
ANALYTIC CONTINUATION OF OVERCONVERGENT HILBERT

MODULAR FORMS

(PRELIMINARY VERSION)

PAYMAN L KASSAEI

In these notes, we explain some recent progress on analytic continuation of overconvergent

p-adic Hilbert modular forms and applications. We will begin with the classical case of elliptic

modular forms to explain the basic ideas and hint at what new ideas are needed in the general

case. We then move on to the case of Hilbert modular forms where the prime p is unramified in

the relevant totally real field.

1. The classical case

1.1. In [BT99], Buzzard and Taylor proved the modularity of a certain kind of a Galois rep-

resentation ρ by showing first that ρ arises from an overconvergent modular form f , and then

proving that f is indeed a classical modular form. The proofs of classiality in this work and the

subsequent generalization by Buzzard [Buz03] were through analytic continuation of f from its

original domain of definition (which is an admissible open region in the rigid analytic modular

curve) to the entire modular curve. This implies classicality since by the rigid analytic GAGA,

any global analytic section of a line bundle over the analytification of a projective variety is,

indeed, algebraic.

Earlier, in [Col96], Coleman had proved a criterion for classicality of p-adic overconvergent

modular forms in terms of slope, i.e., the p-adic valuation of the eigenvalue of the Up Hecke

operator.

Theorem 1.1.1. (Coleman) Any overconvergent modular form f of weight k and slope less than

k − 1 is classical.

Coleman’s proof involved calculations with the cohomology of modular curves. We could,

however, ask whether this result could be proven by invoking the above principle of analytic

continuation. In other words, given the slope condition, could we analytically continue f from its

domain of definition to the entire modular curve? In [Kas06], we showed that this is possible and

involves the construction of a series whose convergence is guaranteed by the given slope condition.

In this section, we will explain the proof by dissecting the method to see what is essential for the

application of the method in more general cases. In doing so, we will introduce some ideas of

Pilloni which allows for a less explicit and, hence, more general approach.

1.2. The proof of Coleman’s theorem via analytic continuation [Kas06]. In this section

only, we let Y denote the completed modular curve of level Γ1(N)∩Γ0(p) defined over Qp, where

N ≥ 4 is an integer prime to p. Its noncuspidal locus classifies the data (E,H) over Qp-schemes,

where E is an elliptic curve with Γ1(N)-level structure, and H a finite flat subgroup scheme of

E of order p. Let ω be the usual sheaf on Y whose sections are invariant differentials on the
1
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universal family of (generalized) elliptic curves on Y . Modular forms of level Γ1(N)∩ Γ0(p), and

weight k ∈ Z are elements of H0(Y, ωk). We let Y an denote the p-adic rigid analytification of Y ,

and continue to denote the analytification of ω by ω.

Let Y an,0 denote the modular curve whose noncuspidal locus classifies all (E,H,D) such that

(E,H) 6= (E,D) and both are classified by Y an. There are two morphisms π1, π2 : Y an,0 → Y an

sending (E,H,D) to (E,H) and (E/D, H̄), respectively, where H̄ denotes the image of H in

E/D.

To define regions inside Y an, we need to recall the notion of degree of a finite flat group scheme

over a finite extension of Qp and some of its properties.

The degree of a finite flat group scheme. We define the notion of degree and record some

properties that we will use later. This useful notion was defined by Illusie and others, and has

been more recently studied by Fargues in [Far10].

Definition 1.2.1. Let OK be the ring of integers in a finite extension K of Qp. Let Λ be a finite

torsion OK-module. Choose an isomorphism Λ ∼= ⊕di=1OK/(ai) with ai ∈ OK . We define the

degree of Λ to be deg(Λ) =
∑d

i=1 νp(ai). This definition can be shown to be independent of the

choice of the above isomorphism.

If G is finite flat group scheme over OK , we define deg(G) = deg(ωG), where ωG is the OK-

module of global invariant differentials on G. It can be shown [Far10, §3] that deg(G) equals the

p-adic valuation of a generator δG of Fitt0(ωG), the zeroth fitting ideal of ωG.

We record some lemmas which we will use later.

Lemma 1.2.2. [Far10, Lemme 4] Assume that 0→ G′ → G→ G′′ → 0 is an exact sequence of

finite flat group schemes over OK . We have deg(G) = deg(G′) + deg(G′′).

Lemma 1.2.3. [Far10] Let λ : A→ B be an isogeny of p-power degree between abelian schemes

over S = Spec(OK). Let G be the kernel of λ. Let ωA/S and ωB/S denote the conormal sheaves

of A and B, respectively. Then

deg(G) = νp(det(λ∗ : ωB/S → ωA/S)).

In particular, if A is an abelian scheme over Spec(OK) of dimension g, then deg(A[pn]) = ng.

Proposition 1.2.4. [Far10, Corrolaire 3] Let G and G′ be two finite flat group schemes over S =

Spec(OK), and λ : G→ G′ a morphism of group schemes which is generically an isomorphism.

Then, deg(G) ≤ deg(G′) and the equality happens if and only if λ is an isomorphism.

Proposition 1.2.5. [Pil11, Lemme 2.3.4] If G is a truncated Barsotti-Tate group of level 1

defined over a finite extension of Qp, then deg(G) is an integer.

The degree function can be used to parameterize points on the modular curve, and to cut out

rigid analytic subdomains on it.

Definition 1.2.6. If Q = (E,H) is point on Y an, we define deg(Q) = deg(H), if Q has good

reduction. Otherwise, we define deg(Q) = 0 or 1, depending on whether Q has étale or mul-

tiplicative reduction. If I is a subinterval of [0, 1], we define Y anI to be the admissible open

subdomain of Y an consisiting of points Q such that deg(Q) ∈ I. If a, b are rational numbers, then
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Y an[a, b] is quasi-compact. It is easy to see that the locus of supersingular location is exactly

Y an(0, 1). The ordinary locus has two connected components, the multiplicative locus Y an[1, 1],

and the étale locus, Y an[0, 0]. An overconvergent modular form of weight k ∈ Z is a section of

ωk on Y an[1− ε, 1] for some ε > 0.

Remark 1.2.7. There is a simple relationship between the degree function and the function v′

defined by Buzzard in [Buz03, §4]. We have v′(E,H) = 1− deg(E,H).

Given the above lemma, we can now rephrase the classical theory of canonical subgroups (due

to Katz and Lubin) in terms of degrees, as follows:

Proposition 1.2.8. (Lubin-Katz) Let Q = (E,H) ∈ Y an. Define Sib(Q) = {Q′ = (E,H ′) ∈
Y an : Q′ 6= Q}.

• If deg(Q) > 1/(p + 1), then for any Q′ ∈ Sib(Q), we have deg(Q′) = (1 − deg(Q))/p <

1/(p+ 1).

• If deg(Q) = 1/(p+ 1), then for any Q′ ∈ Sib(Q), we have deg(Q′) = 1/(p+ 1).

• If deg(Q) < 1/(p+ 1), then there is a unique (E,H ′) = Q′ ∈ Sib(Q), such that deg(Q′) >

1/(p + 1); H ′ is called the (first) canonical subgroup of E, it varies analytically with

respect to Q, and we have deg(Q′) = 1 − p deg(Q). For all other Q′′ ∈ Sib(Q), we have

deg(Q′′) = deg(Q) < 1/(p+ 1).

We make a definition:

Definition 1.2.9. If deg(E,H) < 1
pm−1(p+1)

, then, for any 1 ≤ n ≤ m, we can define a cyclic

subgroup Cn of E[pn] of order pn, called the n-th canonical subgroup of E, inductively as follows.

By Proposition 1.2.8, E has a first canonical subgroup C1, and deg(E/C1, H̄) = 1−deg(E,C1) =

pdeg(E,H) < 1
pm−2(p+1)

. Hence, by induction, we can construct C ′n, the n-th canonical subgroup

of E/C1, for all 1 ≤ n ≤ m−1. For 2 ≤ n ≤ m, we define Cn = pr−1(C ′n−1), where pr : E → E/C1

is the projection.

The first step of the analytic continuation– the first take. This step is due to Buzzard

[Buz03]. Using an iteration of the Up operator, Buzzard extends f from its initial domain of

definition to progressively larger domains, eventually extending f to Y an(0, 1].

Proposition 1.2.10. (Buzzard) Let f be an overconvergent modular form f satisfying Up(f) =

apf with ap 6= 0. Then f extends analytically to Y an(0, 1].

We first recall the definition of the Up operator. Let V1 and V2 be admissible opens of Y an

such that π−1
1 (V) ⊂ π−1

2 (W) inside Y an,0. We define an operator

Up = UVW : ωk(W)→ ωk(V),

via the formula

(1.2.1) Up(f) =
1

p
π1,∗(res(pr∗π∗2(f))),

where res is restriction from π−1
2 (W) to π−1

1 (V), π1,∗ is the trace map associated with the finite

flat map π1, and pr∗ : π∗2ω
k → π∗1ω

k is a morphism of sheaves on Y an, which at (E,H,D) is

induced by pr∗ : ΩA/D → ΩA coming from the natural projection pr : A→ A/D.
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One can also define a set-theoretic Up correspondence as the map which sends a subset S ⊂
Y an to another subset Up(S) = π2(π−1

1 (S)). The condition π−1
1 (V) ⊂ π−1

2 (W) is equivalent to

Up(V) ⊂ W.

The principle underlying Buzzard’s method is the following. Let W be an admissible open

such that Up(W) ⊆ W. Suppose f is defined over W and Up(f) = apf with ap 6= 0. Suppose

further that V ⊃ W is an admissible open subset of Y an such that Up(V) ⊆ W. Then, f extends

from W to V, and the extended section (which we continue to denote by f) satisfies the same

functional equation Up(f) = apf . The reason for this is simple: the extension of f shall be taken

to be 1
ap
Up(f) and can be checked to satisfy all the desired properties. Therefore, a strategy for

extending f to an admissible open U ⊇ W is to prove that successive application of Up sends U
into W. For details of this construction in general, see [Kas09, §3.1].

Proof of Proposition 1.2.10. We invoke the above principle and draw all the shrinkage under

Up we need from the degree calculations in Proposition 1.2.8.

If α is such that 1/(p+ 1) < 1− α < 1, then Proposition 1.2.8 shows that

Up(Y
an[1− α, 1]) ⊂ Y an[1− α

p
, 1].

This implies that for M large enough, UMp sends Y an(1−α, 1] inside a domain of definition of f ,

and, hence, f extends to Y an(1− α, 1]. Repeating this argument for all such α, we can extend f

to a section (denoted f again) on Y an( 1
p+1 , 1] satisfying Up(f) = apf . By Proposition 1.2.8

Up(Y
an[

1

p+ 1
, 1]) ⊂ Y an(

1

p+ 1
, 1].

Hence, we deduce that f extends further to Y an[ 1
p+1 , 1], satisfying still Up(f) = apf . Finally, for

any 0 < β < 1/(p+ 1), Proposition 1.2.8 implies that

Up(Y
an[β, 1]) ⊂ Y an[pβ, 1]).

Applying this successively, we deduce that a high enough power of Up will send Y an[β, 1] inside

Y an[ 1
p+1 , 1], and, hence, f can be extended to Y an[β, 1]. Applying this to all β > 0, we get the

desired result.

The first step of the analytic continuation– the 2nd take. Proposition 1.2.8 allows

a precise calculation of the Up correspondence in terms of the degree parametrization on the

modular curve. This calculation was used in the above proof. In more general situations such

calculations could prove difficult to carry out. In this section we explain, à la Pilloni, how

Buzzard’s proof given above does not really need the full force of the degree calculations under

the Up correspondence.

Looking at the above proof, we can readily see that the correspondence Up increases degree in

the cases considered. This is in fact a general principle.

Proposition 1.2.11. Let Q ∈ Y an, and Q′ ∈ Up({Q}). Then deg(Q′) ≥ deg(Q).

Proof. This is an immediate consequence of Proposition 1.2.4. The morphism H → H̄ induced

by A→ A/D is generically an isomorphism as H ∩D = {0} generically.
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�

Looking more closely at the proof in the last section, we have in fact shown that Up increases

the degree strictly on the non-ordinary locus of Y an. This is possible to prove in light of explicit

calculations afforded by Proposition 1.2.8. In fact, this is exactly what makes the proof work: by

iterating Up enough times, any point in the non-ordinary locus will eventually land close enough

to Y an[1, 1] where f will be defined. The following approach, due to Pilloni, achieves the same

without appealing to Proposition 1.2.8. This approach is useful in cases where an analogue of

Proposition 1.2.8 is not readily available.

Proposition 1.2.12. Let Q = (E,H) ∈ Y an defined over OK . If there is Q′ ∈ Up({Q}) such that

deg(Q) = deg(Q′), then H is a truncated Barsotti-Tate group of level 1. In particular, deg(Q) is

an integer (by Proposition 1.2.5).

Proof. Let Q′ = (E/D, H̄), and assume w.l.o.g that Q′ is also defined over OK . Since H → H̄ is

generically an isomorphism, we have deg(Q′) = deg(H̄) ≥ deg(H) = deg(Q). Since the equality

happens, by Proposition 1.2.4, we know that H → H̄ must be an isomorphism over OK . This

implies that E[p] ∼= H ×D, and hence both H and D are truncated Barsotti-Tate groups of level

1. �

Corollary 1.2.13. In the situation of Proposition 1.2.12, we have deg(Q) ∈ {0, 1}, and hence Q

belongs to the ordinary locus. In other words, over the non-ordinary locus of Y an, Up increases

degrees strictly.

Proof. By Proposition 1.2.12, we must have deg(Q) ∈ Z. Since deg(Q) ∈ [0, 1], the claim follows.

�

This gives another proof of the fact that Up increases degree strictly over the non-ordinary

locus of Y an. We can now present a second proof of Proposition 1.2.10, due to Pilloni.

Second proof of Proposition 1.2.10. Assume f is defined on Y an[1 − ε, 1], for some rational

ε > 0. It is enough to show that for any rational α ∈ (0, 1 − ε), there is r ∈ N such that

U rp (Y an[α, 1]) ⊂ Y an[1− ε, 1]. This follows immediately if we show that there is a positive t such

that Up increases degree by t over the entire Y an[α, 1− ε].
Let pr : A → A/H be the universal isogeny over Y an. Let ωA, ωA/H denote, respectively, the

determinants of the conormal sheaves of A,A/H over Y an. Set L = ω−1
A/H ⊗ ωA, which is an

invertible sheaf on Y an. The morphism pr∗ : ωA/H → ωA defines a section δ of L on Y an. By

Lemma 1.2.3, for any Q ∈ Y an, we have deg(Q) = νp(δ(Q)).

