Modeling cell life and cell death in cancer

Andrei Zinovyev

"Computational Systems Biology of Cancer"

U900 Institut Curie/INSERM/Ecole des Mines Paristech, Paris, France

Institut Curie 100 years of fighting with cancer

generosity of the public by donation, legacy and sponsorship.

Hallmarks of cancer

Hanahan and Weinberg, 2000, Cell

Negrini et al, 2010, Nat Rev Mol Cell Bio

Cell life/death decisions in cancer

APO-SYS: First EU FP7 large-scale project on systems biology of cancer

A textbook view on apoptosis

Institut national

de la santé et de la recherche médicale

institut**Curie**

A systems biologist's view on apoptosis

Map and Map

Role of comprehensive map

- It is a territory map: all that is possible
- It is an interactive encyclopedia of the domain
- It is a formal knowledge representation
- It is connected to ~600 most significant publications
- It is accessible to computer analysis
- It allows to formulate hypotheses
- It allows to focus on specific problems and make mathematical models

Using the cell death map: listing hypotheses

Through ROS formation by the respiratory chain

Through transfer of the reductive equivalents of succinate to NADPH and thioredoxin, then ROS detoxification or RNR activity and DNA repair

Through reduction of ubiquinone, the oxidative equivalent s of which are necessary for pyrimidine biosynthesis and DNA repair

(see Khutornenko AA et al., PNAS, 2010,107,12828)

Using the cell death map: map high-throughput data

Basal breast cancer gene expression compared to healthy adypocytes

Map high-throughput data and infer "differentially deregulated subnetworks"

0.05558227

0.104

FDR q-value

FWER p-Value

Glycolysis and nucleotide synthesis positive enrichment : signature of cancer metabolic adaptation – Warburg effect

Caspase regulation : the gene set contains more inhibitors than activators of caspases – escape from apoptosis

Insterm

Using the cell death map: detecting hot spots of activity

Institut pationa

de la santé et de la recherche médic

MINES PARIS

Systems Biology of Apoptosis

"Passive" vs "active" survival

Institut nationa

de la santé et de la recherche médicale

MINES PARIS

Four Faces of Cell Death

nserm

de la santé et de la recherche médicale

Engineering vs Biology

Engineering solution

Biological solution

Cell fate decisions

Conrad Hal Waddington, Professor of Animal Genetics at the University of Edinburgh, 1957.

4. "Part of an Epigenetic Landscape. The path followed by the ball, as it rolls dow towards the spectator, corresponds to the developmental history of a particular path.

Epigenetic landscape, canalization

Complex system of genes, underlying the landscape

Apoptosis vs Necrosis vs Survival

OPEN access Freely available online

PLOS COMPUTATIONAL BIOLOGY

Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor Engagement

Laurence Calzone^{1,2,3}*, Laurent Tournier^{1,2,3}, Simon Fourquet^{1,2,3}, Denis Thieffry^{4,5}, Boris Zhivotovsky⁶, Emmanuel Barillot^{1,2,3}¶, Andrei Zinovyev^{1,2,3}¶

institut**Curie**

1 Institut Curie, Paris, France, 2 Ecole des Mines ParisTech, Paris, France, 3 INSERM U900, Paris, France, 4 TAGC – INSERM U928 & Université de la Méditerranée, Marseille France, 5 CONTRAINTES Project, INRIA Paris-Rocquencourt, France, 6 Karolinska Institutet, Stockholm, Sweden

APOPTOSIS

NFkB pathway

NECROSIS

Institut national

de la santé et de la recherche médicale

institut**Curie**

ASSEMBLED MECHANISM OF THREE CELL FATE DECISION

Boolean modeling

Asynchronous state transition graph

Structure of attractors: distribution of logical stable states

Asynchronous state transition graph

« Probabilities » of reaching phenotypes from physiological initial conditions:

Confront the model to existing data: verify the structure of the network by comparing the simulations to published data

