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1 Introduction

These are the notes for a 3 hours course given by the author during the summer school “Arithemtic

Geometry in Carthage” that has taken place in June 2019 at the Tunisian Academy Beit al-

Hikma. They are based on the paper “Faltings Heights of Abelian Varieties with Complex

Multiplication” [AGHMP2] by myself, Eyal Goren, Ben Howard and Keerthi Madapusi Pera.

The goal is to describe the strategy to reduce the proof of an averaged version of Colmez’s

conjecture to a conjecture of Bruinier, Kudla and Yang, an instance of what is known as the

Kudla’s programme. This version of Colmez’s conjecture has been used by Tsimerman [Ts] to

provide an unconditional proof of the André-Ort conjecture for abelian varieties of Hodge type.

Around the same time as [AGHMP2] also X. Yuan and S.-W. Zhang [YZ] proved, using different

techniques, the averaged form of Colmez’s conjecture.

2 The average Colmez conjecture

Let E ⊂ C be a CM field of degree 2d with totally real subfield F of degree d. Let A be an

abelian variety over C of dimension d with action of the ring of integers OE of E. One knows that

A can be defined over a number field K and, since A has potentially everywhere good reduction,

we may further assume that A extends to an abelian scheme A over the ring of integers OK of

K.

2.1 Faltings height

We denote by ωA the ∧d-power of the invariant differentials H0(A,Ω1
A/OK ) of A. It is a projective

OK-module of rank 1. Given a generator s of ωA ⊗OK K define

hFalt
∞ (A, s) =

−1

2[K : Q]

∑
σ : K→C

log |
∫
Aσ(C)

sσ ∧ sσ |,
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here for every embedding σ : K → C we let Aσ and sσ be the base change of A and the section s

to C. When we write Aσ(C) we consider the underlying complex analytic structure so that the

integral makes sense. Define

hFalt
f (A, s) =

1

[K : Q]

∑
p⊂OK

ordp(s) · log N(p).

where ordp(s) is defined as the order with respect to a generator of ωA⊗OKOK,p as OK,p-module.

Finally define

hFalt(A) = hFalt
f (A, s) + hFalt

∞ (A, s),

the Faltings height or modular height of A.

Remark 2.1. As the notation suggests the quantity hFalt(A) is independent of the choice of the

section s thanks to the product formula.

Faltings height can also be defined as the arithmetic degree of the metrized line bundle ω̂A
over Spec(OK) where ωA is the underlying OK-module and the metrics at infinity are defined

using integration as above.

Thanks to the normalization factor 1
[K:Q]

the Faltings height is invariant under field extension.

2.2 Colmez theorem

The fact that A has an action of OE singles out a subset Φ ⊂ Hom(E,C): the action of E

on H0(A,Ω1
A/C) decomposes into a sum of d one dimensional eigenspaces for the action of E

and on each of them E acts via an embedding E → C. We let Φ be the subset of embeddings

E ⊂ C appearing in this way. It is called the CM type of A. It is a subset of cardinality d and

Hom(E,C) = Φ q Φ (here Φ stands for the image of Φ under complex conjugation on C) . We

then have the following Theorem of Colmez, [Col, Théorème 0.3]:

Theorem 2.2. Under the assumption that A is an abelian variety of dimension d with action

of the ring of integers OE of E and with CM type Φ, the Faltings height hFalt(A) depends only

on the pair (E,Φ), and not on the choice of the abelian variety A.

We write hFalt
(E,Φ) for the quantity hFalt(A) as it is independent of the choice of A.

In the same paper Colmez provided a conjectural formula that computes hFalt
(E,Φ) in terms

special values of L-functions of Artin characters. When d = 1, so that E is a quadratic imaginary

field, Colmez’s conjecture is a form of the famous Chowla-Selberg formula:

hFalt
(E,Φ) = −1

2

L′(ε, 0)

L(ε, 0)
− 1

2
log(2π)− 1

4
log |DE|

where DE is the fundamental discriminant of E and L(ε, s) is the L-function associated to the

quadratic character ε defined by E.