Consider now the section δ0 = π∗1δ ⊗ (π∗2δ)
−1 ∈ H0(Y an,0, π∗1L−1 ⊗ π∗2L). By Corollary 1.2.13,

we have νp(δ
0) > 0 over the entire non-ordinary locus. For any rational number α ∈ (0, 1 − ε),

Y an[α, 1 − ε] is a quasi-compact rigid analytic domain of Y an, and, hence, π−1
1 (Y an[α, 1 − ε]) is

a quasi-compact rigid analytic domain in Y an,0. Therefore, by the maximum modulus principle,

νp(δ
0) attains a a minimum t over it. This minimum t must be positive as Y an[α, 1 − ε] lies

entirely inside the non-ordinary locus.

The second step of the analytic continuation. So far, we have seen that as long as ν(ap) is

finite, we can extend f to Y an(0, 1]. We now assume that ν(ap) < k−1, and prove the classicality
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of f . What is left to show is that under this assumption f can be further extended from Y an(0, 1]

to Y an = Y an[0, 1]. The missing locus is Y an[0, 0], i.e., the ordinary étale locus. We will do this

by constructing a section on F on Y an[0, 0] and showing that it glues to f on Y an(0, 1] producing

a global section.

To motivate the construction of the extension of f to Y an, we assume for now that f is classical

of slope less than k − 1. Assume (E,H) is in Y an[0, 0]. Since Upf = apf , we can write

f(E,H) =
1

pap

∑
H∩D1=0

pr∗f(E/D1, H̄),(1.2.2)

where the sum is over the cyclic subgroups H1 of rank p which intersect H trivially, and H̄

denotes the image of H in E/D1. Since H is not canonical, all but one of points appearing on the

right hand side of the above formula belong to Y an[1, 1] (by Proposition 1.2.8). The exceptional

term corresponds to D1 = C1, the first canonical subgroup of E. Applying the above formula to

(E/C1, H̄) we get

f(E/C1, H̄) =
1

pap

∑
H∩D2=0,C1⊂D2

pr∗f(E/D2, H̄),(1.2.3)

where the sum is over the cyclic subgroups D2 of rank p2 which contain C1 and intersect H

trivially. We, hence, find

f(E,H) =
1

pap

∑
H∩D1=0,D1 6=C1

pr∗f(E/D1, H̄) + (
1

pap
)2

∑
H∩D2=0,C1⊂D2

pr∗f(E/D2, H̄).

Similarly, we find that the only point appearing in this expression that doesn’t belong to

Y an[1, 1] is (E/C2, H̄). We will repeat this process with f(E/C2, H̄), and keep going in the same

way. At the n-th step, we separate the term corresponding to the quotient of E by Cn (the n-th

canonical subgroup of E) from the rest of the terms, and rewrite the term via the functional

equation Upf = apf as above. The result is the following.

Proposition 1.2.14. Let f be a classical modular form of level Γ0(N) ∩ Γ1(p), weight k and

slope less than k − 1. We have

f(E,H) =

∞∑
n=1

(
1

pap
)n
(∑
Dn

pr∗f(E/Dn, H̄)
)
,(1.2.4)

where Dn runs through all the cyclic subgroups of E of rank pn which contain Cn−1, are different

from Cn, and intersect H trivialy. All the points appearing in the above series belong to Y an[1, 1].

Proof. The only thing left to show is that the series converges. By Lemma 1.2.2, deg(Cn) = n,

and, hence, Lemma 1.2.3 implies that pr∗(η) is divisible by pnk for any section η of ωk. Hence the

“error term” ( 1
pap

)npr∗f(E/Cn, H̄) is divisible by ( 1
pap

)npnk = (pk−1/ap)
n which tends to zero as

n goes to infinity by the assumption on ap. �
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Before we proceed, we would like to make a definition to formalize the above “error term” as

a special term among the terms appearing in the definition of the Up operator.

Definition 1.2.15. For any interval I ⊂ [0, 1/(p + 1)), and any r > 0, we define Ir to be the

interval defined by multiplying all the elements in I by r. Using Proposition 1.2.8, we define

U sp : Y anI
1
p → Y anI,

via U sp(E,H) = (E/C1, H̄), where C1 is the canonical subgroup of E. It induces a morphism

U sp : ωk(Y anI)→ ωk(Y anI
1
p )

defined as U spf(E,H) = 1
p pr∗f(E/C1, H̄). It follows that for any n ∈ N, the map

(U sp)n : ωk(Y anI)→ ωk(Y anI
1
pn )

is given by (U sp)nf(E,H) = (1
p)npr∗f(E/Cn, H̄), where Cn is the n-th canonical subgroup of E.

Assume W,V are admissible opens of Y an satisfying π−1
2 (W) ⊂ π−1

1 (V) so that we have a Up
operator UVW : ωk(W)→ ωk(V). Whenever there is a decomposition W = W1 ∪ W2, we get a

decomposition of the UVW operator to a the sum of two operators UVW1
: ωk(W1)→ ωk(V) and

UVW2
: ωk(W1)→ ωk(V). In particular, by virtue of Proposition 1.2.8, we have

π−1
1 (Y an[0, 0]) = π−1

2 (Y an[1, 1]) ∪ π−1
2 (Y an[0, 0]),(1.2.5)

and, correspondingly, the operator Up : ωk(Y an[1, 1])∪ωk(Y an[0, 0])→ ωk(Y an[0, 0]) decomposes

as a sum of two operators denoted as follows:

Up = Unspp + U spp .

Unravelling the above construction shows that Unspp : ωk(Y an[1, 1])→ ωk(Y an[0, 0]) is given by

Unspp f(E,H) =
1

p

∑
D 6=C1,H

pr∗f(E/D, H̄),(1.2.6)

and Unspp : ωk(Y an[0, 0])→ ωk(Y an[0, 0]) is the map defined in Definition 1.2.15 for I = [0, 0].

Using this notation, the discussion above can be summarized as follows: if f is classical, of weight

k and of slope less than k − 1, then

f|Y an[0,0]
=
∞∑
n=1

(
1

ap
)n(U spp )n−1Unspp (f|Y an[1,1]

).

Proof of Theorem 1.1.1. Define F on Y an[0, 0] exactly as above.

F =
∞∑
n=1

(
1

ap
)n(U spp )n−1Unspp (f|Y an[1,1]

).(1.2.7)

The convergence of the series under the slope assumption follows from the same argument as

in Proposition 1.2.14. We want to show that F on Y an[0, 0] can be glued to f on Y an(0, 1].

The problem is that the series defining F can not be extended outside Y an[0, 0], as its definition

depends on the existence of all Cn’s which requires the ordinarity of E. However, as we shall see,
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the partial sums in the series overconverge outside Y an[0, 0] (albeit to extents that vanish in the

limit), and it gives us enough information to prove the gluing.

In fact, for any 0 ≤ t < 1/(p+ 1), Proposition 1.2.8 gives a decomposition similar to 1.2.5:

π−1
1 (Y an[0,

t

p
]) = π−1

2 (Y an[1− t

p
, 1]) ∪ π−1

2 (Y an[0, t]).(1.2.8)

Therefore, the above decomposition of Up extends from Y an[0, 0] to Y an[0, tp ], and we can write

Up = U spp + Unspp , where

Unspp : ωk(Y an[1− t

p
, 1])→ ωk(Y an[0,

t

p
]),

is given by the same formulae as 1.2.6, and

U spp : ωk(Y an[0, t])→ ωk(Y an[0,
t

p
])

is as in Definition 1.2.15. Let us fix a rational number 0 < t0 < 1/(p+ 1), and define

V := Y an(0, t0]

Also, for any m ≥ 0, define

S†m := Y an[0,
t0
pm

].

The above decomposition of Up allows us to define a section of ωk on S†m, for m ≥ 1, as follows

Fm =

m∑
n=1

(
1

ap
)n(U spp )n−1Unspp (f|

Y an[1− t0p ,1]
).

In other words, Fm is the m-th partial sum of F which overconverges from Y an[0, 0] to S†m.

We want to show that these partial series become very close to f outside Y an[0, 0]. An easy

calculation shows us that for m ≥ 1, we have the following equality on V ∩ S†m = Y an(0, t0pm ]:

f = Fm + (
1

ap
)m(U spp )mf|V ,(1.2.9)

where U spp is as in Definition 1.2.15 for I = (0, t0]. We, therefore, need to estimate (U spp )mf|V .

Lemma 1.2.16. The following estimates hold:

• The collection of sections {f|V , Fm : m ∈ N} is uniformly bounded.

• |f − Fm| on S†m ∩ V = Y an(0, t0pm ] tends to zero as m goes to infinity.

• |Fm+1 − Fm| on S†m+1 = Y an[0, t0
pm+1 ] tends to zero as m goes to infinity.

Proof. Let Z ⊂ Y an[0, 1
p(p+1)), and let h ∈ ωk(Z). For any Q = (E,H) ∈ (U spp )−1(Z), we denote

the first canonical subgroup of E by C1. Let d := inf{deg(C1) : Q ∈ (U spp )−1(Z)}. We can write

|U spp h(Q)| = |1
p

pr∗h(U spp (Q))|

= p−k(deg(C1))|1
p
h(U spp (Q))|

≤ p1−kd|h|Z ,
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where, in the second equality, we have used Lemma 1.2.3. This implies that

|U spp h|(Uspp )−1(Z) ≤ p1−kd|h|Z .(1.2.10)

We first show that |f |V is bounded. For m ≥ 0, let Zm := S†m − S†m+1 = Y an( t0
pm+1 ,

t0
pm ].

Proposition 1.2.8 implies that Up(Z0) lies inside (the quasi-compact) Y an[ 1
p+1 , 1], over which f is

bounded. This, in turn, implies that f = 1
ap
Upf is bounded on Z0. On the other hand, we have

seen that f − 1
ap
U spp f = F1 extends to the quasi-compact S†1, and, hence, it has a bounded norm.

Let M1 denote a common bound for f on Z0 and f − 1
ap
U spp f on S†1. We prove, by induction,

that f is bounded by M1p
kt0
p

+···+ kt0
pm on Zm. Assume this is true for m− 1, with m ≥ 1. We have

(U spp )−1(Zm−1) = Zm, and the infimum d introduced above equals 1− t0
pm on Zm, by Proposition

1.2.8. Hence, inequality 1.2.10 gives us

| 1

ap
U spp f |Zm ≤ p

νp(ap)+1−k(1− t0
pm

)|f |Zm−1 ≤ p
kt0
pm |f |Zm−1 ≤M1p

kt0
p

+···+ kt0
pm .

Therefore, |f |Zm ≤ max{|f − 1
ap
U spp f |Zm , | 1

ap
U spp f |Zm} ≤ M1p

kt0
p

+···+ kt0
pm , as claimed. Now, since

V =
⋃
m≥0Zm, it follows that

|f |V ≤M := M1p
kt0
p−1 .

For the second part of the lemma, we apply Equation 1.2.9 along with inequality 1.2.10 with

Z = S†m−1 ∩ V to deduce that

|(U spp )mf|V |S†m∩V ≤ p
1−k(1− t0

pm−1 )|(U spp )m−1f|V |S†m−1∩V
.

Induction on m gives us

|( 1

ap
)m(U spp )mf|V |Sm ≤ |

1

ap
|m p

m−k(m− pt0
p−1

)
= pm(νp(ap)−(k−1))p

kpt0
p−1 → 0 as m→∞

since νp(ap) < k − 1. The third statement of the Lemma can be proven in exactly the same

way, as Fm+1 − Fm = ( 1
ap

)m+1(U spp )m(F1) from the definition. Finally, the uniform boundedness

of the collection {Fm} follows immediately from the above results, along with the fact that the

sequence Fm is convergent on Y an[0, 0].

�

Finally, we can use the gluing lemma in [Kas06] to show that f and F glue together to produce

a section of ωk over Y an[0, t0]. While the domains of definitions of F and f do not overlap, we

can use the above overconvergence results to prove the gluing.

It is enough to show that f extends from V = Y an(0, t0] to S†0 = Y an[0, t0]. Let Ǒ be the sheaf

of rigid analytic functions on Y an with norm at most 1. By Lemma 1.2.16, we can rescale (and

restrict to a trivializing open cover for ω) to assume that all the Fm’s and f|V are sections of Ǒ.

Furthermore, modulo choosing a subsequence, we can assume that

|Fm − f |S†m∩V ≤ (
1

p
)m.
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This implies that Fm and f|V glue mod pm to give a section hm of Ǒ/pmǑ over S†m ∪ V = S†0. A

theorem of Bartenwerfer [Bar70] states that for a smooth quasi-compact rigid analytic variety Z,

we have cH1(Z, ǑZ) = 0 for some scalar c with |c| ≤ 1. A standard argument shows then that

chm ∈ Ǒ(S†0)/pmǑ(S†0) ⊂ (Ǒ/pmǑ)(S†0).

The compatibility of the chm’s implies that their inverse limit provides an element h of

lim←−
m

chm ∈ lim←−
m

Ǒ(S†0)/pmǑ(S†0) = Ǒ(S†0).

We define h to be 1/c times this section. It is immediate from Lemma 1.2.16 that h|V = f|V and

h|Y an[0,0]
= F . This ends the proof of Theorem 1.1.1.

1.3. Discussion: the essential ingredients in the second step of analytic continuation.

Since we are interested in applying the above method in more general situations, we would like

to discuss some of the ingredients that made the above proof work, in a less case-specific fashion.

We first focus on the construction of the series on Y an[0, 0].

As we have seen earlier, the idea of the first step of the analytic continuation does not work

on Y an[0, 0] as Up does not increase degrees strictly on this domain. In fact, another way to

characterize Y an[0, 0] is the following:

Y an[0, 0] = {(E,H) ∈ Y an[0, 1) : ∃!(E/G1, H̄) ∈ Up{(E,H)} s.t. deg(E/G1, H̄) = deg(E,H)}.

