SINGULAR SUPPORT OF COHERENT SHEAVES

DENNIS GAITSGORY

The course will describe my joint work with D. Arinkin.

Agenda:

- 1) Introduction
- 2) Definition of singular support
- 3) Functoriality
- 4) Microlocalization

Abstract:

Let Y be an algebraic variety (or, rather, a derived scheme). In recent years much attention has been devoted to the study of the *singularity category* of Y; the latter is by definition the triangulated category quotient of Coh(Y), the category of coherent complexes on Y, by Perf(Y), the category of perfect complexes.

Assume now that Y is quasi-smooth, which is another word for (derived) locally complete intersection. In this case, to an object $\mathcal{F} \in \operatorname{Coh}(Y)$ one can associate a geometric invariant, denoted sing. supp.(\mathcal{F}), and called the *singular support* of \mathcal{F} . This invariant measures how far \mathcal{F} is from belonging to $\operatorname{Perf}(Y)$. The singular support of \mathcal{F} is a closed conical subvariety inside a certain algebraic variety $\operatorname{Sing}(Y)$, canonically attached to Y, which measures how much Y itself is far from being smooth. Thus, each closed conical subvariety $\mathcal{N} \subset \operatorname{Sing}(Y)$ gives rise to a category $\operatorname{Coh}_{\mathcal{N}}(Y)$, which is "sandwiched" between $\operatorname{Perf}(Y)$ and $\operatorname{Coh}(Y)$.

It turns out that categories of the form $\operatorname{Coh}_{\mathbb{N}}(Y)$ are of central importance to the Geometric Langlands program. Namely, when Y is taken to be the stack of local systems on a given algebraic curve, an appropriately defined stack \mathbb{N} will capture the Arthur parameters.