic graph algorithm:
1)  Choose some initial position of nodes of the elastic graph {y1=φ(v1),..., y

k=φ(vk)}, where k is the 
number of graph nodes k = |V|;

2)  Calculate two matrices eij and sij , using the following sub-algorithm:
i.  Initialize the sij matrix to zero;
ii.  For each k-star S

k
i( )  with elasticity module μki, outer nodes vN1 , ..., vNk and the central node 

vN0, the sij matrix is updated as follows (1 ≤ l,m ≤ k):
s s s s k

s s k s s
N N N N ki N N N N ki

N N N N ki N N N

l m l m

l l l

0 0 0 0

0 0 0

2¬ + ¬ +

¬ - ¬

m m

m

,

,
llN ki

k
0
- m

iii.  Initialize the eij matrix to zero;
iv.  For each edge E(i) with weight λi, one vertex vk1 and the other vertex vk2, the ejk matrix is up-

dated as follows:

 

e e e e

e e e e
k k k k i k k k k i

k k k k i k k k k i

1 1 1 1 2 2 2 2

1 2 1 2 2 1 2 1

¬ + ¬ +
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l l
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,

,

Figure 1. Elastic nets used in practice
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3)  Partition X  into subsets Ki,  i=1..k  of data points by their proximity to y k: 
K

i i Y j
j

= =
Î

{ : arg min ( , )}x y x y
y

dist ;

4)  Given Ki, calculate matrix a
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symbol.

5)  Find new position of {y1,..., yk} by solving the system of linear equations
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6)  ℜepeat steps 3-5 until complete or approximate convergence of node positions {y1,..., yk}.

As usual, the EM algorithm described above gives only locally optimal solution. One can expect 
that the number of local minima of the energy function U grows with increasing the ‘softness’ of the 
elastic graph (decreasing μkj parameters). Because of this, in order to obtain a solution closer to the 
global optimum, the softening strategy has been proposed, used in the algorithm for estimating the 
elastic principal manifold.

Algorithm for estimating the elastic principal manifold
1)  Define a decreasing set of numbers {m1,…,mp}, mp=1 (for example, {103, 102, 10, 1}), defining p 

epochs for softening;
2)  Define the base values of the elastic moduli ( )base

i
 and ( )base

i ;
3)  Initialize positions of the elastic net nodes {y1,..., yk} on the linear principal manifold spanned by 

first dim(G) principal components;
4)  Set epoch_counter = 1
5)  Set the elastic moduli ( )

_
base

i epoch counter i
m  and ( )

_
base

i epoch counter i
m  ;

6)  Modify the elastic net using the algorithm for optimisation of the elastic graph;
7)  ℜepeat steps 5-6 for all values of epoch_counter = 2, …, p.

Remark. The values λi and μj are the coefficients of stretching elasticity of every edge E(i) and of 
bending elasticity of every rib S j

2
( ) . In the simplest case λ1 = λ2 = ... = λs = λ(s), μ1 = μ2 = ... = μr = μ(r), 

where s and r are the numbers of edges and ribs correspondingly. Approximately dependence on graph 

‘resolution’ is given by Gorban & Zinovyev (2007): l l m m( ) , ( )
dim( )

dim( )

dim( )

dim( )s s s r
G

G

G

G= × = ×
- -

0

2

0

2

. This for-
mula is applicable, of course, only for the elastic nets. In general case λi and μi are often made variable 
in different parts of the graph accordingly to some adaptation strategy (Gorban & Zinovyev, 2005).

Remark.U G
E
j( )  penalizes the total length (or, indirectly, ‘square’, ‘volume, etc.) of the constructed 

manifold and provides regularization of distances between node positions at the initial steps of the 
softening. At the final stage of the softening λi can be put to zero with little effect on the manifold con-
figuration.

Elastic map post-processing such as map extrapolation can be applied to increase its usability and 
avoid the ‘border effect’, for details see (Gorban & Zinovyev, 2008a).
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pluriharmonic graphs as Ideal Approximators

Approximating datasets by one dimensional principal curves is not satisfactory in the case of datasets 
that can be intuitively characterized as branched. A principal object which naturally passes through the 
‘middle’ of such a data distribution should also have branching points that are missing in the simple 
structure of principal curves. Introducing such branching points converts principal curves into principal 
graphs.