Again, having Proposition 1.2.8 at our disposal, this is immediate: the unique subgroup of E[p]

distinguished above is the first canonical subgroup of E. But more is needed to make possible

the writing of the series: it is crucial that for any (E,H) in Y an[0, 0] all terms of Up(E,H) apart

from (E/G1, H̄) lie in a region which is admissibly disjoint from Y an[0, 0], which, in this case, is

Y an[1, 1]. This is the content of Equation 1.2.5 and is exactly what allows the decomposition of

the Up correspondence as

Up = Unspp + U spp

on Y an[0, 0]. This already gives us the first partial sum of the series, i.e.,

F1 = (
1

ap
)Unsp(f|Y an[1,1]

),

defined over S1 := Y an[0, 0]. To write the second partial sum,

F2 = (
1

ap
)Unspp (f|Y an[1,1]

) + (
1

ap
)2U spp U

nsp
p (f|Y an[1,1]

),

we need to make sense of U spp U
nsp
p (f) which is formally defined on S2 := (U spp )−1(S1) (which,

again, happens to be Y an[0, 0] in this case). Similarly, if we define, Sm := (U spp )−m(S1), we can

make sense of

Fm =
m∑
n=1

(
1

ap
)n(U spp )n−1Unspp (f|Y an[1,1]

)

as a section of ωk on Sm. In the case at hand, Sm happens to be Y an[0, 0] for all m. But let us

forget that knowledge and see what we can deduce about the Sm’s, simply from their definition.
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In fact, using Proposition 1.2.11, we can formally see that

Sm = {(E,H) ∈ Y an[0, 1) : ∃!(E/Gm, H̄) ∈ Ump {(E,H)} s.t. deg(E/Gm, H̄) = deg(E,H)}.

Let us call Sm the special locus of order m. Using Proposition 1.2.11, we formally deduce that

S1 ⊇ S2 ⊇ · · · ⊇ Sm ⊇ · · ·

Therefore, the series given by the partial sums Fm can at least be written down on

S∞ := ∩m∈NSm,

provided it has a rigid analytic structure. The next step would be to show that the series

converges on S∞ given the slope condition. This boils down to estimating ( 1
ap

)m(U spp )m(f|Y an[1,1]
)

as in Lemma 1.2.16. This expression involves m iterations of U spp , which, in turn, entails m

applications of the pullback of differential forms under the map pr : E → E/G1 for various points

(E,H) ∈ S∞. By Lemma 1.2.3, an estimate can be obtained in terms of the degree of the various

distinguished subgroups, i.e., the G1’s that appear in the iterations. In the case at hand, all

the G1’s will be canonical subgroups of ordinary elliptic curves, and, hence, will be of degree

1, determining the slope condition νp(ap) < k − 1 for the convergence of the series. In general,

one expects these degrees to be large enough integers providing estimates which translate into

relevant slope conditions.

Some issues remain to be handled. Firstly, if, unlike in the case at hand, S∞ 6= S1, we would

still need to analytically continue f to S1. Secondly, we need to glue the section obtained via

the above series to the section defined outside the special locus. Both of these require analytic

continuation of Fm outside Sm. To do so, one needs to work in a strict neighborhood of the

bad locus S1, say S†0, and construct the special locus of order m inside S†0, called S†m, which will

certainly contain Sm. In fact, it would be enough to construct S†1, a neighborhood of S1 inside

S†0, to have the following properties:

• the decomposition Up = Unspp + U spp overconverges from S1 to S†1,

• Up takes S†0 − S
†
1 to a region on which f is already defined.

Having S†1 at hand, one can define S†m := (U spp )−m+1(S†1), and construct Fm, the partial series

of order m, on S†m, as explained in the previous section. This shall explain the notation used in

§1.2. In fact, in that proof one has Sm = Y an[0, 0], S†m = Y an[0, t0pm ].

In the Hilbert case, explained in §4, the above construction involves one extra step. Since at

the m-th step of the argument, we glue Fm and f mod pm, we need to arrange for the domains

of definition of Fm and f to form an admissible covering of S†0. The non-explicit nature of the

argument does not allow us to rule out, for instance, the possibility that S†1 equals S1. This would

certainly cause trouble in the gluing procedure. To remedy this, one needs to enlarge S†m (which

already contains the “bad-behaviour” locus for Ump ) to a strict neighborhood S††m of S†m, in a way

that the partial series Fm extends from S†m to S††m . To arrange this, we essentially need to make

sure that the above decomposition of Up overconverges further yet, from S†1 to S††1 . This step can

be done using a general rigid analytic result on overconvergence of sections to finite étale maps

between rigid analytic varieties ([Ber96, 1.3.5]).
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Our hope is that the rather vague discussion in this section would serve as a “psychological”

preparation for the upcoming classicality arguments in the Hilbert case.

2. Hilbert Modular Varieties

In the upcoming sections, we intend to present two types of analytic continuation results for

overconvergent Hilbert modular forms. The first will be results on “domains of automatic analytic

continuation” for overconvergent Hilbert modular forms as in [Kas13, KST12], where no slope

conditions are given (apart from the finiteness of slope). These results have been used in proving

cases of the strong Artin conjecture in [Kas13, KST12]. The second type will be classicality

results in the presence of slope conditions as in [PS11], where the method presented in §1 is used.

In preparation for the above, we will discuss the geometry of Hilbert modular varieties in this

section, where the results are mostly from [GK12].

2.1. Notation. Let p be a prime number, L/Q a totally real field of degree g in which p is

unramified, OL its ring of integers, dL the different ideal, and N an integer prime to p. Let L+

denote the elements of L that are positive under every embedding L ↪→ R. For a prime ideal p

of OL dividing p, let κp = OL/p, fp = deg(κp/Fp), f = lcm{fp : p|p}, and κ a finite field with

pf elements. We identify κp with a subfield of κ once and for all. Let Qκ be the fraction field of

W (κ). We fix embeddings Qκ ⊂ Qur
p ⊂ Qp.

Let [Cl+(L)] be a complete set of representatives for the strict (narrow) class group Cl+(L)

of L, chosen so that its elements are ideals a C OL, equipped with their natural positive cone

a+ = a ∩ L+. Let

B = Emb(L,Qκ) =
∐

p Bp,

where p runs over prime ideals of OL dividing p, and Bp = {β ∈ B : β−1(pW (κ)) = p}. Let σ

denote the Frobenius automorphism of Qκ, lifting x 7→ xp modulo p. It acts on B via β 7→ σ ◦ β,

and transitively on each Bp. For S ⊆ B we let

`(S) = {σ−1 ◦ β : β ∈ S}, r(S) = {σ ◦ β : β ∈ S},
and

Sc = B− S.
The decomposition

OL ⊗ZW (κ) =
⊕
β∈B

W (κ)β,

where W (κ)β is W (κ) with the OL-action given by β, induces a decomposition,

M =
⊕
β∈B

Mβ,

on any OL ⊗ZW (κ)-module M .

Let A be an abelian scheme over a scheme S, equipped with real multiplication ι : OL →
EndS(A). Then the dual abelian scheme A∨ has a canonical real multiplication, and we let

PA = HomOL(A,A∨)sym. It is a projective OL-module of rank 1 with a notion of positivity; the

positive elements correspond to OL-equivariant polarizations.
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For a W (κ)-scheme S we shall denote by A/S, or simply A if the context is clear, a quadruple:

A/S = (A/S, ι, λ, α),

comprising the following data: A is an abelian scheme of relative dimension g over a W (κ)-

scheme S, ι : OL ↪→ EndS(A) is a ring homomorphism. The map λ is a polarization as in [DP94],

namely, an isomorphism λ : (PA,P+
A )→ (a, a+) for a representative (a, a+) ∈ [Cl+(L)] such that

A⊗OL a ∼= A∨. The existence of λ is equivalent, since p is unramified, to Lie(A) being a locally

free OL ⊗OS-module. Finally, α is a rigid Γ00(N)-level structure, that is, α : µN ⊗Z d−1
L → A is

an OL-equivariant closed immersion of group schemes.

Let X/W (κ) be the Hilbert modular scheme classifying such data A/S = (A/S, ι, λ, α). Let

Y/W (κ) be the Hilbert modular scheme classifying (A/S,H), where A is as above and H is a

finite flat isotropic OL-subgroup scheme of A[p] of rank pg, where isotropic means relative to the

µ-Weil pairing for some µ ∈ P+
A of degree prime to p. Let

π : Y → X

be the natural morphism, whose effect on points is (A,H) 7→ A.

Let X,X,Xrig be, respectively, the special fibre of X, the completion of X along X, and the

rigid analytic space associated to X in the sense of Raynaud. We use similar notation Y ,Y,Yrig

for Y and let π denote any of the induced morphisms. These spaces have models over Zp or Qp,
denoted XZp ,Xrig,Qp , etc. For a point P ∈ Xrig we denote by P = sp(P ) its specialization in X,

and similarly for Y . We denote the ordinary locus in X (respectively, Y ) by X
ord

(respectively,

Y
ord

). Let Y0
rig be the rigid analytic variety over W (κ) which classifies all (A,H,D) such that

A ∈ Xrig, H,D are two subgroups of A of the type classified by Yrig, and H ∩D = 0. There are

two morphisms π1, π2 : Y0
rig → Yrig, where π1 forgets D, and π2 quotients out by D.

2.2. The (ϕ, η)-invariant on Y . Let Q ∈ Y correspond to (A,H) defined over a field k ⊇ κ. Let

f : A→ A/H be the natural projection and f t : A/H → A be the map induced by multiplication

by p. We have f t ◦ f = [p]A and f ◦ f t = [p]A/H . The natural maps induced by f , f t between

the Lie algebras decompose as⊕
β∈B

Lie(f)β :
⊕
β∈B

Lie(A)β −→
⊕
β∈B

Lie(A/H)β,(2.2.1)

⊕
β∈B

Lie(f t)β :
⊕
β∈B

Lie(A/H)β −→
⊕
β∈B

Lie(A)β.

We define the following invariants of Q using these maps:

ϕ(Q) = ϕ(A,H) = {β ∈ B : Lie(f)σ−1◦β = 0},

η(Q) = η(A,H) = {β ∈ B : Lie(f t)β = 0},(2.2.2)

I(Q) = I(A,H) = `(ϕ(Q)) ∩ η(Q) = {β ∈ B : Lie(f)β = Lie(f t)β = 0}.

The elements of I(Q) are the critical indices of [Sta97]. By assumption A satisfies the Rapoport

condition, and, hence, for any β ∈ B, both Lie(A)β and Lie(A/H)β are one-dimensional. Since
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f ◦ f t is multiplication by p = 0 on the Lie algebras, it follows that always at least one of the

maps Lie(f)β and Lie(f t)β is zero for any β ∈ B. This leads to the following definition.

Definition 2.2.1. A pair (ϕ, η) of subsets of B is called admissible if `(ϕc) ⊆ η. Given another

admissible pair (ϕ′, η′) we say that

(ϕ′, η′) ≥ (ϕ, η),

if both inclusions ϕ′ ⊇ ϕ, η′ ⊇ η hold.

In the above definition, it is clear that if (ϕ, η) is admissible, then so is (ϕ′, η′), and that the

admissibility of (ϕ, η) is equivalent to r(ηc) ⊆ ϕ. It is also easy to see that there are 3g admissible

pairs.

Remark 2.2.2. If H = Ker(FrA), then ϕ(A,H) = B. Similarly, If H = Ker(VerA), then η(A,H) =

B. The invariant (ϕ, η) can be thought of as telling us for every direction β ∈ B whether H is

Ker(FrA), Ker(VerA), or neither, even though the subgroup H does not necessarily decompose.

2.3. The type invariant on X. Let k be a perfect field of positive characteristic p. Let D
denote the contravariant Dieudonné functor, G 7→ D(G), from finite commutative p-primary

group schemes G over k, to finite length W (k)-modules M equipped with two maps Fr: M →M ,

and Ver: M →M , such that Fr(αm) = σ(α)Fr(m),Ver(σ(α)m) = αVer(m) for α ∈ W (k),m ∈
M and Fr ◦Ver = Ver ◦ Fr = [p]. This functor is an anti-equivalence of categories and commutes

with base change. It follows that if G has rank p` the length of D(G) is `. Applying the Dieudonné

functor to the Frobenius morphism FrG : G→ G(p) gives D(FrG) : D(G(p))→ D(G). This map, in

view of D(G(p)) = D(G)⊗W (k),σW (k), results in a σ-linear map D(G)→ D(G), which is nothing

but the Frobenius morphism Fr of the Dieudonné module D(G). A similar statement is true for

Ver. Let gi : G→ Hi be morphisms, for i = 1, 2. By considering g1 × g2 : G→ H1 × H2, and

applying the exactness of D, it follows that

D(Ker(g1) ∩Ker(g2)) = D(G)/(Im(D(g1) + Im(D(g2))).(2.3.1)

Definition 2.3.1. Let k be a perfect field of characteristic p. For an abelian scheme A/k classified

by X, the type of A is a subset of B defined by

(2.3.2) τ(A) = {β ∈ B : D (Ker(FrA) ∩Ker(VerA))β 6= 0}.

If P is a point on X corresponding to A, we define τ(P ) = τ(A).

2.4. The relationship between the type and the (ϕ, η) invariants.

Lemma 2.4.1. Let Q = (A,H) be a k-point of Y .

(1) β ∈ τ(A) if and only if one of the following equivalent statements hold:

(a) Im(D(FrA))β = Im(D(VerA))β.

(b) Im(Fr)β = Im(Ver)β.

(c) Ker(Fr)β = Ker(Ver)β.

(2) β ∈ ϕ(A,H)⇐⇒ Im(D(FrA))β = Im(D(f))β.

(3) β ∈ η(A,H)⇐⇒ Im(D(VerA))β = Im(D(f))β.
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Proof. Basic properties of Dieudonné modules recalled in §2.3 imply that

D(Ker(FrA) ∩Ker(VerA)) = D(A[p])/(ImD(FrA) + ImD(VerA)) = D(A[p])/(Im Fr + Im Ver).

The modules D(A[p]), Im(D(FrA)), and Im(D(VerA)) all have actions of OL⊗ZW (κ), and, hence,

decompose as a direct sum of their β-components in the usual way. Each D(A[p])β is a two-

dimensional k-vector space, and both Im(D(FrA))β and Im(D(VerA))β are one dimensional. This

proves (1).