In these lectures we’ll be interested in an averaged form of Colmez’s conjecture where we fix

the CM field E but we sum over the set CM(E) of all CM types Φ (i.e., subsets Φ of Hom(E,C) of

cardinality d such that Hom(E,C) = ΦqΦ). His conjectural formula amounts to the following:
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Colmez’s averaged conjecture:

1

2d

∑
Φ∈CM(E)

hFalt
(E,Φ) = −1

2
· L
′(χ, 0)

L(χ, 0)
− 1

4
· log

∣∣∣∣DE

DF

∣∣∣∣− d

2
· log(2π)

= −1

2
· Λ′(χ, 0)

Λ(χ, 0)
− d

4
log(16π3eγ),

where χ : A×F → {±1} is the quadratic Hecke character determined by the extension E/F ,

L(χ, s) is the associated L-function, Λ(χ, s) = |DE
DF
|s/2ΓR(s + 1)dL(χ, s) is the completed L-

function (so that Λ(χ, 1−s) = Λ(χ, s)), DE and DF are the discriminants of E and F respectively

and γ = −Γ′(1) is the Euler-Mascheroni constant.

2.3 Colmez conjecture

Let us a reformulate Colmez’s conjecture more precisely. Let QCM ⊂ C be the composite of all

algebraic CM extensions of Q. Denote by G = Gal(QCM/Q) and write c ∈ G for the complex

conjugation. Let CM0 be the Q-vector space of locally constant, central functions (i.e., functions

constant on conjugacy classes) a : G → Q such that the function G 3 g 7→ a(g)+a(cg) is constant.

Any such a is a C-linear combination a =
∑

η a(η)η of Artin characters. Since c ∈ G is a central

element any such character satisfies η(c) = ±η(Id). The assumption that a(g)+a(cg) is constant

implies that for all non-trivial η for which a(η) 6= 0 we have η(c) = −η(Id) so that L(η, 0) 6= 0.

In particular to a ∈ CM0 we can associate the complex number

Z(a) = −
∑
η

a(η)

(
L′(η, 0)

L(η, 0)
+

log(fη)

2

)
where fη is the Artin conductor of η.

Now start with a CM field E ⊂ QCM and a CM type Φ. Define the locally constant function

on G:

a(E,Φ)(σ) = |Φ ∩ σ ◦ Φ| ∀σ ∈ G.

The average

a0
(E,Φ) =

1

[G : Stab(Φ)]

∑
τ∈G/Stab(Φ)

a(E,τΦ)

lies in CM0. In fact

a(E,Φ)(σ) + a(E,Φ)(cσ) = |Φ|

is independent of σ ∈ G and hence also a0
(E,Φ)(σ)+a0

(E,Φ)(cσ). Here Stab(Φ) ⊂ G is the subgroup

stabilizing the CM type Φ. We then have.
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Colmez’s conjecture: If A is an abelian variety with CM by the ring of integers OE of E

and with CM type Φ, we have hFalt
(E,Φ) = Z(a0

(E,Φ)).

Colmez verified the correctness of his conjceture, up to rational multiples of log(2), for E an

abelian extension of Q. Obus [Ob] removed this error term. When d = 2, Yang [Ya] was the

first to prove the formula for non-abelian extensions.

2.4 Some consequences and reduction steps

We will use this (conjectural) combinatorial expression in two ways. First of all one can compute

the following equality of virtual representations

1

[E : Q]

∑
Φ

a0
(E,Φ) = 2d−2

(
1 +

1

d
IndGGF (χ)

)
,

which provides upon taking Z( ) the expression appearing on the right hand side of Colmez’s

averaged conjecture. Here GF = Gal(QCM/F ). In fact

• log(2π) = ζ′(0)
ζ(0)

is the value at s = 0 of the logarithmic derivative of the Riemann zeta

function which is the L-function associated to the trivial character;

• the L-function of the induced representation IndGGF (χ) is the L-function of χ (over the field

F );

• the Artin conductor of IndGGF (χ) is |DE/DF |.

Secondly, we relate the averaged sum on the CM types to the height of the total reflex algebra

E] and the reflex CM type Φ]. This will play a crucial role in the sequel. We let E] be the

étale Q-algebra defined, via Grothendieck’s formalism of Galois theory, by the Gal(Q/Q)-set

CM(E) of all CM types on E, i.e., E] is characterized by the fact that Hom(E],Q) ∼= CM(E)

as Gal(Q/Q)-sets. We let Φ] ⊂ Hom(E],Q) consist of all Φ ∈ CM(E) such that the given

embedding ι0 : E → C lies in Φ. In fact one can prove that E] =
∏

iE
′
i is a product of CM fields

(as many as the orbits of Gal(Q/Q) on CM(E)) and Φ] ⊂ Hom(E],Q) = qiHom(E ′i,Q) is the

disjoint union Φ] = qiΦ′i of CM types for the E ′i. Furthermore if E ′i corresponds to the orbit of

Φi ∈ CM(E) then (E,Φi) and (E ′i,Φ
′
i) is a reflex pair. Then

a0
(E],Φ]) =

1

[E : Q]