Principal graphs were introduced by Kégl & Krzyzak (2002) as a natural extension of one-dimensional 
principal curves in the context of skeletonisation of hand-written symbols. The most important part of 
this definition is the form of the penalty imposed onto deviation of the configuration of the branching 
points embedment from their ‘ideal’ configuration (end, line, corner, T-, Y- and X-configuration). As-
signing types for all vertices serves for definition of the penalty on the total deviation from the graph 
‘ideal’ configuration (Kégl, 1999). Other types of vertices were not considered, and outside the field of 
symbol skeletonization applicability of such a definition of principal graph remains limited.

Gorban & Zinovyev (2005), Gorban et al. (2007), and Gorban et al. (2008) proposed to use a universal 
form of non-linearity penalty for the branching points. The form of this penalty is defined in the previ-
ous chapter for the elastic energy of graph embedment. It naturally generalizes the simplest three-point 
second derivative approximation squared:

for a 2-star (or rib) the penalty equals || ( ( )) ( ( ( )) ( ( ))) ||( ) ( ) ( )j j jS S Sj j j
2 2 2

20
1
2

1 2- + , 

for a 3-star it is || ( ( )) ( ( ( )) ( ( )) ( ( ))) ||( ) ( ) ( ) ( )j j j jS S S Sj j j j
3 3 3 3

20
1
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1 2 3- + + , etc. 

For a k-star this penalty equals to zero iff the position of the central node coincides with the mean 
point of its neighbors. An embedment φ(G) is ‘ideal’ if all such penalties equal to zero. For a primitive 
elastic graph this means that this embedment is a harmonic function on graph: its value in each non-
terminal vertex is a mean of the value in the closest neighbors of this vertex.

For non-primitive graphs we can consider stars which include not all neighbors of their centers. For 
example, for a square lattice we create elastic graph (elastic net) using 2-stars (ribs): all vertical 2-stars and 
all horizontal 2-stars. For such elastic net, each non-boundary vertex belongs to two stars. For a general 
elastic graph G with sets of k-stars S

k
 we introduce the following notion of pluriharmoning function.

Definition. A map φ:V→Rm defined on vertices of G is pluriharmonic iff for any k-star S S
k
j

k
( ) Î  with 

the central vertex S
k
j( ) (0) and the neighbouring vertices S

k
j( ) (i), i = 1...k, the equality holds:

j j( ( )) ( ( ))( ) ( )S
k

S i
k
j

k
j

i

k

0
1

1

=
=
å .  (7)

Pluriharmonic maps generalize the notion of linear map and of harmonic map, simultaneously. For 
example:
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1)  1D harmonic functions are linear;
2)  If we consider an nD cubic lattice as a primitive graph (with 2n-stars for all non-boundary vertices), 

then the correspondent pluriharmonic functions are just harmonic ones;
3)  If we create from nD cubic lattice a standard nD elastic net with 2-stars (each non-boundary vertex 

is a center of n 2-stars, one 2-stars for each coordinate direction), then pluriharmonic functions are 
linear.

Pluriharmonic functions have many attractive properties, for example, they satisfy the following 
maximum principle. A vertex v of an elastic graph is called a corner point or an extreme point of G iff 
v is not a centre of any k-star from S

k
 for all k>0.

Theorem. Let φ:V→Rm be a pluriharmonic map, F be a convex function on Rm, and a = maxx∈VF(φ(x)). 
Then there is a corner point v of G such that F(φ(v))=a.

Convex functions achieve their maxima in corner points. Even a particular case of this theorem with 
linear functions F is quite useful. Linear functions achieve their maxima and minima in corner points.