To prove (2) we recall the following commutative diagram:

0 // H0(A,Ω1
A/k) // H1

dR(A/k) // H1(A,OA) // 0

0 // D(Ker(FrA))⊗k k // D(A[p]) // D(Ker(VerA)) // 0,

D(Ker(FrA(1/p)))

which is functorial in A. By duality, the map Lie(f) : Lie(A)→ Lie(B) induces the map

f∗ : Lie(B)∗ = H0(B,Ω1
B/k)→ Lie(A)∗ = H0(A,Ω1

A/k),

which is precisely the pull-back map f∗ on differentials. The map f∗ has isotypic decomposition

relative to the OL ⊗ k-module structure.

Now, β ∈ ϕ(f) ⇐⇒ Lie(f)σ−1◦β = 0 ⇐⇒ f∗σ−1◦β = 0. Via the identifications in the above

diagram, the map f∗ can also be viewed as a map

f∗ : D(Ker(FrB(1/p)))→ D(Ker(FrA(1/p))),

which is equal to the linear map D(f (1/p)|Ker(Fr
A(1/p) )). So,

f∗σ−1◦β = 0⇐⇒ D(f (1/p)|Ker(Fr
A(1/p) ))σ−1◦β = 0

⇐⇒ D(f |Ker(FrA))β = 0.

We therefore have,

β ∈ ϕ(f)⇐⇒ D(f |Ker(FrA))β = 0.

Now, D(f |Ker(FrA))β = 0 if and only if [D(Ker(FrA))/D(f)(D(Ker FrB))]β 6= 0 and that is equiva-

lent to D(A[p])β/
[
D(f)(D(B[p])) + D(FrA)(D(A(p)[p]))

]
β
6= 0. By considering dimensions over k

we see that this happens if and only if Im(D(f))β = Im(D(FrA))β, as the lemma states.

We first show that

Lie(f t)β = 0⇐⇒ H1(f)β = 0.



16 PAYMAN L KASSAEI

Let γ ∈ PA be an isogeny of degree prime to p. In [GK12, Proof of Lemma 2.1.2], it is shown

that there is an iγ ∈ PB such that the following diagram is commutative:

(2.4.1) A
γ // A∨

B

f t

OO

iγ
// B∨.

f∨

OO

Applying Lie(·)β to the diagram, we obtain

Lie(A)β
∼= // Lie(A∨)β

Lie(B)β

Lie(f t)β

OO

∼= // Lie(B∨)β,

Lie(f∨)β

OO

and, hence,

Lie(f t)β = 0⇐⇒ Lie(f∨)β = 0.

Since we have a commutative diagram:

Lie(A∨)
∼= // H1(A,OA)

Lie(B∨)
∼= //

Lie(f∨)

OO

H1(B,OB),

H1(f)

OO

where we can pass to β-components, we conclude that Lie(f t)β = 0⇐⇒ H1(f)β = 0.

The map H1(f) can be viewed as D(f |Ker(VerA)) : D(Ker(VerB))→ D(Ker(VerA)), and hence,

H1(f)β = 0 if and only if D(f |Ker(VerA))β = 0. This is equivalent to

D(A[p])β/
[
D(f)(D(B[p])) + D(VerA)(D(A(p)[p]))

]
β
6= 0.

Dimension considerations show that this happens if and only if Im(D(f))β = Im(D(VerA))β. �

We can now write down the relationship between the (ϕ, η) and τ .

Corollary 2.4.2. Let Q = (A,H) be a point of Y , and P = π(Q) = A a point of X. The

following inclusions hold.

ϕ(Q) ∩ η(Q) ⊆ τ(P ) ⊆ (ϕ(Q) ∩ η(Q)) ∪ (ϕ(Q)c ∩ η(Q)c)

2.5. Definition of the strata. We define the stratum Wϕ,η on Y . We will show later that

{Wϕ,η} is, indeed, a stratification of Y . First, we need a lemma.

Lemma 2.5.1. Given ϕ ⊆ B (respectively, η ⊆ B), there is a locally closed subset Uϕ, and a

closed subset U+
ϕ (respectively, Vη and V +

η ) of Y , such that Uϕ (respectively, Vη) consists of the

closed points Q of Y with ϕ(Q) = ϕ (respectively, η(Q) = η), and U+
ϕ (respectively, V +

η ) consists

of the closed point Q with ϕ(Q) ⊇ ϕ (respectively, η(Q) ⊇ η).
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Proof. We will show the existence of Uϕ and U+
ϕ , as the rest can be done similarly. It suffices to

prove that U+
ϕ is closed, because

Uϕ = U+
ϕ −

⋃
ϕ′)ϕ

U+
ϕ′ .

Furthermore, since U+
ϕ =

⋂
β∈ϕ U

+
{β}, we reduce to the case where ϕ = {β} is a singleton. Let

Q = (A,H), and consider the natural map f : A→ A/H. By definition, ϕ(Q) ⊇ {β}, if and only

if Lie(f)σ−1◦β = 0. Let (Auniv, Huniv) be the universal object over Y . Then, Lie(Auniv)σ−1◦β
and Lie(Auniv/Huniv)σ−1◦β are line bundles over Y , and

Lie(f)σ−1◦β : Lie(Auniv)σ−1◦β −→ Lie(Buniv)σ−1◦β

is a morphism of line bundles and consequently its degeneracy locus U+
{β} := {Lie(f)σ−1◦β = 0}

is closed.

�

Definition 2.5.2. For an admissible pair (ϕ, η), we define

Wϕ,η = Uϕ ∩ Vη.

By Lemma 2.5.1, Wϕ,η is a locally closed subset of Y with the property that a closed point Q of

Y has invariants (ϕ, η) if and only if Q ∈Wϕ,η. Similarly, we define

Zϕ,η = U+
ϕ ∩ V +

η .

It is a closed subset of Y , and we have Zϕ,η =
⋃

(ϕ′,η′)≥(ϕ,η)Wϕ′,η′ .

2.6. The infinitesimal nature of Y . In this section, we will discuss the infinitesimal nature

of X, Y . First we define the partial Hasse invariants on X.

Definition 2.6.1. Let Ver = VerAuniv,(p) : Auniv,(p) → Auniv be the Verschiebung morphism.

Pulling back by Ver, induces a morphism of sheaves Ver∗ : ω → ω(p), which takes ωβ into ω
(p)
σ−1◦β.

This gives

hβ ∈ HomX(ωβ, ω
(p)
σ−1◦β) = H0(X,ω−1

β ⊗ ω
p
σ−1◦β)

called the β-th partial Hasse invariant.

We will use the following result proven in [GO00].

Theorem 2.6.2. (Goren-Oort) Let P be a closed k-rational point of X. There is a choice of

isomorphism

(2.6.1) ÔX,P ∼= W (k)[[tβ : β ∈ B]],

inducing an isomorphism

(2.6.2) ÔX,P ∼= k[[tβ : β ∈ B]],

such that for all β ∈ τ(P ), tβ is the image of hβ, the β-th partial Hasse invariant, in ÔX,P .
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In [Sta97] the infinitesimal nature of Y is studied. We recall a more specific version of Stamm’s

result here, and sketch a proof.

Theorem 2.6.3. (Stamm) Let Q = (A,H) be a point of Y , defined over a field k ⊇ κ. Let

ϕ = ϕ(Q), η = η(Q) and I = I(Q) = `(ϕ) ∩ η. Then, there is an isomorphism

(2.6.3) ÔY,Q ∼= W (k)[[{xβ, yβ : β ∈ I}, {zγ : γ ∈ Ic}]]/({xβyβ − p : β ∈ I}).

inducing an isomorphism

(2.6.4) ÔY ,Q ∼= k[[{xβ, yβ : β ∈ I}, {zγ : γ ∈ Ic}]]/({xβyβ : β ∈ I}).

such that, the following holds: if Q ∈ U+
{β}, then U+

{β} ∩ Spf(ÔY ,Q) is equal to Spf(ÔY ,Q) if

β 6∈ r(I), and is otherwise given by the vanishing of yσ−1◦β. Similarly, if Q ∈ V +
{β}, then V +

{β} ∩
Spf(ÔY ,Q) is equal to Spf(ÔY ,Q) if β 6∈ I, and is otherwise given by the vanishing of xβ.

Proof. We sketch a proof. As in [DP94], one constructs a morphism from a Zariski-open neigh-

borhood T ⊂ Y of Q to the Grassmann variety G associated to the data: H = (OL ⊗ k)2, two

free OL ⊗ k-sub-modules of H, say W1,W2, such that under the OL ⊗ k map h : H → H given

by (x, y) 7→ (y, 0), we have h(W1) ⊆ W2, h(W2) ⊆ W1. Notice that we can perform the usual

decomposition according to OL-eigenspaces to get

h = ⊕βhβ : ⊕βk2
β → ⊕β k2

β,

such that each hβ is the linear transformation corresponding to two-by-two matrix M = ( 0 1
0 0 ).

Furthermore, Wi = ⊕β(Wi)β, and (Wi)β is a one-dimensional k-vector space contained in k2. We

have MW1 ⊆W2,MW2 ⊆W1.

The basis for this construction is Grothendieck’s crystalline theory. Let f : A→ B = A/H

correspond to Q. The OL ⊗ k-module H is isomorphic to H1
dR(A/k). By the elementary divi-

sors theorem, we can then identify H1
dR(B/k) with H, and possibly adjust the identification of

H1
dR(A/k) with H, such that the induced maps f∗ and (f t)∗ are both the map h defined above.

Let WA = H0(A,Ω1
A/k) = Lie(A)∗ ⊂ H be the Hodge flitration, and similarly for WB. Then we

have h(WA) ⊆WB, h(WB) ⊆WA, and so we get a point Q of the Grassmann variety G described

above. Let O = ÔY ,Q and m be the maximal ideal. By Grothendieck’s theory, the deformations

of (f : A→ B) over R := O/mp (which carries a canonical divided power structure) are given by

deformation of the Hodge filtration over that quotient ring. Namely, are in bijection with free,

direct summands, OL ⊗ R-modules (WR
A ,W

R
B ) of rank one of H ⊗k O/mp = (OL ⊗ R)2 such

that h(WR
A ) ⊆ WR

B , h(WR
B ) ⊆ WR

A , and WR
A ⊗ k = WA,W

R
B ⊗ k = WB. This, by the universal

property of the Grassmann variety is exactly ÔG,Q/m
p
G,Q. A boot-strapping argument as in

[DP94] furnishes an isomorphism of the completed local rings themselves, even in the arithmetic

setting.

Therefore, to study the singularities and uniformization of the completed local rings, we can do

so on the above Grassman variety. By considering each β ∈ B separately, we may reduce to the

case of the Grassmann variety parameterizing two one-dimensional subspaces Λ1 = W1,β,Λ2 =

W2,β of k2 satisfying MΛ1 ⊆ Λ2,MΛ2 ⊆ Λ1. Fix such a pair (Λ1,Λ2). If Λ1 6= Ker(M), then

Λ2 = MΛ1 = Ker(M). It is an easy calculation to show that the same holds true for any
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deformation of Λ1,Λ2 to a local artinian k-algebra. Therefore the deformation is determined by

choice of Λ1 = Span{(1, d)}, which implies that the local deformation ring is k[[zβ]]. Here zβ is

the parameter whose values for the particular discussed deformation is d . If Λ1 = Ker(M) and

Λ2 6= Ker(M) then the situation is similar and we see that the local deformation ring is k[[zβ]],

where, in this case, the choice of letter zβ determines the deformation of Λ2. Finally, suppose

both Λ1 = Ker(M) and Λ2 = Ker(M). The subspace Λi is spanned by (1, 0) and a deformation

of it to a local artinian k-algebra D is uniquely described by a basis vector (1, di) where di ∈ mD.

The condition that the deformations are compatible under f is precisely d1d2 = 0, and we see

that the local deformation ring is k[[xβ, yβ]]/(xβyβ).

Returning to the situation of abelian varieties, let Q = (A,H), giving the two usual maps

f : A→ B = A/H, and f t : B → A. We have

(W1,β,W2,β) = (H0(A,Ω1
A/k)β, H

0(B,Ω1
B/k)β),

and the condition W1,β = Ker((f t)∗)β is the the same as β ∈ η(Q), while W2,β = Ker(f∗)β is the

condition that σ ◦ β ∈ ϕ(Q). The first case considered above, i.e.,

W1,β 6= Ker((f t)∗)β and W2,β = Ker(f∗)β,

corresponds to the case β ∈ ηc ∩ `(ϕ) = `(ϕ)− I. In this case, any deformation of W1,β and W2,β

satisfy the same conditions as above, and, therefore, the condition “β ∈ `(ϕ) − I” continues to

hold for every deformation. In particular, if β ∈ `(ϕ) − I, then U+
{β} ∩ Spf(ÔY ,Q) = Spf(ÔY ,Q).

Similarly, studying the second case considered above gives us that if β ∈ η − I, then, we have

V +
{β} ∩ Spf(ÔY ,Q) = Spf(ÔY ,Q). Finally, the third case

W1,β = Ker((f t)∗)β and W2,β = Ker(f∗)β,

corresponds to β ∈ η ∩ `(ϕ). In this case, β belongs to the η-invariant of the deformation

(W̃1,β, W̃2,β) if and only if W̃1,β = Ker((f t)∗)β, which corresponds to d1 = 0. In terms of the

parameters, this translates to xβ = 0. In other words, V +
β ∩ Spf(ÔY ,Q) is given by the vanishing

of xβ. The remaining case can be done similarly. �

2.7. The geometry of Y . We now study the stratification {Wϕ,η} on Y defined in [GK12] and

recall some of its properties. For an admissible pair (ϕ, η), we have defined the locally closed

subset Wϕ,η, and the closed subset Zϕ,η in Definition 2.5.2.

Theorem 2.7.1. Let (ϕ, η) be an admissible pair, I = `(ϕ) ∩ η.

(1) Wϕ,η is nonempty and its Zariski closure equals Zϕ,η. The collection {Wϕ,η} is a stratifi-

cation of Y by 3g strata.

(2) The starata Wϕ,η and Zϕ,η are equi-dimensional, and we have

dim(Wϕ,η) = dim(Zϕ,η) = 2g − (] ϕ+ ] η).

(3) The irreducible components of Y are exactly the irreducible components of the strata

Zϕ,`(ϕc) for ϕ ⊆ B.

(4) Let Q be a closed point of Y with invariants (ϕ, η), I = `(ϕ) ∩ η. For an admissible pair

(ϕ′, η′), we have Q ∈ Zϕ′,η′ if and only if we have:

ϕ ⊇ ϕ′ ⊇ ϕ− r(I), η ⊇ η′ ⊇ η − I.
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In that case, write ϕ′ = ϕ − J, η′ = η −K (so that `(J) ⊆ I,K ⊆ I and `(J) ∩K = ∅).