∑
Φ∈CM(E)

a0
(E,Φ). (1)

Colmez further proves the following

Proposition 2.3. There exists a unique Q-linear map ht : CM0 → R such that hFalt
(E,Φ) =

ht(a0
(E,Φ)).
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W deduce that hFalt
(E],Φ])

= 1
[E:Q]

∑
Φ∈CM(E) h

Falt
(E,Φ). Colmez’s averaged conjecture amounts then

to prove the following:

Colmez’s averaged conjecture revisited:

[E : Q]hFalt
(E],Φ]) = −1

2
· Λ′(χ, 0)

Λ(χ, 0)
− d

4
log(16π3eγ)

Our strategy: Thanks to Chowla-Selberg formula we may and will assume through this

text that d ≥ 2. We will define a certain normal scheme Y0, finite over Spec(OE), carrying an

abelian scheme A] with action of OE] and CM type Φ]. In particular Y0 will carry the metrized

line bundle ω̂A] whose degree, divided by the degree of Y0, will compute hFalt
(E],Φ])

by definition.

On the other hand, for L ⊂ E a suitable lattice, we will also define auxiliary morphisms

YL →ML where YL → Y0 is a finite morphism andML are certain models of Shimura varieties

of orthogonal type. the key point is that the metrized line bundle ωA] over YL is via the pull–back

of arithmetic Heegner divisors onML, at least away from a finite set of prime DL depending on

L. Using this and work of Bruinier, Kudla and Yang [BKY] we will get a way to compute hFalt
(E],Φ])

as the arithmetic intersection between these Heegner divisors and YL. This provides the RHS

in the formula for Colmez’s averaged conjecture (revisited), up to rational linear combination

of log p for p ∈ DL. As we may choose lattices so that ∩LDL = ∅ and logarithms of primes are

linearly independent, Colmez’s averaged conjecture follows.

3 Shimura varieties of orthogonal type and CM cycles

3.1 GSpin Shimura varieties

Let V be a Q vector space of dimension n+ 2 with n ≥ 0, and a quadratic form

Q : V → Q

which is non degenerate, of signature (n, 2). Consider the associated bilinear form

[ , ] : V × V → Q, [x, y] = Q(x+ y)−Q(x)−Q(y).

We have the associated Clifford algebra C(V ) = C(V,Q). It is a Q-algebra, with the natural

inclusion

V ↪→ C(V )

satisfying the following universal property: for any Q algebra R with a Q-linear map j : V → R

such that

j(v)j(v) = Q(v)

there exists a unique homomorphism of Q-algebras

C(V )→ R
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such that the composite with the inclusion V ⊂ C(V ) is j. In particular for any v and w ∈ V ,

we have

v · w + w · v = [v, w] ∈ C(V ),

where v · w (and w · v) is the product in C(V ).

The construction of the Clifford algebra is quite straightforward. In fact,

C(V ) := (
∞⊕
n=0

V ⊗m)/(v ⊗ v −Q(v)|v ∈ V ),

the quotient of the tensor algebra of V by the two sided ideal generated by the elements v ⊗
v − Q(v) for v ∈ V . As such ideal is generated by elements lying in even degree (in the tensor

algebra considered with its natural grading), the Z/2Z-grading on the tensor algebra (into even

and odd tensors) passes to the Clifford algebra that correspondingly splits into a direct sum

C(V ) = C+(V )⊕ C−(V ).

Note that C+(V ) is a subalgebra while C−(V ) is just a two-sided module for C+(V ). Furthermore

we have the following formulas:

dimQ(C(V )) = 2n+2, dim+
Q(C(V )) = dimQ(C−(V )) = 2n+1

(Recall that V has dimension n+2)

Next we construct GSpin(V,Q). Given a commutative Q-algebra R, its R-valued points are

GSpin(V )(R) := {x ∈ (C+(V )⊗Q R)∗ : x(V ⊗Q R)x−1 ⊂ V ⊗Q R}.

In particular any x ∈ GSpin(V )(R) acts on V ⊗Q R and, since for any y ∈ V ⊗Q R

Q(y) = Q(xyx−1),

such action factors through O(V,Q)(R). Notice that the units of R form a subgroup of the center

of GSpin(V )(R) and in particular they act trivially on V ⊗QR. Furthermore one can prove that

the action of GSpin(V,Q) on V factors through the special orthogonal group SO(V,Q) and one

gets an exact sequence of algebraic groups:

0 −→ Gm −→ GSpin(V ) −→ SO(V,Q) −→ 0 (2)

3.2 Examples of GSpin groups

3.2.1 Example 1: the case n = 0

In this case

V = Qe1 ⊕Qe2,
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So C−(V ) = V and C+(V ) is algebra of dimension 2:

C+(V ) = Q⊕Qe1 · e2.