In the theory of principal curves and manifolds the penalty functions were introduced to penalise 
deviation from linear manifolds (straight lines or planes). We proposed to use pluriharmonic embed-
dings (‘pluriharmonic graphs’) as ‘ideal objects’ instead of manifolds and to introduce penalty (5) for 
deviation from this ideal form.

graph grammars and three types of complexity for principal graphs

Principal graphs can be called data approximators of controllable complexity. By complexity of the 
principal objects we mean the following three notions:

1)  Geometric complexity: how far a principal object deviates from its ideal configuration; for the 
elastic principal graphs we explicitly measure deviation from the ‘ideal’ pluriharmonic graph by 
the elastic energy Uφ(G) (3) (this complexity may be considered as a measure of non-linearity);

2)  Structural complexity measure: it is some non-decreasing function of the number of vertices, edges 
and k-stars of different orders SC(G)=SC(|V|,|E|,|S2|,…,|Sm|); this function penalises for number of 
structural elements;

3)  Construction complexity is defined with respect to a graph grammar as a number of applications 
of elementary transformations necessary to construct given G from the simplest graph (one vertex, 
zero edges).

The construction complexity is defined with respect to a grammar of elementary transformation. The 
graph grammars (Löwe, 1993; Nagl, 1976) provide a well-developed formalism for the description of 
elementary transformations. An elastic graph grammar is presented as a set of production (or substitu-
tion) rules. Each rule has a form A → B, where A and B are elastic graphs. When this rule is applied to an 
elastic graph, a copy of A is removed from the graph together with all its incident edges and is replaced 
with a copy of B with edges that connect B to the graph. For a full description of this language we need 
the notion of a labeled graph. Labels are necessary to provide the proper connection between B and the 
graph (Nagl, 1976). An approach based on graph grammars to constructing effective approximations 
of an elastic principal graph has been proposed recently (Gorban et al, 2007).
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Let us define graph grammar O as a set of graph grammar operations O={o1,..,os}. All possible ap-
plications of a graph grammar operation oi to a graph G gives a set of transformations of the initial graph 
oi(G) = {G1, G2, …, Gp}, where p is the number of all possible applications of oi to G. Let us also define 
a sequence of r different graph grammars { { ,..., } , , { ,..., }}( ) ( ) ( ) ( ) ( ) ( )O o o O o o

s
r r

s
r

r

1
1
1 1

11
= = .

Let us choose a grammar of elementary transformations, predefined boundaries of structural com-
plexity SCmax and construction complexity CCmax, and elasticity coefficients λi and μkj .

Definition. Elastic principal graph for a dataset X is such an elastic graph G embedded in the Euclidean 
space by the map φ:V→Rm that SC(G) ≤ SCmax, CC(G) ≤ CCmax, and Uφ(G) → min over all possible 
elastic graphs G embeddings in Rm .

Algorithm for estimating the elastic principal graph
1)  Initialize the elastic graph G by 2 vertices v1 and v2 connected by an edge. The initial map φ is 

chosen in such a way that φ(v1) and φ(v2) belong to the first principal line in such a way that all the 
data points are projected onto the principal line segment defined by φ(v1), φ(v2);

2)  For all j=1…r repeat steps 3-6:
3)  Apply all grammar operations from O(j) to G in all possible ways; this gives a collection of candidate 

graph transformations {G1, G2, …};
4)  Separate {G1, G2, …} into permissible and forbidden transformations; permissible transformation 

Gk is such that SC(Gk) ≤ SCmax, where SCmax is some predefined structural complexity ceiling;
5)  Optimize the embedment φ and calculate the elastic energy Uφ(G) of graph embedment for every 

permissible candidate transformation, and choose such a graph Gopt that gives the minimal value 
of the elastic functional: G U G

opt G permissible set k
k

=
Î

arg inf ( )j ;
6)  Substitute G →Gopt ;
7)  ℜepeat steps 2-6 until the set of permissible transformations is empty or the number of operations 

exceeds a predefined number – the construction complexity.

principal trees and metro maps

Let us construct the simplest non-trivial type of the principal graphs, called principal trees. For this 
purpose let us introduce a simple ‘Add a node, bisect an edge’ graph grammar (see Fig. 2) applied for 
the class of primitive elastic graphs.

Definition.Principal tree is an acyclic primitive elastic principal graph.