We have:

ÔZϕ′,η′ ,Q = ÔY ,Q/I,

where I is the ideal

I = 〈{xβ : β ∈ I −K}, {yγ : γ ∈ I − `(J)}〉 .

This implies that each stratum in the stratification {Zϕ,η} is non-singular.

Proof. We first prove assertion (4). We keep the notation ϕ = ϕ(Q), η = η(Q), I = I(Q).

By definition, Q ∈ Zϕ′,η′ , exactly when (ϕ′, η′) is an admissible pair satisfying (ϕ′, η′) ≤ (ϕ, η).

Writing ϕ′ = ϕ−J , and η′ = η−K, the admissibility condition can be easily seen to be equivalent

to `(J) ⊆ I,K ⊆ I and `(J) ∩K = ∅. This implies that ϕ ⊇ ϕ′ ⊇ ϕ− r(I), and η ⊇ η′ ⊇ η − I.

To write down the ideal of Zϕ′,η′ at Q, we use Theorem 2.6.3. To impose the condition that ϕ′

is included in the ϕ-invariant at Q, is to demand the vanishing of yσ−1◦β for all β ∈ ϕ′ ∩ r(I) =

r(I)−J . In other words, we need to impose yβ = 0 for all β ∈ I− `(J). Similarly, to require that

η′ is included in the η-invariant at Q, is equivalent to the vanishing of xβ for all β ∈ η′∩I = I−K.

This proves the assertion (4).

If A is superspecial and H is the kernel of Frobenius, then Q = (A,H) has invariants (B,B),

and belongs to every stratum Zϕ,η, and hence each Zϕ,η is non-empty. Assertion (4) also shows

that Zϕ,η is pure dimensional and dim(Zϕ,η) = 2g − (] ϕ+ ] η).

Since Zϕ,η − Wϕ,η =
⋃

(ϕ′,η′)	(ϕ,η) Z(ϕ′,η′) is a union of lower-dimensional strata, it follows

that Wϕ,η is non-empty for all admissible (ϕ, η). The computations above show that Wϕ,η is

pure-dimensional and dim(Wϕ,η) = 2g − (] ϕ+ ] η) as well.

The stratum Zϕ,η is closed and contains Wϕ,η, and, hence, it contains Wϕ,η. Dimension

considerations imply that Wϕ,η must be a union of irreducible components of Zϕ,η. If Wϕ,η 6=
Zϕ,η, then the remaining components of Zϕ,η are contained in

⋃
(ϕ′,η′)	(ϕ,η) Z(ϕ′,η′), which is not

possible by dimension considerations.

It remains to prove assertion (3). First note that, by admissibility, dim(Zϕ,η) = g exactly

when η = `(ϕ)c. Let C be an irreducible component of Y . Since C is contained in the union

of all g-dimensional closed strata, it must be contained in a single one, i.e., C ⊆ Zϕ,η for some

(ϕ, η). Therefore, C must be an irreducible component of Zϕ,η with η = `(ϕ)c . Conversely, every

irreducible component of Zϕ,`(ϕ)c is g-dimensional, and hence an irreducible component of Y . In

particular, Y is of pure dimension g. �

Lemma 2.7.2. Let P be a closed point of X. Then, π−1(P ) ∩ Wϕ,η has dimension at most

g − ] (ϕ ∪ η), for any admissible pair (ϕ, η).

Proof. Fix a closed point P of X , corresponding to A defined over an algebraically closed field

k. Let D = D(A[p]) = ⊕β∈BDβ, and recall that each Dβ is a 2-dimensional vector space over k

on which OL acts via β. Recall also that Ker(Ver) and Ker(Fr) in D decompose as

Ker(Fr) = ⊕β∈BKer(Fr)β,

Ker(Ver) = ⊕β∈BKer(Ver)β,
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where each Ker(Fr)β,Ker(Ver)β is a one dimensional subspace of Dβ. By part (1) of Lemma

2.4.1, we have

β ∈ τ(A)⇐⇒ Ker(Fr)β = Ker(Ver)β.

Consider the variety G = G (P ) parameterizing subspaces H = ⊕β∈BHβ of D satisfying the

conditions:

• Hβ ⊂ Dβ is 1-dimensional,

• Fr(H(β)) ⊆ Hσ◦β,

• Ver(H(β)) ⊆ Hσ−1◦β.

We view G as a closed reduced subscheme of (P1
k)
g. Define a morphism

h : π−1(P )red −→ G ,

as follows. We use the identification D = H1
dR(A,OA). The universal family (f : Auniv → Buniv)

over the reduced fibre π−1(P )red produces a sub-vector bundle of D × π−1(P )red by considering

f∗H1
dR(B,OB), which point-wise is f∗H1

dR(Bx,OBx) = D(f)(D(Bx[p])) (x ∈ π−1(P )red), and

so is a subspace of the kind parameterized by G . By the universal property of Grassmann

variety (P1
k)
g = Grass(1, 2)g, we get a morphism h : : π−1(P )red → (P1

k)
g that factors through

G , because it does so at every closed point of π−1(P )red. We note that for every x as above

D/f∗H1
dR(Bx,OBx) = D(Ker(fx)) and so it is clear that h is injective on geometric points and in

fact, by the theory of Dieudonné modules, bijective. We have therefore constructed a bijective

morphism

h : π−1(P )red −→ G .

Since h is a morphism between projective varieties, it is closed and hence it is a homeomorphism.

For H ⊂ D as above, define

ϕ(H) = {β ∈ B : Hβ = Ker(Ver)β},

η(H) = {β ∈ B : Hβ = Ker(Fr)β}.

Now, let H ⊂ A[p] be a subgroup scheme such that (A,H) ∈ π−1(P ), and f : A→ A/H be

the canonical map. Let H = Im[D(f)] = Ker[D(A[p])→ D(H)]. Then, by Lemma 2.4.1, we have

ϕ(A,H) = {β ∈ B : Im(D(f))β = Im(D(FrA))β}
= {β ∈ B : Hβ = (Im(Fr))β}
= {β ∈ B : Hβ = Ker(Ver)β}
= ϕ(H).

Similarly, we find that η(A,H) = η(H). It now follows that π−1(P )red ∩Wϕ,η is homeomorphic

to the locally closed subset of G parameterizing subspaces H with ϕ(H) = ϕ and η(H) = η. Its

dimension is thus at most g − ] (ϕ ∪ η). �

Remark 2.7.3. One can show that the equality holds if the fibre is non-empty. See [GK12, Cor.

2.6.7].

In the following we will define the generic locus of a stratum.
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Definition 2.7.4. Let (ϕ, η) be an admissible pair. We define

W gen
ϕ,η = {(A,H) ∈Wϕ,η : τ(A) = ϕ ∩ η} = π−1(Wϕ∩η) ∩Wϕ,η.

Similarly, one can define Zgenϕ,η .

Proposition 2.7.5. W gen
ϕ,η is a Zariski dense open subset of Wϕ,η, and, hence, of Zϕ,η.

Proof. Since Wϕ∩η is a Zariski dense open subset of Zϕ∩η, it is enough to prove the following:

if C is an irreducible component of Zϕ,η, then, π(C) is an irreducible component of Zϕ∩η. We

argue as follows.

For every point P ∈ π(C), dim(π−1(P ) ∩ C) ≤ g − ] (ϕ ∪ η), by Lemma 2.7.2. Therefore,

dim(π(C)) ≥ dim(C)− (g − ] (ϕ ∪ η))

= 2g − (] ϕ+ ] η)− (g − ] (ϕ ∪ η))

= g − ] (ϕ ∩ η).

On the other hand, since τ(P ) ⊇ ϕ∩η, we have π(C) ⊆ Zϕ∩η. Moreover, dim(Zϕ∩η) = g−] (ϕ∩η).

Since π is proper, π(C) is closed and irreducible. By comparing the dimensions, we conclude that

π(C) is an irreducible component of Zϕ∩η. �

Remark 2.7.6. In fact, one can show that

π(Wϕ,η) =
⋃

(ϕ ∩ η) ∪ (ϕc ∩ ηc) ⊇ τ ′

τ ′ ⊇ ϕ ∩ η

Wτ ′ ,

and

π(Zϕ,η) = Zϕ∩η.

See [GK12, Props. 2.6.4, 2.6.16].

In [GK12], the geometry of Y is studied in more detail. We would like to recall the following

geometric result, which is used in the proof of the upcoming key lemma.

Theorem 2.7.7. Let C be an irreducible component of Zϕ,η. Then

C ∩WB,B 6= ∅.

Proof. See [GK12, ]. �

2.8. The Key Lemma. In [GK12, Lemma 2.8.1], we prove a result which describes the mor-

phism π infinitesimally. This result is crucial for many of the analytic continuation results in

the Hilbert case, by giving the relationship between directional degrees and directional Hodge

heights defined ahead. Here, we present the mod-p version of the lemma, and later we give a

p-adic reformulation.
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Let k be a finite field containing κ, and Q a closed point of Y with residue field k. Let

P = π(Q); let ϕ = ϕ(Q), η = η(Q), I = I(Q), and τ = τ(P ). We choose isomorphisms

ÔY ,Q ∼= k[[{xβ, yβ : β ∈ I}, {zβ : β ∈ Ic}]]/({xβyβ : β ∈ I}),(2.8.1)

ÔX,P ∼= k[[tβ : β ∈ B]],(2.8.2)

as in Theorems 2.6.2 and 2.6.3.

Lemma 2.8.1. (The Key Lemma) Let β ∈ ϕ ∩ η, and π∗ : ÔX,P → ÔY ,Q the induced ring

homomorphism.

(1) If σ ◦ β ∈ ϕ, σ−1 ◦ β ∈ η, then

π∗(tβ) = uxβ + vyp
σ−1◦β,

for some units u, v ∈ ÔY ,Q.

(2) If σ ◦ β ∈ ϕ, σ−1 ◦ β 6∈ η, then

π∗(tβ) = uxβ,

for some unit u ∈ ÔY ,Q.

(3) If σ ◦ β 6∈ ϕ, σ−1 ◦ β ∈ η, then

π∗(tβ) = vyp
σ−1◦β,

for some unit v ∈ ÔY ,Q.

(4) If σ ◦ β 6∈ ϕ, σ−1 ◦ β 6∈ η, then

π∗(tβ) = 0.

Proof. We only give a rough sketch of the idea of the proof given in [GK12]. For another proof

see [Tia11, §4]. �

2.9. The p-adic geometry of Y . Let Cp be the completion of an algebraic closure of Qp. It

has a valuation val : Cp → Q ∪ {∞} normalized so that val(p) = 1. Define the truncated p-adic

valuation

ν(x) = min{val(x), 1}.
Recall the definitions of Xrig, Yrig, Y0

rig, etc, given in §2.1.

Directional Hodge heights. Let P ∈ Xrig be a rigid point corresponding to A defined over

the ring of integers OK of a finite extension K/Qκ. Let Ā be the base change of A to OK/p. For

each β ∈ B, let hβ ∈ Γ(X,ωp
σ−1◦β ⊗ ωβ) be the β-th partial Hasse invariant given in Definition

2.6.1. Using a basis of ωĀ/OK , we may represent hβ(Ā) as an element of OK/p. We define the

β-th partial Hodge height of A to be

wβ(A) = ν(h̃β(Ā)) ∈ Q ∩ [0, 1],

where h̃β(Ā) is any lift of hβ(Ā) to OK . In our main reference [GK12, 4.2], these are denoted

νβ(A) and are defined using the geometry as follows:
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Lemma 2.9.1. Let P ∈ Xrig correspond to A defined over OF . Let {tβ}β∈B be a sets of parameters

at P ∈ X as in (2.6.1). For any β ∈ τ(P ), we have wβ(A) = ν(tβ(P )). For any β 6∈ τ(P ), we

have wβ(A) = 0.

Proof. This follows immediately from Theorem 2.6.2. �

Directional degrees. Let Q = (A,H) be a rigid point of Yrig defned over a finite extension

K/Qκ. Then A and H can be defined over OK . Let ωH be the module of invariant differential

1-forms of H. We have a canonical decomposition

ωH =
⊕
β∈B

ωH,β,

where each ωH,β is a finitely generated torsion OF -module. We define

degβ(Q) = degβ(H) = deg(ωH,β),

where the function deg is given in Definition 1.2.1.

We explain the relation to Raynaud group schemes. Let K be a finite extension of Qκ, and

Q = (A,H) a point defined over OK . Then, for any p|p, the subgroup scheme H[p] is a κp-

Rayunad group scheme over OK , i.e., a κp-vector space scheme of dimension 1 over OK . By

Raynaud’s work, we have an isomorphism of schemes

H[p] ∼= Spec(OK)[Tβ : β ∈ Bp]/(T
p
σ−1◦β − aβTβ : β ∈ Bp),

such that aβ ∈ OK and 0 ≤ val(aβ) ≤ 1 for all β ∈ Bp. It is easy from this explicit description to

see that if β ∈ Bp, then

degβ(H) = val(aβ) ∈ Q ∩ [0, 1].

We define deg(H[p]) = (val(aβ) : β ∈ B).

Remark 2.9.2. Raynuad shows that there is a one-to-one correspondence between the isomorphism

classes of κp-Raynaud group schemes defined over K and [0, 1]Bp ∩QBp given by

G 7→ deg(G).

Definition 2.9.3. Let Q = (A,H) be a point of Yrig defined over OK . We define

deg(Q) := deg(H) := (deg(H[p]) : p|p) = (degβ(H) : β ∈ B).

We obtain a parametrization of Yrig by the directional degrees

deg : Yrig → [0, 1]B =: Θ.

In [GK12, 4.2], the above parametrization is given using the vector of valuations (νβ(Q) :

β ∈ B). These valuations are defined using the geometry of Y , and the relationship between

directional degrees and geometry can be summarized as follows:
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Lemma 2.9.4. Let Q be point of Yrig. Let {xβ, yβ}β∈I(Q) be parameters as in (2.6.3). We have

degβ(Q) =


0 β 6∈ `(ϕ(Q)),

ν(yβ(Q)) β ∈ I(Q),

1 β 6∈ η(Q).

Proof. This follows easily from the defintions. See [Tia11, Prop 4.8] or [Kas06, Prop 3.1] �

The following lemma is useful in estimating the norm of the Up operators. For any A ∈ Xrig

defined over OK , a finite extension of W (κ). Let ωA = ⊕β∈B ωA,β be the decomposition of the

conormal sheaf of A/Spec(OK) as an OL ⊗ZW (κ)-module.