 \Rightarrow Simulations of mutants or drug treatments

Name	Modified rules	Expected phenotypes	Qualitative results
Anti-oxidant	ROS'=(RIP1 OR MPT)		Suppression of NF κ B anti-oxidant effect leads to no change in the decision process (the computed probabilities are noticeably close to the wild type).
APAF1 deletion	C3*=0	APAF 1^{-1} mouse thymocytes are not impaired in Fas-mediated apoptosis (Yoshida <i>et al</i> , 1998)	Apoptosis disappears. Necrosis and survival are close to the wild type case. Lacking apoptosis is mainly replaced by the 'naīve' state
BAX deletion	MOMP'=MPT	BAX deletion blocks Fas or TNF+CHX - induced apoptosis in some cell lines, such as HCT 116 (LeBlanc <i>et al</i> , 2002)	BAX deletion prevents apoptosis.
BCL2 over- expression	МОМР'=МРТ МРТ'=0	FAS induces the activation of $NF_K B$ pathway (Kreuz <i>et al</i> , 2001)	As expected, $NF \ltimes B$ pathway is a reachable attractor. The second reachable attractor is the 'naïve' state, which means that both death pathways are inhibited.
C8 deletion	C8′=0	Caspase 8 deficient MEFs (Variolom eev <i>et al</i> , 1998) or Jurkat cells (Kawahara <i>et al</i> , 1998) are resistant to Fas- mediated apoptotic cell death.	As expected, apoptosis is no longer reachable. Compared to the wild type, a slight increase of necrosis is observed, while NF κ B survival becomes the main cell fate.
constitutively activated CASP8	C8′=1		Over-expression of caspase 8 leads to an increased disappearance of $NF\kappa B$ activation.
cFLIP deletion	C8'=TNF OR FAS OR C3	cFLIP-/- MEFs are highly sensitive to FasL and TNFa (Yeh et al, 2000)	The increase of apoptosis is effectively observed in the cFLIP mutant; however we also observe that NF_KB pathway can no longer be sustained.
cIAP deletion	cIAP'=0	$NF_{K}B$ activation in response to TNF is blocked (Varfolo meev <i>et al</i> , 2008)	$NF_{K}B$ activation is impaired, and only the apoptotic or necrotic attractors are reached.
FADD deletion	C8'=C3AND NOT NFKB RIP1'=NOT C8 AND TNF	FADD-/- mouse thymocytes are resistant to Fas mediated apoptosis (Zhang <i>et al.</i> , 1998). FADD-/- MEFs are resistant to FasL and TNF α (Yeh <i>et al.</i> , 1998) In Jurkat cells treated with TNF α +CHX, FADD deletion turns apoptosis into necrotic cell death (Harper <i>et al.</i> , 2003)	In response to FasL, signalling is blocked, thus the 'naīve' attractor is the only reachable one. In response to TNF, apoptosis disappears.
NFκB deletion	NFkB'=0	TNF α induces both apoptosis and necros is in NF- κ B p65 ^{-/-} cells (Sakon <i>et al</i> , 2003) or in IKK β ^{-/-} fibroblasts (Kamata <i>et al</i> , 2005)	This mutant shows a strong increase of necros is (to be related with concomitant apoptosis/necrosis)
constitutively active NF _K B	NFkB'=1		Both death pathways are shut down in this mutant.
RIP1 deletion	RIP1'=0	RIPK1 ⁴⁻ MEFs are hypersensitivity to TNF α , no TNF α -induced NF _K B activation, (Kelliher <i>et al</i> , 1998)	Both NF _K B and necrosis become unreachable. The effect of RIP1 silencing leads to a complete loss of the decision process (apoptosis becoming the only outcome).
XIAP deletion	C3'=ATP AND MOMP	No effect on TNF α -induced toxicity in XIAP ⁴⁻ MEFs (Harlin et al, 2001)	S

"Ligand dosage" experiments

What if the signal was removed... at which point would the cell commit to one or the other phenotype?

Introduction of "pulse" of TNF instead of constant induction

t: integer

During *t* steps, the system evolves with TNF=1

At step *t*+1, TNF is switched to 0 (until the end)

 $(x-axis \rightarrow duration of TNF "pulse")$

Simplify to understand!

A conceptual 3-node model:	Feedback circuits MPT => MPT 1) MPT => ROS => MPT	(+)
 3 nodes to represent the 3 pathways (CASP3, NFkB, MPT) 	NFkB => NFkB 2) NFkB => cIAP => RIP1ub => IKK => NFkB 3) NFkB => cFLIP - CASP8 - RIP1 => RIP1ub => IKK => NFkB	(+) (+)
 Each arrow summarizes one or several path(s) / cycle(s) 	CASP3 => CASP3 4) CASP3 => CASP8 => BAX => MOMP => SMAC - XIAP - CASP3 5) CASP3 => CASP8 => BAX => MOMP => Cyt_c => apoptosome => CASP3	(+) (+)
	Other regulatory pathways CASP3 - NFκB 6) CASP3 => CASP8 - RIP1 => RIP1ub => IKK => NFkB 7) CASP3 => CASP8 => BAX => MOMP => SMAC - cIAP => RIP1ub => IKK => NFkB 8) CASP3 - NFkB	(-) (-) (-)
	NFκB - CASP3 9) NF κ B => cFLIP - CASP8 => BAX => MOMP => Cyt_c => apoptosome => CASP3 (-) 10) NF κ B => XIAP - CASP3 11) NF κ B => XIAP - Apoptosome => CASP3 12) NF κ B => BCL2 - BAX => MOMP => Cyt_c => apoptosome => CASP3	(-) (-) (-)
	MPT - NFκB 13) MPT => MOMP => SMAC - cIAP => RIP1ub => IKK => NFkB	(-)
	NFκB - MPT 14) NFkB - ROS => MPT 15) NFkB => BCL2 - MPT 16) NFkB => cFLIP - CASP8 - RIP1 => RIP1K => ROS => MPT	(-) (-) (+)
	CASP3 - MPT 17) CASP3 => CASP8 - RIP1 => RIP1K => ROS => MPT MPT - CASP3	(-)
	 18) MPT => MOMP => Cyt_c => apoptosome => CASP3 19) MPT => MOMP => SMAC - XIAP - CASP3 20) MPT => MOMP => SMAC - XIAP - apoptosome => CASP3 21) MPT - ATP => apoptosome => CASP3 	(+) (+) (+) (-)

The conceptual model as a predictive tool

SIMULATE WILD TYPE

TEST MUTANTS

Casp8 deletion Apoptosis (CASP3 stable state) disappears

TEST VERSIONS OF THE MODEL

Casp8 deletion + no cIAP Apoptosis and necrosis disappear => Confirms the necessity of cIAP!

Institut national de la santé et de la recherche médicale

nserm

Cell fate decision mechanism fragilities utilized by cancers

Acknowledgements

NALIA BACHARAGUE SUCRÈSICADAS

Inserm