Definition.‘Remove a leaf, remove an edge’ graph grammar O(shrink) applicable for the class of primitive 
elastic graphs consists of two operations: 1) The transformation ‘remove a leaf’ can be applied to any 
vertex v of G with connectivity degree equal to 1: remove v and remove the edge (v,v’) connecting v 
to the tree; 2) The transformation ‘remove an edge’ is applicable to any pair of graph vertices v, v’ con-
nected by an edge (v, v’): delete edge (v, v’), delete vertex v’, merge the k-stars for which v and v’ are 
the central nodes and make a new k-star for which v is the central node with a set of neighbors which is 
the union of the neighbors from the k-stars of v and v’.
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Definition.‘Add a node, bisect an edge’ graph grammar O(grow) applicable for the class of primitive elastic 
graphs consists of two operations: 1) The transformation “add a node” can be applied to any vertex v 
of G: add a new node z and a new edge (v, z); 2) The transformation “bisect an edge” is applicable to 
any pair of graph vertices v, v’ connected by an edge (v, v’): delete edge (v, v’), add a vertex z and two 
edges, (v, z) and (z, v’). The transformation of the elastic structure (change in the star list) is induced by 
the change of topology, because the elastic graph is primitive. Consecutive application of the operations 
from this grammar generates trees, i.e. graphs without cycles.

Also we should define the structural complexity measure SC(G)=SC(|V|,|E|,|S2|,…,|Sm|). Its concrete 
form depends on the application field. Here are some simple examples:

1)  SC(G) = |V|: i.e., the graph is considered more complex if it has more vertices;

2)  SC( ) = 
if and

otherwise
G

S S b S
k

k

m
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i.e., only bmax simple branches (3-stars) are allowed in the principal tree.

Using the sequence {O(grow), O(grow), O(shrink)} in the above-described algorithm for estimating the elastic 
principal graph gives an approximation to the principal trees. Introducing the ‘tree trimming’ grammar 

Figure 2. Illustration of the simple “add node to a node” or “bisect an edge” graph grammar. a) We start 
with a simple 2-star from which one can generate three distinct graphs shown. The “Op1” operation is 
adding a node to a node, operations “Op1” and “Op2” are edge bisections (here they are topologically 
equivalent to adding a node to a terminal node of the initial 2-star). For illustration let us suppose that 
the “Op2” operation gives the biggest elastic energy decrement, thus it is the “optimal” operation. b) 
From the graph obtained one can generate 5 distinct graphs and choose the optimal one. c) The process 
is continued until a definite number of nodes are inserted.
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O(shrink) allows to produce principal trees closer to the global optimum, trimming excessive tree branching 
and fusing k-stars separated by small ‘bridges’.

Principal trees can have applications in data visualization. A principal tree is embedded into a multidi-
mensional data space. It approximates the data so that one can project points from the multidimensional 
space into the closest node of the tree. The tree by its construction is a one-dimensional object, so this 
projection performs dimension reduction of the multidimensional data. The question is how to produce a 
planar tree layout? Of course, there are many ways to layout a tree on a plane without edge intersection. 
But it would be useful if both local tree properties and global distance relations would be represented 
using the layout. We can require that

1)  In a two-dimensional layout, all k-stars should be represented equiangular; this is the small penalty 
configuration;

2)  The edge lengths should be proportional to their length in the multidimensional embedding; thus 
one can represent between-node distances.

This defines a tree layout up to global rotation and scaling and also up to changing the order of 
leaves in every k-star. We can change this order to eliminate edge intersections, but the result can not be 
guaranteed. In order to represent the global distance structure, it was found (Gorban et al., 2008) that 
a good approximation for the order of k-star leaves can be taken from the projection of every k-star on 
the linear principal plane calculated for all data points, or on the local principal plane in the vicinity of 
the k-star, calculated only for the points close to this star. The resulting layout can be further optimized 
using some greedy optimization methods.

The point projections are then represented as pie diagrams, where the size of the diagram reflects 
the number of points projected into the corresponding tree node. The sectors of the diagram allow us to 
show proportions of points of different classes projected into the node (see an example on Figure 3).