Lemma 2.9.5. Let A,B ∈ Xrig be defined over OK , and λ : A→ B be an OL-morphism with

kernel G. Then, degβ(G) = val(λ∗ : ωB,β → ωA,β).

Proof. This follows from the definition of degβ, and that 0→ ωB,β → ωA,β → ωG,β → 0 is exact.

�

We now present a refinement of Fargues’s degree-increasing principle (Proposition 1.2.4), in

terms of directional degrees.

Proposition 2.9.6. Let H1, H2 be two κp-Raynaud group schemes over OK as above. Then,

there is a homomorphism H1 → H2 which is generically an isomorphism if and only if

fp−1∑
j=0

pfp−1−j degσj◦β(H1) ≤
fp−1∑
j=0

pfp−1−j degσj◦β(H2)

Proof. Let Hi = Spec(OK)[Tβ : β ∈ Bp]/(T
p
σ−1◦β − ai,βTβ : β ∈ Bp) for i = 1, 2. By Raynaud’s

work, giving a homomorphism H1 → H2 which is generically an isomorphism is equivalent to

finding a collection of elements uβ ∈ OK for β ∈ Bp, such that a1,βuβ = a2,βu
p
σ−1◦β. This implies

that Π
fp−1
j=0 (a1,σ−j◦β/a2,σ−j◦β)p

j
= up

fp−1

β , and shows that the existence of the uβ’s is equivalent

to the given condition.

�

For convenience, we make the following definition.

Definition 2.9.7. Let G be a κp-Raynuad group scheme. For any β ∈ Bp, we define

˜degβ(G) :=

fp−1∑
j=0

pfp−1−j degσj◦β(G).

We define ˜deg(G) = ( ˜degβ(G))β∈Bp . Let Q = (A,H) be a point of Yrig. For any β ∈ Bp ⊂ B, we

set ˜degβ(Q) := ˜degβ(H) := ˜degβ(H[p]). We set ˜deg(Q) = ( ˜degβ(Q))β∈B. We also set

Θ̃ := ˜deg(Yrig),

a “skewed hypercube” which can evidently be obtained by applying a linear transformatin to the

standard hypercube Θ = [0, 1]B.

In the above notation, if H1 and H2 are two κp-Raynuad group schemes, a morphism H1 → H2

which is generically an isomorphism exists if and only if ˜degβ(H1) ≤ ˜degβ(H2), for all β ∈ Bp.
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2.10. The Key Lemma revisited. The Key Lemma can be lifted mod p to give information

about the relationship between the directional Hodge heights and the directional degrees.

Lemma 2.10.1. (The Key Lemma II) Let Q = (A,H) be a point of Yrig, and P = A its image

under π in Xrig. We have

wβ(P ) ≥ min{p degσ−1◦β(Q), 1− degβ(Q)},

and the equality happens if p degσ−1◦β(Q) 6= 1− degβ(Q).

Proof. The lemma follows directly from Lemma 2.8.1. We give some indications. Let Q, P

denote, respectively, the specializations of Q and P . Let ϕ = ϕ(Q), η = η(Q), I = I(Q), and

τ = τ(P ).

First, if β 6∈ ϕ∩η, then the above statement holds trivially: if β 6∈ η, Lemma 2.9.4 implies that

1 − degβ(Q) = 0, and if β 6∈ ϕ, then we have p degσ−1◦β(Q) = 0. In both cases the statement is

equivalent to the trivial wβ(P ) ≥ 0. Besides, in this case, we have p degσ−1◦β(Q) 6= 1− degβ(Q)

exactly when β ∈ ϕ ∩ ηc or β ∈ η ∩ ϕc. In both cases, by Corollary 2.4.2, β 6∈ τ . Lemma 2.9.1

implies that wβ(P ) = 0, i.e., the equality holds in these cases.

Assume now that β ∈ ϕ ∩ η, so that the Key Lemma applies. We will only prove the result in

the first case, i.e, under the assumption σ ◦ β ∈ ϕ, σ−1 ◦ β ∈ η. The other cases follow similarly.

In this case, we have {σ−1 ◦ β, β} ⊂ I. Assuming Q is defined over k, pick isomorphisms

ÔY,Q ∼= W (k)[[{xβ, yβ : β ∈ I}, {zβ : β ∈ Ic}]]/({xβyβ : β ∈ I}),(2.10.1)

ÔX,P ∼= W (k)[[tβ : β ∈ B]],(2.10.2)

as in Theorems 2.6.2 and 2.6.3. Applying the Key Lemma, and lifting mod p, we find

π∗(tβ) = uxβ + vyp
σ−1◦β + pG,

for some units u, v ∈ ÔY,Q, and some G ∈ ÔY,Q. Applying Lemmas 2.9.1 and 2.9.4, we find

ν(xβ(Q)) = 1 − degβ(Q), ν(yp
σ−1◦β) = min{1, pdegσ−1◦β(Q)}, and ν(π∗(tβ(Q))) = wβ(P ). The

statement now follows immediately.

�

3. Domains of automatic analytic continuation

In the following, we will present a result which roughly states that every overconvergent Hilbert

modular form of finite slope automatically extends to a “big” region of the Hilbert modular

variety. We will hint at what “big” refers to at the end of this section. The results we present

here have been used in [Kas13], [KST12] to prove certain cases of the Strong Artin Conjecture

over totally real fields. We will perform the analytic continuation in two steps: first we prove

automatic analytic continuation to the canonical locus as in [GK12], and, then, we show further

analytic continuation to a “big” region Σ.

3.1. The preliminaries. Let us officially define overconvergent Hilbert modular forms. Let

k = (kβ)β∈B ∈ ZB. Define

ωk := ⊗β∈B ω
kβ
β
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which is line bundle on Yrig. For any interval J ⊂ [0, g], define YrigJ to be the admissible open

of Yrig whose points are characterized by deg ∈ J .

Definition 3.1.1. An overconvergent Hilbert modular forms of level Γ1(N) ∩ Γ0(p) and weight

k, is a section of ωk on Yrig[g − ε, g] for some ε > 0. The space of such forms is denoted M†k.

We define the Up-operators for {p|p}. Let Up : Yrig → Yrig be the correspondence which sends

(A,H) to {(A/D, H̄) : (A,D) ∈ Yrig, D 6= H}. If V, W are opens in Yrig such that Up(W) ⊂ V,

then Up : ωk(V)→ ωk(W) can be defined via

Up(f)(A,H) =
1

pfp

∑
(A/D,H̄)∈Up(A,H)

pr∗f(A/D, H̄),

where pr∗ is induced by pulling back differentials under pr : A→ A/D. We define Up = ◦p|pUp.

We record the degree-increasing principle for the U operators, which can be proven exactly as

Proposition 1.2.11.

Proposition 3.1.2. Let p|p. Let Q ∈ Yrig, and Q′ ∈ Up({Q}). Then, deg(Q′) ≥ deg(Q).

3.2. Analytic continuation, the first step. We first show that any overconvergent Hilbert

modular form of finite slope extends to the canonical locus defined in [GK12]. We define the

following admissible opens in Yrig and Xrig

Vcan = {Q ∈ Yrig : degβ(Q) + p deg σ−1 ◦ β(Q) > 1, ∀β ∈ B},

Ucan = {P ∈ Xrig : wβ(P ) + pwσ−1◦β(P ) < p,∀β ∈ B}.
The following result was essentially proved in [GK12].

Proposition 3.2.1. Let f ∈ M†k be such that Up(f) = apf and ap 6= 0 for all p|p. Then, f

extends analytically to Vcan.

Proof. We sketch a proof. For simplicity, we assume p is inert in OL. The general case can be

done by repeating the same argument in “all directions.” We have, therefore, Up(f) = apf , and

ap 6= 0. Define

Wcan = {Q ∈ Yrig : degβ(Q) + pdeg σ−1 ◦ β(Q) > 1,∀β ∈ B}.

In [GK12, §5], using several applications of the Key Lemma, it is shown that

π−1(Ucan) = Vcan ∪Wcan,

and that π : Vcan → Ucan is an isomorphism. We skip this rather lengthy proof and refer the

reader to [GK12, §5]. Let Q = (A,H) ∈ Vcan, and P = A ∈ Ucan. By definition of Vcan, Lemma

2.10.1 implies that

wβ(P ) = min{pdegσ−1◦β(Q), 1− degβ(Q)} = 1− degβ(Q).

Consider now any Q′ = (A,D) 6= Q. It follows from the above facts that Q′ ∈ Wcan, and applying

Lemma 2.10.1 implies that

wβ(P ) = min{p degσ−1◦β(Q′), 1− degβ(Q′)} = p degσ−1◦β(Q′).
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This shows that if degβ(H) = 1 − λβ, then degβ(A[p]/D) = 1 − degβ(D) = 1 − λσ◦β
p , for any

D 6= H. In particular, there is M >> 0 such that UMp (Q) lies in the domain of definition of f .

We now proceed as in the proof of Proposition 1.2.10 (and the discussion before it) to extend f

to Vcan.

�

3.3. Analytic continuation, the second step. We will now use Proposition 3.2.1 to prove

further automatic analytic continuation to a region of Yrig denoted Σ. We will explain the

significance of Σ at the end of this section.

We first make some definitions. Let Wϕ,η be a stratum of Y . For p|p, define ϕp = ϕ ∩ Bp, and

ηp = η ∩ Bp. We say that Wϕ,η is not étale at p if (ϕp, ηp) 6= (∅,Bp). We say that Wϕ,η has no

étale part, if Wϕ,η is not étale at any p|p.
Let Wϕ,η be a stratum of codimension 1. By admissibility and part (2) of Theorem 2.7.1, there

is a unique β0 ∈ B such that `(ϕ) ∩ η = {β0}. We say that Wϕ,η is bad, if σ ◦ β0 ∈ η; otherwise,

we say that Wϕ,η is good.

Definition 3.3.1. Let W be a stratum of codimension 0 or 1 with no étale part. We will define

an admissible open subset ]W gen[′ of Yrig as follows:

Case 1: codim(W ) = 0. We put ]W gen[′=]W gen[, where W gen is the generic part of W defined

in Definition 2.7.4.

Case 2: codim(W ) = 1 and W is good. We put ]W gen[′=]W gen[.

Case 3: codim(W ) = 1 and W = Wϕ,η is bad. Let `(ϕ) ∩ η = {β0} and p0|p be such that

β0 ∈ Bp0 . We distinguish two cases:

Case 3a: ϕp0 = {σ ◦ β0} and ηp0 = Bp0. We set

]W gen[′=

{
{Q ∈ ]W [ : degβ0(Q) > 1

p+1} if fp0 = 1;

{Q ∈ ]W gen[ : degβ0(Q) ∈ (
∑fp0−1

i=1
1
pi
, 1)} if fp0 > 1.

Case 3b: otherwise. We put

]W gen[′= {Q ∈ ]W gen[ : degβ0(Q) ∈ (0,
1

p
) ∪ (

fp0−1∑
i=1

1

pi
, 1)}.

We define an admissible open subset of Yrig:

Σ =
⋃
W

]W gen[′,

where W runs though all the strata of codimension 0 and 1 with no étale part.

Now we can state the main result.

Theorem 3.3.2. Let f ∈M †k be such that Up(f) = apf , and ap 6= 0, for all p|p. Then, f extends

analytically to Σ.

We refer the reader to [KST12] for a complete proof, however, in the following we give some

indications of how the proof proceeds. In view of Proposition 3.2.1, it enough to show that f

extends from Vcan to Σ. It turns out that we can indeed prove the following.
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Proposition 3.3.3. We have Up(Σ) ⊂ Vcan. In other words, if (A,H) ∈ Σ, then, for any

(A,D) ∈ Yrig such that D 6= H, and for any β ∈ B, we have

p degβ(D) + degσ◦β(D) < p.

Theorem 3.3.2 follows from this, since, following our usual approach, we can define the exten-

sion of f from Vcan to Σ to be
Up(f)
ap

.

One needs a lemma.

Lemma 3.3.4. Let p|p. Let (A,H) ∈ Yrig, and (A,D) ∈ Yrig be such that D[p] 6= H[p]. Then,

for any β ∈ Bp, we have

degβ(H) + degβ(D) ≤ 1 +

fp−1∑
j=1

1

pj
.

Proof. Suppose A,H,D are defined over OK , a finite extension of W (κ). Consider the homo-

morphism D[p]→ A[p]/H[p] of κp-Raynaud group schemes over OK , which is generically an

isomorphism. By Proposition 2.9.6, we have

fp−1∑
j=0

pfp−1−j degσj◦β(D) ≤
fp−1∑
j=0

pfp−1−j degσj◦β(A/H).

The result now follows by a simple estimation, using the fact that degβ(A/H) = 1−degβ(H) for

all β ∈ B.

�

Let us assume p is inert in OL from this point on for simplicity of presentation. As usual, the

arguments easily work in all “directions.” Under this assumption, we have one relevant Hecke

operator at p called Up, and we have fpOL = g.

The proof of Proposition 3.3.3 involves many applications of the Key Lemma as well as infor-

mation from the mod p geometry of Y . We will not reproduce the proof here, but to give the

reader an idea of the type of arguments involved, we will prove Proposition 3.3.3 in the simpler

case when the specialization of Q = (A,H) to Y belongs to a codimension-0 stratum W(ϕ,η) with

no étale part. By assumption, we have η = `(ϕc), and η 6= B. In this case, Proposition 3.3.3

follows evidently from the following lemma.

Lemma 3.3.5. Let assumptions be as above, and notation as in Proposition 3.3.3 . For any

β ∈ `(η) ∩ ηc, we have degβ(D) ≤
∑g−1

j=1
1
pj

, and, for any β ∈ `(η)c ∪ η, we have degβ(D) = 0.

Proof. We first prove a sublemma.

Sublemma. Let β ∈ ηc. Then degβ(D) ≤
∑g−1

j=1
1
pj

, and degσ−1◦β(D) = 0.

Proof. Since β ∈ ηc(Q), it follows that degβ(Q) = degβ(H) = 1 by Lemma 2.9.4. Lemma 3.3.4,

then, implies that degβ(D) ≤
∑g−1

j=1
1
pj

. Since Q ∈ W gen
ϕ,η , we have τ(π(Q)) = ϕ ∩ η, and hence

β 6∈ τ(π(Q)). This implies that wβ(A) = 0. Applying Lemma 2.10.1, it follows that

0 = wβ(A) ≥ min{p degσ−1◦β(D), 1− degβ(D) > 0},

and, hence, we must have degσ−1◦β(D) = 0. �
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We now return to the proof of Lemma 3.3.5. If β ∈ `(η) ∩ ηc, then, in particular, β ∈ ηc,

and degβ(D) ≤
∑g−1

j=1
1
pj

by the Sublemma. Assume, now, that β ∈ `(η)c ∪ η. If β ∈ `(ηc), then

σ ◦ β ∈ ηc, and applying the Sublemma to σ ◦ β we obtain degβ(D) = 0. Finally, assume that

β ∈ η. Since η 6= B, there is a smallest m > 0 such that σm ◦ β 6∈ η, but σj ◦ β ∈ η for all

0 ≤ j ≤ m−1. We prove by induction that degσj◦β(D) = 0 for all 0 ≤ j ≤ m−1. The statement

is true for j = m − 1 by applying the Sublemma to σm ◦ β. Now assume that degσj◦β(D) = 0

for some j satisfying 1 ≤ j ≤ m − 1. Then, σj−1 ◦ β ∈ η, and, hence, σj ◦ β 6∈ ϕ = r(ηc). Since

Q ∈ W gen
ϕ,η , this implies that σj ◦ β 6∈ τ(π(Q)), or wσj◦β(A) = 0. We apply the Key Lemma II to

conclude that

0 = wσj◦β(A) ≥ min{p degσj−1◦β(D), 1− degσj◦β(D) = 1},
whence, degσj−1◦β(D) = 0. This completes the induction, proving that degβ(D) = 0. �

To finish the proof of Proposition 3.3.3, we need to consider the remaining cases of 2, 3a, 3b

in Definition 3.3.1. In these cases, since ϕ 6= r(η)c, the above induction gets interrupted, and one

needs to consider several possibilities. The Key Lemma continues to be an essential ingredient

for the rest of the proof.

We point out that this result extends to overconvergent Hilbert modular forms of level Γ1(Np),

where an analogue of Σ is defined, simply, by pulling back Σ under the natural forgetful map to

level Γ1(N) ∩ Γ0(p).

In the end, we would like to explain the sense in which Σ is “big”. Let us assume that p is inert in

OL for simplicity. Let w : Yrig → Yrig be the Atkin-Lehner involution (A,H) 7→ (A/H,A[p]/H).

In [KST12], we prove the following result.

Proposition 3.3.6. Assume that p is inert in OL (for simplicity). Then, Σ ∪ w(Σ) contains a

region of the form ]C[⊂ Yrig, such that codimY (Y − C) ≥ 2. In particular, applying the rigid

analytic Koecher principle, we have

H0(Σ ∪ w(Σ), ωk) = H0(Yrig, ω
k).

In other words, if f, g are overconvergent Hilbert modular forms of finite slope such that

f = w(g) on Σ ∩ w(Σ), then both f and g are classical. In [KST12] this result is used (albeit

in level Γ1(Np)) to prove certain cases of the strong Artin conjecture over totally real fields.

The corresponding result in the case of level Γ1(N) ∩ Γ0(p) is proven in [Kas13], where analytic

continuation to a smaller region Y
|τ |≤1
rig [

∑g−1
j=1

1
pj
, g] ⊂ Σ suffices for proving the classicality of the

forms involved. See also [Pil12].

4. Classicality

4.1. In this section, we present the proof of the following Theorem.

Theorem 4.1.1. Let f be an overconvergent Hilbert modular form of weight k = (kβ)β∈B. As-

sume that for all p|p, Up(f) = apf with val(ap) < inf{kβ : β ∈ Bp} − fp. Then, f is classical.

In the following, we will present Pilloni-Stroh’s proof in [PS11]. The theroem was proved by

Sasaki [Sas10] in the case fp ≤ 1 for all p|p, and by Tian [Tia11] in the case fp ≤ 2 for all p|p.
Recently, Tian-Xiao have given a proof providing better bounds using an approach similar to

Coleman’s original proof.
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From this point on, we will always assume that p is inert in OL. The general case can be

done by applying the arguments in “all directions” as in Sasaki’s proof. Under our assumption,

the notation simplifies as follows. We index the elements of B, by picking an arbitrary β1, and

matching

σi−1 ◦ β1 ↔ i,

for 1 ≤ i ≤ g − 1. We will write Mi, xi, degi, etc., in place of Mσi−1◦β1 , xσi−1◦β1 ,degσi−1◦β1 , etc.

We have κ = κpOL , fpOL = g, and Up = UpOL .

The proof follows the method of [Kas06] as presented in §1. We begin by determining the

degrees of the various κ-Raynaud subgroups of an abelian scheme A which has two κ-Raynaud

subgroups whose degree vectors are two opposing vertices of the cube [0, 1]g. This can be thought

of as a partial analogue of Proposition 1.2.8.

Let G1 and G2 be κ-Raynaud group schemes over OK , a finite extension of W (κ). We say

G1 ≤ G2, if there is a morphism G1 → G2 which is generically an isomorphism. We write

G1 < G2, if G1 ≤ G2 and G1 is not isomorphic to G2. By Proposition 2.9.6,

G1 ≤ G2 ⇐⇒ ˜degi(G1) ≤ ˜degi(G2), ∀1 ≤ i ≤ g.(4.1.1)

Lemma 4.1.2. Let G1, G2 be as above. There is a κ-Raynaud group scheme inf(G1, G2) over

OK with the property that for any κ-Raynaud scheme H, we have

H ≤ G1 and H ≤ G2 ⇐⇒ H ≤ inf(G1, G2).

Proof. In view of the equivalence (4.1.1) and Remark 2.9.2, it is enough to take inf(G1, G2) to

be such that ˜degi(inf(G1, G2)) = inf{ ˜degi(G1), ˜degi(G2)} := di for all i. It is an elementary

argument to see that (di)i belongs to Θ̃ (Definition 2.9.7), and, hence, inf(G1, G2) exists. �

The following lemma is key in calculating the degrees of the various κ-Raynaud subgroup

schemes of an A ∈ Xrig in certain cases.

Lemma 4.1.3. Let A ∈ Xrig, and (A,H1), (A,H2) ∈ Yrig. Assume ˜degi(H1) 6= ˜degi(H2) for all

1 ≤ i ≤ g. Then, for any (A,H) ∈ Yrig such that H 6= H1, H2, we have

H ∼= inf(H1, H2).

In other words, ˜degi(H) = inf{ ˜degi(H1), ˜degi(H2)}, for all i.

Proof. We first prove a Sublemma.

Sublemma: Let G1, G2, G3 be κ-Raynaud subgroup schemes of A[p] defined over OK . We have

inf(G1, G2) ≤ G3.

Proof. Consider A[p](K̄), a κ-vector space of dimension 2. We can arrange that Gj(K̄) is gen-

erated by xj ∈ A[p](K̄), for j = 1, 2, and G3(K̄) is generated by x1 + x2. The morphism

inf(G1, G2)→ Gj can be modified, using the OL-action, to ensure that a generator of inf(G1, G2)

is mapped to xj , for j = 1, 2. Consider the composite morphism inf(G1, G2)→ G1 ×G2 → A[p],

where the first morphism is induced by the above morphisms, and the second one is multiplication

inside A[p]. This morphism has image G3, and is generically an isomorphism. �
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We continue with the proof of Lemma 4.1.2. Fix i, and assume that ˜degi(H2) < ˜degi(H1).

The sublemma implies that inf(H1, H2) ≤ H, whence ˜degi(H2) ≤ ˜degi(H). Similarly, we have

inf(H1, H) ≤ H2, which implies that inf{ ˜degi(H1), ˜degi(H)} ≤ ˜degi(H2) < ˜degi(H1). It follows

that ˜degi(H) = ˜degi(H2) = inf{ ˜degi(H1), ˜degi(H2)}. �

Let us record the relevant degree-increasing principle for Up in this context.

Proposition 4.1.4. Let Q ∈ Yrig, and Q′ ∈ Up({Q}). Then, ˜degi(Q
′) ≥ ˜degi(Q) for 1 ≤ i ≤ g.

In particular, deg(Q′) ≥ deg(Q).

Proof. Let Q = (A,H) and Q′ = (A/D, H̄). The result follows from Proposition 2.9.6, by

considering the natural morphism H → H̄. �

Before proceeding, we would like to give the reader some indication of how the proof proceeds

from here. We invite the reader to read §1.3 closely. The notation in the general discussion

presented there is chosen to match the following presentation.

The key step in the analytic continuation of an overconvergent f is to understand the behavior

of Up on the special locus S1 where Up does not strictly increase degrees. In fact, it is crucial to

understand this behavior over a strict neighborhood S†1 of S1 for gluing purposes. The method

in [Kas06] works well, if we can find S†1 over which Up decomposes as U spp + Unspp , where U spp is

dividing by a special subgroup, and Unspp , the complementary correspondence, takes S†1 into a

locus where f is already defined. This implies that the only undetermined term in the extension-

to-be of f , i.e., “
Up(f)
ap

”, would be
Uspp (f)
ap

. Repeating this process, as explained in §1, we can

construct a series which provides the extension of f over a strict neighborhood of the special

locus.

This construction will be done around each vertex x of [0, 1]g separately, and, in fact, inside

a strict neighborhood S†0(x) of deg−1(x). In the following, we will first construct S†0(x), S†1(x),

and, then, define {S†m(x)}m≥2 formally from this data.

Let us fix, then, the vertex x = (xi), given by xi = 1 if i ∈ T ⊂ {1, · · · , g}, and xi = 0

otherwise. We assume r := |T | < g. Let 1 = (1, 1, · · · , 1). For any rational δ > 0, we define

Wδ(x) = {Q ∈ Yrig : |degi(Q)− xi| ≤ δ}, a quasi-compact open subset of Yrig.

Lemma 4.1.5. Let notation be as above.

(1) Let A ∈ Xrig, and (A,H1), (A,H2), (A,H), be three distinct points of Yrig. If deg(H1) = x

and deg(H2) = 1 − x, then H ∼= inf(H1, H2). Furthermore, If r 6= 0, we have H < H1

and H < H2, and, in particular, deg(H) < deg(H2) = g − r.

(2) Given ε > 0, there exists a positive rational δ < ε, such that for W := Wδ(x), we have

(a) If Q = (A,H1) ∈W is such that Up({Q}) ∩W 6= ∅, then

Up({Q}) ∩W = {(A/H2, H̄1)},
where (A,H2) ∈ Yrig is called the special subgroup of Q, and for any κ-Raynaud

subgroup H 6= H1, H2 of A, we have H ∼= inf(H1, H2).

(b) If r 6= 0, and D1, D2 are κ-Raynaud group schemes satisfying

|degi(D1)− xi| ≤ δ and |degi(D2)− (1− xi)| ≤ δ, (†)
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for all 1 ≤ i ≤ g, then, there is a rational ε0 > 0 such that

deg(inf(D1, D2)) ≤ α := (g − r)(1− δ)− ε0.

(3) There is a quasi-compact open subset W1 ⊂W such that

W1 = {Q ∈W : Up(Q) ∩W 6= ∅} = {Q ∈W : |Up(Q) ∩W | = 1}.

(4) There is an analytic family of subgroups of Auniv[p] over W1 which at every Q ∈W1 gives

the special subgroup of Q.

Proof. If r = 0, all the statements follow from the proof of proposition 3.2.1. In the following,

therefore, we assume r 6= 0.

We first prove (1). We show that ˜degi(H1) 6= ˜degi(H2) for all i. If not, then∑
i+j∈T

pg−1−j =
∑
i+j 6∈T

pg−1−j

which is impossible as one side is at least pg−1, and the other at most 1 + p+ ...+ pg−2 < pg−1.

The claim now follows from Lemma 4.1.3. Now assume r 6= 0. To show the second statement

in (1), we must show that H1 6≤ H2 and H2 6≤ H1. Since r 6= 0, there is i such that xi = 1,

and arguing as above, we find that ˜degi(H1) ≥ pg−1 > ˜degi(H2). The other direction follows

similarly, using r 6= g.

For part (2) of the Lemma, one can show, by a simple continuity argument, that δ < ε can be

chosen such that for D1, D2, two κ-Raynaud group schemes satisfying (†), the statement (b) holds

true and we have ˜degi(D1) 6= ˜degi(D2), for all 1 ≤ i ≤ g. Now, assume we are in the situation of

part (a), and H2 is a Raynaud subgroup of A[p] such that (A/H2, H̄1) ∈ Up({Q})∩W . It follows,

then, from Lemma 4.1.3, that for any Raynaud subgroup H 6= H1, H2, we have H ∼= inf(H1, H2).

Furthermore, no such H satisfies (A/H, H̄1) ∈ Up({Q}) ∩W , since, otherwise, we would have

deg(A/H, H̄1) ∈ deg(W ), or g−deg(H) = g−deg(inf(H1, H2)) ≤ r+ (g− r)δ, which contradicts

part (b).

For part (3), we note that W1 = π1(π−1
1 (W ) ∩ π−1

2 (W )) is a quasi-compact open in Yrig, as

π1, π2 : Y0
rig → Yrig are finite-flat maps, and it satisfies the desired property.

For the last statement, note that, by part (2), we have

π−1
1 (W1) ⊂ π−1

2 (W )
⊔

π−1
2 (Yrig[g − α, g]),

where the right side is an admissible disjoint union since deg(W ) ≤ r+ (g− r)δ = g−α− ε0, i.e.,

W ⊂ Yrig[0, g−α− ε0]. This implies that π1 : π−1
1 (W )∩π−1

2 (W )→W1 is a finite-flat morphism,

which, by part 2a), has degree 1. Hence, the map is an isomorphism, and its inverse provides a

family of special subgroups on W1 as desired.

�

Let us keep in mind that we will prove the desired analytic continuation by an induction

process going from deg = r + 1 to deg = r. In particular, we will apply the above results at a

stage of the induction where f has been extended to Yrig(r, g], and we intend to further extend

f to a strict neighborhood S†0(x) of deg−1(x). Why can’t we take S†0(x) = W , so that the special

locus S†1(x) equals W1? It appears this should work, as we understand the behavior of Up on W1,

as follows: for any point Q ∈ W1, there is a unique point Q′ ∈ Up(Q) which lies in W1, and the
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rest fall in Yrig(r, g] where f has been defined. The problem is that we do not yet understand

the bahavior of Up on W −W1. To fix this problem, we will take S†0(x) to be a subset of W on

which we can determine the bahavior of Up. We will define this below.