This data display was called a “metro map” since it is a schematic and “idealized” representation of 
the tree and the data distribution with inevitable distortions made to produce a 2D layout. However, us-
ing this map one can still estimate the distance from a point (tree node) to a point passing through other 
points. This map is inherently unrooted (as a real metro map). It is useful to compare this metaphor with 
trees produced by hierarchical clustering where the metaphor is closer to a “genealogy tree”.

principal cubic complexes

Elastic nets introduced above are characterized by their internal dimension dim(G). The way to general-
ize these characteristics on other elastic graphs is to utilize the notion of cubic complex (Gorban et al, 
2007).

Definition.Elastic cubic complex K of internal dimension r is a Cartesian product G1×…× Gr of elastic 
graphs G1, . . .Gr . It has the vertex set V1× . . . × Vr. Let 1 ≤ i ≤ r and vj ∈ Vj (j ≠ i). For this set of ver-
tices, {vj}j≠i, a copy of Gi in G1× ... ×Gr is defined with vertices (v1, …, vi−1, v, vi+1, …, vr) (v ∈ Vi), edges 
((v1, …, vi−1, v, vi+1, …, vr), (v1, …, vi−1, v’, vi+1, …, vr)), (v, v’) ∈ Ei, and, similarly, k-stars of the form (v1, 
…, vi−1, Sk, vi+1, …, vr), where Sk is a k-star in Gi. For any Gi there are | |V

j
j i¹
Õ  copies of Gi in G. Sets of 
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edges and k-stars for Cartesian product are unions of that set through all copies of all factors. A map φ: 
V1× . . . × Vr → Rm maps all the copies of factors into Rm too.

Remark. By construction, the energy of the elastic graph product is the energy sum of all factor 
copies. It is, of course, a quadratic functional of φ.

Figure 3. Principal manifold and principal tree for the Iris dataset. a) View of the principal manifold 
projected on the first two principal components, the data points are shown projected into the closest 
vertex of the elastic net; b) visualization of data points in the internal coordinates, here classes are rep-
resented in the form of Hinton diagrams: the size of the diagram is proportional to the number of points 
projected, the shape of the diagram denote three different point classes; c) same as a), but the data points 
are shown projected into the closest point of the piecewise linearly interpolated elastic map; d) same as 
b), but based on projection shown in c); e)-g) First 50 iterations of the principal tree algorithm, the tree 
is shown projected onto the principal plane; h) metro map representation of the Iris dataset.
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If we approximate multidimensional data by an r-dimensional object, the number of points (or, more 
generally, elements) in this object grows with r exponentially. This is an obstacle for grammar–based 
algorithms even for modest r, because for analysis of the rule A → B applications we should investigate 
all isomorphic copies of A in G. Introduction of a cubic complex is useful factorization of the principal 
object which allows to avoid this problem.

The only difference between the construction of general elastic graphs and factorized graphs is in the 
application of the transformations. For factorized graphs, we apply them to factors. This approach signifi-
cantly reduces the amount of trials in selection of the optimal application. The simple grammar with two 
rules, “add a node to a node, or bisect an edge,” is also powerful here, it produces products of primitive 
elastic trees. For such a product, the elastic structure is defined by the topology of the factors.

Incomplete data

Some of the methods described above allow us to use incomplete data in a natural way. Let us represent 
an incomplete observation by x = ( ,...,@,...,@,..., )x x

m1
, where the ‘@’ symbol denotes a missing 

value.

Definition.Scalar product between two incomplete observationsx and y is ( , )
@

x y =
¹
å x y

i i
i

m

. Then the 

Euclidean distance is ( ) ( )
@

x y- = -
¹
å2 2x y

i i
i

m

.

Remark. This definition has a very natural geometrical interpretation: an incomplete observation 
with k missing values is represented by a k–dimensional linear manifold Lk, parallel to k coordinate axes 
corresponding to the missing vector components.

Thus, any method which uses only scalar products or/and Euclidean distances can be applied for 
incomplete data with some minimal modifications subject to random and not too dense distribution of 
missing values in X. For example, the iterative method for SVD for incomplete data matrix was devel-
oped (ℜoweis, 1998; Gorban & ℜossiev, 1999).

There are, of course, other approaches to incomplete data in unsupervised learning (for example, 
those presented by Little & ℜubin (1987)).