Given any z̃ = (z̃i) ∈ Θ̃, define Y
≥z̃
rig = {Q ∈ Yrig : ˜degi(Q) ≥ z̃i,∀ 1 ≤ i ≤ g}. For t ∈ [0, g]∩Q,

define

Y
≥z̃
rig [0, t] = {Q ∈ Y

≥z̃
rig : deg(Q) ≤ t}.

We have the following elementary result.

Lemma 4.1.6. The collection of the regions {Y≥z̃rig [0, t] : t > r, , z̃ ∈ Θ̃} contains a fundamental

system of strict neighborhoods of deg−1(x).

Definition 4.1.7. Lemma 4.1.6 implies that there is a rational r < tx < r+ ε0 (where ε0 is as in

part (b) of Lemma 4.1.5 if r 6= 0, and can be taken 1 if r = 0), and z̃ ∈ Θ̃, such that Y
≥z̃
rig [0, tx] is a

strict neighborhood of deg−1(x) contained in W . We define S†0(x) to be this strict neighborhood

of deg−1(x).

Lemma 4.1.8. The region S†0(x) ∪Yrig[tx, g] is Up-stable.

Proof. We have S†0(x) ∪ Yrig[tx, g] = Y
≥z̃
rig ∪ Yrig[tx, g], which is stable under Up by Proposition

4.1.4 �

We can now identify the spcial locus of S†0(x) as S†1(x), and study its properties.

Proposition 4.1.9. There is a quasi-compact open subset S†1(x) ⊂ S†0(x) such that

S†1(x) = {Q ∈ S†0(x) : Up({Q}) ∩ S†0(x) 6= ∅}

= {Q ∈ S†0(x) : Up({Q}) ∩ S†0(x) = {Q′}}.

If Q = (A,H), Q′ = (A/G1, H̄), we call G1 the special subgroup of (A,H). The following hold:

(1) There is an analytic family of subgroups of Auniv[p] over S†1(x) which at every Q ∈ S†1(x)

gives the special subgroup of Q.

(2) Over S†1(x), we have Up = U spp +Unspp such that U spp : S†1(x)→ S†0(x) is given by dividing

by the special subgroup, and Unspp : S†1(x)→ Yrig[tx, g] is the complement of U spp .

(3) Up(S†0(x)− S†1(x)) ⊂ Yrig[tx, g].

Proof. We simply take S†1(x) = W1∩S†0(x). All statements but the last follow from Lemma 4.1.5.

The last statement follows from Lemma 4.1.8 and the characterization of S†1(x). �

Remark 4.1.10. The special locus at vertex x is S1(x) = S†1(x) ∩ deg−1(x).

The following is a classical result on automatic overconvergence of sections. See [Ber96, 1.3.5].

Lemma 4.1.11. Let λ : Y0 → Y be a finite étale morphism between quasi-compact rigid analytic

spaces. Assume that λ admits a section s over S ⊂ Y. Then s extends to a section s† : S† → Y0

to λ, where S† is a strict neighborhood of S inside Y.
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Corollary 4.1.12. There is a quasi-compact strict neighborhood S††1 (x) of S†1(x) inside S†0(x),

such that the family of special subgroups extends analytically from S†1(x) to S††1 (x). In particular,

on S††1 (x), we have Up = U spp + Unspp , where

U spp : S††1 (x)→ S†0(x) ∪Yrig[tx, g]

is dividing by the special subgroup, and

Unspp : S††1 (x)→ Yrig[tx, g]

is the complement. Furthermore, by characterization of S†1(x), we have

U spp (S††1 (x)− S†1(x)) ⊂ Yrig[tx, g]− S†0(x).

Shrinking S††1 (x), if necessary, we may assume that U spp (S††1 (x)) ⊂ W = Wδ(x) (see Lemma

4.1.5, and Definition 4.1.7).

We conclude that S†1(x) = (U spp )−1(S†0(x)). We now define S†m(x) for m ≥ 2.

Definition 4.1.13. Recall U spp : S††1 (x)→ S†0(x) ∪Yrig[tx, g]. For any m ≥ 2, define

S†m(x) := (U spp )−m(S†0(x)).

It follows, immediately, that for all m ≥ 0,

S†m+1(x) ⊂ S†m(x).

Successive application of part (2) of Proposition 4.1.9 shows that there is a family of cyclic

OL/pm-group schemes Gm on S†m(x), with the property that G1 = G, and Gm|S†m+1(x)
= Gm+1[p].

By Lemma 4.1.11, and arguing as in Corollary 4.1.12, we can find a strict neighborhood S††m (x)

of S†m(x) in S†0, such that Gm extends to a family of subgroups to this strict neighborhood. After

possibly shrinking these strict neighborhoods, one can arrange to have

• S††m+1(x) ⊂ S††m (x),

• U spp (S††m+1(x)) ⊂ S††m (x).

We now begin the analytic continuation process following the method presented in §1.

Proof of Theorem 4.1.1: We prove the classicality of f by induction: assume f is defined on

Yrig[r + 1− ε1, g] for an integer 0 ≤ r ≤ g − 1 and some rational ε1 > 0, and show f extends to

Yrig[r − ε2, g] for some positive rational ε2 > 0. As in Proposition 1.2.12, we have the following

result.

Proposition 4.1.14. Let Q = (A,H) ∈ Yrig. Assume that there is Q′ ∈ Up({Q}) such that

deg(Q) = deg(Q′). Then, H is a truncated Barsotti-Tate group of level 1, and degi(Q) is an

integer for all 1 ≤ i ≤ g.

Pick a rational α > 0 such that r + α < r + 1 − ε1. Then, on Yrig[r + α, r + 1 − ε1] degree

is never an integer, and, hence, Up increases degree strictly, by Propositions 4.1.4 and 4.1.14 .

Since Yrig[r + α, r + 1 − ε1] is quasi-compact, using the Maximum Modulus Principle as in the
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Second proof of Proposition 1.2.10 implies that there is a positive lower bound for the increase

in degree under Up over the entire Yrig[r+α, r+ 1− ε1]. In particular, there is M > 0, such that

UMp (Yrig[r + α, g]) ⊂ Yrig[r + 1 − ε1, g]. As usual, we will extend f to Yrig[r + α, g] via
UMp (f)

aMp
.

Allowing α > 0 to vary, we get compatible sections which glue together to provide an extension

of f to Yrig(r, g].

Now, we want to extend f from Yrig(r, g] to Yrig[r−ε2, g], for some ε2 > 0. We will first extend

f to strict neighborhoods of the tubes of all vertices of degree r. Fix such a vertex x. Recall

that tx > r, which implies that f is defined on Yrig[tx, g]. We will extend f to Yrig[tx, g] ∪ S†0(x)

(which contains deg−1(x)).

By Proposition 4.1.9 and the definition of S†m(x), for all m ≥ 1, we have

Up((S†0(x)− S†m(x)) ∪Yrig[tx, g]) ⊂ (S†0(x)− S†m−1(x)) ∪Yrig[tx, g].

Let f0 = f |Yrig[tx,g]. For m ≥ 1, define fm, recursively, on (S†0(x) − S†m(x)) ∪ Yrig[tx, g] via
Up(fm−1)

ap
. It is easy to see that the fm’s are compatible. Also, define Fm on S††m (x) via

Fm =
m−1∑
j=0

(
1

ap
)j+1(U spp )jUnspp (f|Yrig[tx,g]

).

Note that S†0(x) = (S†0(x)− S†m(x)) ∪ S††m (x) is an admissible covering. At step m, we plan to

glue fm on S†0(x)−S†m(x) to Fm on S††m (x) modulo pm to create a section mod pm on S†0(x). The

limit of this sequence of sections mod pm would provide the sought-after analytic continuation of

f to S†0(x). To make this argument work, we will need several norm estimates:

(1) {|Fm|S††m (x)
, |fm|S†0(x)−S†m(x)

}m≥1 is bounded: having this, we can simultaneously rescale

all the sections involved in the argument to have norm at most 1. Using a trivializing

open cover for ω, then, this reduces the problem at hand to one involving sections of

Ǒ = {h ∈ OS†0(x)
: |h|sup ≤ 1}.

(2) |Fm−fm|S††m (x)−S†m(x)
→ 0, as m→∞: having this, up to choosing a subsequence, we can

assume

Fm ≡pm fm over (S†0(x)− S†m(x)) ∩ S††m (x) = S††m (x)− S†m(x),

which would imply that Fm and fm glue mod pm to give a section hm of Ǒ/pmǑ on

S†0(x). Applying Bartenwerfer’s result [Bar70], and arguing just as in the final passage

of the proof of Theorem 1.1.1, we find that for some c with |c| ≤ 1, we have chm ∈
Ǒ(S†0(x))/pmǑ(S†0(x)).

(3) |Fm+1 − Fm|S††m+1(x)
→ 0, as m→∞: having this, after possibly choosing a subsequence,

we can deduce that the sections chm are compatible, and, hence, we can define

f = c−1 lim←−
m

chm ∈ lim←−
m

Ǒ(S†0(x))/pmǑ(S†0(x)) = Ǒ(S†0(x)),
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which glues to f on Yrig(r, g], providing an extension of f to Yrig(r, g] ∪ S†0(x).

Let us assume the above norm estimates for the moment, and finish the rest of the proof. Let

S†0 :=
⋃

x vertex of deg r

S†0(x).

We have shown that f extends to a section on Yrig(r, g] ∪ S†0. Let V be a quasi-compact open of

Yrig disjoint from deg−1(x) for all vertices x of degree r, such that

Yrig[r − 1/2, g] = Yrig(r, g] ∪ S†0 ∪ V.

It follows that degree is never an integer on V, and, hence, Up increases degrees strictly on V.

Arguing as usual, we deduce that there is M > 0 such that UMp (V) ⊂ Yrig(r, g] ∪ S†0. Therefore,
UMp (f)

aMp
provides the analytic continuation of f from Yrig(r, g] ∪ S†0 to Yrig[r − 1/2, g], completing

the induction step.

4.2. The norm estimates. Since ε appearing in Lemma 4.1.5 can be taken arbitrarily small,

we can and will assume that

val(ap) < inf{ki}i − g − ε
∑
i

ki.

All the norm estimates follow essentially from the following Lemma. Let x = (xi) be a vertex

of degree r.

Lemma 4.2.1. Let Z ⊂ S††1 (x). Let h ∈ ωk(U spp (Z)). Then,

|U spp (h)|Z ≤ pg−
∑g
i=1 ki(1−xi−ε)|h|Uspp (Z),

where ε is as in part (2) of Lemma 4.1.5.

Proof. Let (A,H) be a point in Z. We write

|U spp (h)(A,H)| = | 1

pg
pr∗h(A/G1, H̄)|

= pg−
∑g
i=0 ki degi(G1)|h(A/G1, H̄)|

≤ pg−
∑g
i=0 ki(1−xi−ε)|h|Uspp (Z),

where, for the second equality, we have used Lemma 2.9.5, and, for the last inequality, we have

used the fact that by choice of ε in part (2) of Lemma 4.1.5, and by the last statement in Corollary

4.1.12, we have | degi H̄ − xi| ≤ ε, implying degi(G1) ≥ 1− xi − ε, for all i. �

Corollary 4.2.2. Let val(ap) < inf{ki}i − g− ε
∑

i ki, where ε is as in part (2) of Lemma 4.1.5.

Assume that we have a collection {Zm}m≥1 of quasi-compact open subsets of S††1 (x), such that

U spp (Zm+1) ⊂ Zm for all m ≥ 1. Assume h is a section of ωk on Z1. Then

| 1

amp
(U spp )m(h)|Zm+1 → 0 as m→∞.
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We now prove the norm estimates (1), (2), (3) presented above.

Lemma 4.2.3. For 1 ≤ j ≤ m, we have fm − 1

ajp
(U spp )j(fm) = Fj on S††j (x)− S†m(x).

Proof. This is a simple calculation from the definitions. It is worth mentioning that (U spp )j(fm)

is defined on S††j (x)− S†m+j(x), since

(U spp )j(S††j (x)− S†m+j(x)) ⊂ (S†0(x)− S†m(x)) ∪Yrig[0, tx],

by definitions. �

We can now prove the estimates. We first show that {|fm|S†0(x)−S†m(x)
}m≥1 is bounded. Since

S†1(x) is quasi-compact, |F1|S†1(x)
is bounded. Also, |f1|S†0(x)−S†1(x)

is bounded, as f1 is obtained

by applying 1
ap
Up to f |Yrig[tx,g] which has finite norm. Let C be a common bound for the above

two norms. We claim that |fm|S†0(x)−S†m(x)
≤ C, for all m ≥ 1. By compatibility of the fm’s, it is

enough to show that |fm|S†m−1(x)−S†m(x)
≤ C for all m ≥ 1. By Lemma 4.2.3, on S†1(x)− S†m(x),

fm = F1 +
1

ap
U spp (fm).

It is, therefore, enough to show that | 1
ap
U spp (fm)|S†m−1(x)−S†m(x)

≤ C. By Lemma 4.2.1, for m ≥ 2,

we have

| 1

ap
U spp (fm)|S†m−1(x)−S†m(x)

≤ pval(ap)+g−
∑g
i=1 ki(1−xi−ε)|fm|S†m−2(x)−S†m−1(x)

≤ |fm−1|S†m−2(x)−S†m−1(x)
,

using the compatibility of the fm’s and the bound on val(ap). Therefore, the claim follows by

induction. Next, we show {|Fm|S††m (x)
}m≥1 is bounded. We write

|Fm|S††m (x)
≤ sup

0≤j≤m−1
|a−j−1
p (U spp )jUnspp (f|Yrig[tx,g]

)|S††m (x)

Since F1 = Unspp (f|Yrig[tx,g]
), applying Lemma 4.2.1, we obtain |Fm|S††m (x)

≤ |F1|S††1 (x)
<∞.

Now, we prove estimates (2), (3). By Lemma 4.2.3, we have Fm − fm = 1
amp

(U spp )m(fm) on

S††m (x) − S†m(x). The claim now follows from Corollary 4.2.2. Similarly, we have Fm+1 − Fm =
1

am+1
p

(U spp )m(F1) on S††m+1(x), which tends to zero by Corollary 4.2.2.
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