Implicit methods

Most of the principal objects introduced in this paper are constructed as explicit geometrical objects 
embedded in Rm to which we can calculate the distance from any object in X. In this way, they generalize 
the “data approximation”-based (#1) and the “variation-maximization”-based (#2) definitions of linear 
PCA. There also exists the whole family of methods, which we only briefly mention here, that general-
ize the “distance distortion minimization” definition of PCA (#3).

First, some methods take as input a pairwise distance (or, more generally, dissimilarity) matrix D 
and construct such a configuration of points in a low-dimensional Euclidean space that the distance 
matrix D’ in this space reproduce D with maximal precision. The most fundamental in this series is the 
metric multidimensional scaling (Kruskal, 1964). The next is the Kernel PCA approach (Schölkopf et 
al., 1997) which takes advantage of the fact that for the linear PCA algorithm one needs only the matrix 



50

Principal Graphs and Manifolds

of pairwise scalar products (Gramm matrix) but not the explicit values of coordinates of X. It allows to 
apply the kernel trick (Aizerman et al., 1964) and substitute the Gramm matrix by the scalar products 
calculated with use of some kernel functions. Kernel PCA method is tightly related to the classical 
multidimensional scaling (Williams, 2002).

Local Linear Embedding or LLE (ℜoweis & Saul, 2000) searches for such a N×N matrix A that ap-

proximates given xi by a linear combination of n vectors-neighbours of xi: || || minx xi
k
i k

k

N

i

N

A- ®
==
åå

11

2

, 

where only such A
k
i ¹ 0 , if k is one of the n closest to xi vectors. After one constructs such a configuration 

of points in Rs, s << m, that y yi
k
i k

k

N

A=
=
å

1

, yi∈Rs, for all i = 1…N. The coordinates of such embedding 

are given by the eigenvectors of the matrix (1-A)T(1-A).
ISOMAP (Tenenbaum et al., 2000) and Laplacian eigenmap (Belkin & Niyogi, 2003; Nadler et al., 

2008) methods start with construction of the neighbourhood graph, i.e. the graph in which close in some 
sense data points are connected by (weighted) edges. This weighted graph can be represented in the 
form of a weighted adjacency matrix W= {Wij}. From this graph, ISOMAP constructs a new distance 
matrix D(ISOMAP), based on the path lengths between two points in the neighbourhood graph, and the mul-
tidimensional scaling is applied to D(ISOMAP). The Laplacian map solves the eigenproblem L Sf fl ll= , 

where S diag W W
j

j

N

Nj
j

N

=
= =
å å{ , , }

0
1 1

 , L = S – W is the Laplacian matrix. The trivial constant solu-

tion corresponding to the smallest eigenvalue λ0 = 0 is discarded, while the elements of the eigenvec-
tors f f fl l l1 2

, , ,

s
, where l l l

1 2
< < <...

s
, give the s-dimensional projection of xi, i.e. P(xi)= {

f f fl l l1 2
( ), ( ), , ( )i i i

s
 }.

Finally, one can implicitly construct projections into smaller dimensional spaces by training auto-
associative neural networks with narrow hidden layer. An overview of the existing Neural PCA methods 
can be found in the recent collection of review papers (Gorban et al, 2008).

Example: Principal Objects for the Iris Dataset

On Figure 3 we show application of the elastic principal manifolds and principal trees algorithms to the 
standard Iris dataset (Fisher, 1936). As expected, two-dimensional approximation of the principal mani-
fold in this case is close to the linear principal plane. One can also see that the principal tree illustrates 
well the fact of almost complete separation of classes in data space.

Example: Principal Objects for Molecular Surfaces

A molecular surface defines the effective region of space which is occupied by a molecule. For example, 
the Van-der-Waals molecular surface is formed by surrounding every atom in the molecule by a sphere 
of radius equal to the characteristic radius of the Van-der-Waals force. After all the interior points are 
eliminated, this forms a complicated non-smooth surface in 3D. In practice, this surface is sampled by 
a finite number of points.

Using principal manifolds methodology, we constructed a smooth approximation of such molecular 
surface for a small piece of a DNA molecule (several nucleotides long). First, we have made an ap-
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proximation of this dataset by a 1D principal curve. Interestingly, this curve followed the backbone of 
the molecule, forming a helix (see Figure 4). Second, we approximated the molecular surface by a 2D 
manifold. The topology of the surface is expected to be spherical, so we applied spherical topology of 
the elastic net for optimisation.

We should notice that since it is impossible to make the lengths of all edges equal for the spherical 
grid, corrections were performed for the edge elasticities during the grid initialization (shorter edges 
are given larger λis). Third, we applied the method for constructing principal cubic complexes, namely, 
graph product of principal trees, which produced somewhat trivial construction (because no branching 
was energetically optimal): product of two short elastic principal curves, forming a double helix.

Example: Principal Objects Decipher Genome

A dataset X can be constructed for a string sequence using a short word frequency dictionary approach 
in the following way: 1) the notion of word is defined; 2) the set of all possible short words is defined, 
let us say that we have m of them; 3) a number N of text fragments of certain width is sampled from 
the text; 4) in each fragment the frequency of occurrences of all possible short words is calculated and, 
thus, each fragment is represented as a vector in multidimensional space Rm. The whole text then is 
represented as a dataset of N vectors embedded in Rm.

We systematically applied this approach to available bacterial genomic sequences (Gorban & Zinovyev, 
2008b). In our case we defined: 1) a word is a sequence of three letters from the {A,C,G,T} alphabet 
(triplet); 2) evidently, there are 64 possible triplets in the {A,C,G,T} alphabet; 3) we sampled 5000-10000 
fragments of width 300 from a genomic sequence; 4) we calculated the frequencies of non-overlapping 
triplets for every fragment.

The constructed datasets are interesting objects for data-mining, because 1) they have a non-trivial 
cluster structure which usually contains various configurations of 7 clusters (see Figure 5); 2) class labels 
can be assigned to points accordingly to available genome annotations; in our case we put information 
about presence (in one of six possible frameshifts) or absence of the coding information in the current 
position of a genome; 3) using data mining techniques here has immediate applications in the field of 
automatic gene recognition and in others, see, for example, (Carbone et al, 2003). On Figure 5 we show 

Figure 4. Principal objects approximating molecular surface of a short stretch of DNA molecule. a) 
stick-and-balls model of the DNA stretch and the initial molecular surface (black points); b) one- and 
two-dimensional (spherical) principal manifolds for the molecular surface; c) simple principal cubic 
complex (product of principal trees) which does not have any branching in this case.
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application of both classical PCA and the metro map methods for several bacterial genomes. Look at 
http://www.ihes.fr/~zinovyev/7clusters web-site for further information.

Example: Non-Linear Principal Manifolds for Microarray Data Visualization

DNA microarray data is a rich source of information for molecular biology (an expository overview is 
provided by Leung & Cavalieri (2003)). This technology found numerous applications in understand-
ing various biological processes including cancer. It allows to screen simultaneously the expression of 
all genes in a cell exposed to some specific conditions (for example, stress, cancer, treatment, normal 
conditions). Obtaining a sufficient number of observations (chips), one can construct a table of “samples 

Figure 5. Seven cluster structures presented for 4 selected genomes. A genome is represented as a col-
lection of points (text fragments represented by their triplet frequencies) in the 64-multidimensional 
space. Color codes denote point classes corresponding to 6 possible frameshifts when a random frag-
ment overlaps with a coding gene (3 in the forward and 3 in the backward direction of the gene), and 
the black color corresponds to non-coding regions. For every genome a principal tree (“metro map” 
layout) is shown together with 2D PCA projection of the data distribution. Note that the clusters that 
appear to be mixed on the PCA plot for Escherichia coli (they remain mixed in 3D PCA as well) are 
well separated on the “metro map”. This proves that they are well-separated in R64.
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vs genes”, containing logarithms of the expression levels of, typically several thousands (n) of genes, in 
typically several tens (m) of samples.

On Figure 6 we provide a comparison of data visualization scatters after projection of the breast 
cancer dataset, provided by Wang et al. (2003), onto the linear two- and non-linear two-dimensional 
principal manifold. The latter one is constructed by the elastic maps approach. Each point here represents 
a patient treated from cancer. Before dimension reduction it is represented as a vector in Rn, containing 
the expression values for all n genes in the tumor sample. Linear and non-linear 2D principal manifolds 
provide mappings Rn → R2, drastically reducing vector dimensions and allowing data visualization. 
The form, the shape and the size of the point on the Fig.6 represent various clinical data (class labels) 
extracted from the patient’s disease records.

Figure 6. Visualization of breast cancer microarray dataset using elastic maps. Ab initio classifications 
are shown using points size (ER, estrogen receptor status), shape (Group A – patients with aggressive 
cancer, Group B – patients with non-aggressive cancer) and color (TYPE, molecular type of breast can-
cer). a) Configuration of nodes projected into the three-dimensional principal linear manifold. One clear 
feature is that the dataset is curved such that it can not be mapped adequately onto a two-dimensional 
principal plane. b) The distribution of points in the internal non-linear manifold coordinates is shown 
together with estimation of the two-dimensional density of points. c) The same as b) but for the linear 
two-dimensional manifold. One can notice that the ``basal’’ breast cancer subtype is much better sepa-
rated on the non-linear mapping and some features of the distribution become better resolved.



54

Principal Graphs and Manifolds

Practical experience from bioinformatics studies shows that two-dimensional data visualization 
using non-linear projections allow to catch more signals from data (in the form of clusters or specific 
regions of higher point density) than linear projections, see Figure 6 and a good example by Ivakhno 
& Armstrong (2008).

In addition to that, Gorban & Zinovyev (2008a) performed a systematic comparison of performance 
of low-dimensional linear and non-linear principal manifolds for microarray data visualization, using the 
following four criteria: 1) mean-square distance error; 2) distortions in mapping the big distances between 
points; 3) local point neighbourhood preservation; 4) compactness of point class labels after projection. 
It was demonstrated that non-linear two-dimensional principal manifolds provide systematically better 
results accordingly to all these criteria, achieving the performance of three- and four- dimensional linear 
principal manifolds (principal components).

The interactive ViMiDa (Visualization of Microarray Data) and ViDaExpert software allowing microar-
ray data visualization with use of non-linear principal manifolds are available on the web-site of Institut 
Curie (Paris): http://bioinfo.curie.fr/projects/vidaexpert and http://bioinfo.curie.fr/projects/vimida.

concluSIon

In this chapter we gave a brief practical introduction into the methods of construction of principal objects, 
i.e. objects embedded in the ‘middle’ of the multidimensional data set. As a basis, we took the unifying 
framework of mean squared distance approximation of finite datasets which allowed us to look at the 
principal graphs and manifolds as generalizations of the mean point notion.
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key termS And deFInItIonS

Principal Components: Such an orthonormal basis in which the covariance matrix is diagonal.
Principal Manifold: Intuitively, a smooth manifold going through the middle of data cloud; for-

mally, there exist several definitions for the case of data distributions: 1) Hastie and Stuelze’s principal 
manifolds are self-consistent curves and surfaces; 2) Kegl’s principal curves provide the minimal mean 
squared error given the limited curve length; 3) Tibshirani’s principal curves maximize the likelihood 
of the additive noise data model; 4) Gorban and Zinovyev elastic principal manifolds minimize a mean 
square error functional regularized by addition of energy of manifold stretching and bending; 5) Smola’s 
regularized principal manifolds minimize some form of a regularized quantization error functional; and 
some other definitions.

Principal Graph: A graph embedded in the multidimensional data space, providing the minimal mean 
squared distance to the dataset combined with deviation from an “ideal” configuration (for example, 
from pluriharmonic graph) and not exceeding some limits on complexity (in terms of the number of 
structural elements and the number of graph grammar transformations needed for obtaining the principal 
graph from some minimal graph).

Self-Consistent Approximation: Approximation of a dataset by a set of vectors such that every point 
y in the vector set is a conditional mean of all points from dataset that are projected in y.

Expectation/Maximisation Algorithm: Generic splitting algorithmic scheme with use of which 
almost all algorithms for estimating principal objects are constructed; it consists of two basic steps: 1) 
projection step, at which the data is projected onto the approximator, and 2) maximization step, at which 
the approximator is optimized given the projections obtained at the previous step.