Denote x = e1 · e2, let a1 = Q(e1) and a2 = Q(e2). They are negative rational numbers and if

we write b = [e1, e2] ∈ Q, we have

x2 = e1e2e1e2 = −e2
1e

2
2 + [e1, e2]e1e2 = −a1a2 + bx,

so we have

x2 − bx+ a1a2 = 0.

As an algebra, this gives

C+(V ) = Q[x]/(x2 − bx+ a1a2),

which is an imaginary quadratic field K, and we see that

GSpin(V ) = C+(V )× = ResK/QGm.

In particular its base change to R is the so called Deligne torus ResC/RGm,R.

3.2.2 Example 2: the case n = 1

Consider the Q-vector space

V ⊂M2×2(Q) = {x ∈M2×2 : Tr(v) = 0}

Fix some N ∈ N such that N ≥ 1 Let QN be the quadratic form

A 7→ N · detA

Then

GSpin(V ) ∼= GL2

where GL2 acts on V by conjugation.

3.3 Hermitian symmetric spaces

Fix the algebraic group G := GSpin(V,Q). As a first step in order to construct a Shimura

variety, we need to construct a Hermitian symmetric space. It admits several realizations:

1. as a complex manifold DC = {z ∈ VC\{0} : Q(z) = 0, [z, z] < 0}/C∗ ⊂ P(VC)

2. as a Riemannian manifold DR = { Negative definite oriented planes H ⊂ VR}

3. using Deligne torus S = ResC/RGm,R, and realize

D = G(R) conjugacy class of h : S→ GR
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Let us explain how we can go back and forth between these incarnations.

Given an H = Re1⊕Re2 as 2), we let z = e1 + ie2, then take the line [z] to get the realization

1. To get realization 3, we simply take S ∼= GSpinH ↪→ GR using that H ⊂ VR := V ⊗Q R.

Example 1. The Hermitian space has two connected components

DR = { two possible orientations on VR = Re1 ⊕ Re2} = {± points }.

Example 2. We have

DR ∼= H+ tH− ⊂ C

which are the Poincaré upper and lower half planes. The inverse of the map is given as

R ·Re
(
z −z2

1 −z

)
⊕ R · im

(
z −z2

1 −z

)
← z = x+ iy.

Pick [z] ∈ DC, then

VC = Cz ⊕ (Cz ⊕ Cz)⊥ ⊕ Cz

and the tangent space of Q in P(VC) at [z] can be computed as the Zariski tangent space at [z],

namely the set of lines [z + δε+ γεz], with δ ∈ (Cz ⊕ Cz)⊥ and ε a formal variable with square

ε2 = 0, such that Q([z + δε+ γεz]) = 0, i.e, if and only if γ = 0. Thus the tangent space of DC

at [z] is isomorphic to (Cz ⊕ Cz)⊥ and dimDC = n.

3.4 GSpin-Shimura varieties

Given V and Q and the algebraic group G := GSpin(V,Q) as in the previous section, define the

complex manifold:

MK(C) = G(Q)\D ×G(Af )/K = qg∈G(Q)\G(Af )/KΓg\D

for some compact open K subgroup of the adelic points G(Af ) of G. Here Γg := G(Q)∩ (gkg−1)

is an arithmetic subgroup of G(Q).

Given a quadratic lattice L ⊂ V , i.e., a lattice on which Q is integral valued, one can

construct a compact open subgroup KL by taking

KL = G(Af ) ∩ C+(L̂)× ⊂ C+(V )×(Af )

where L̂ := L ⊗Z Ẑ. We will be especially interested in the case that L is maximal among

the integral lattices. This will guarantee the existence of good integral models over Z for the

Shimura variety MKL(C). If the compact open subgroup is of the type KL for some lattice L,

we simply write ML(C).

Now let us look at the examples again.
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Example 1. M(C) consists of finitely many points.

Example 2. We have

V = M2×2(Q)Tr=0

and QN makes GSpin(V ) ∼= GL2, and one can take

L := {
(
a −b

N

c −a

)
: a, b, c ∈ Z}

And one can check that

KL
∼= πpK̃p

where

K̃p = {
(
α β

γ δ

)
∈ GL2(Zp) : γ ∈ NZp}

In this case one sees that

M2(C) ∼= Y0(N)(C)

which is the modular curve of level Γ0(N), classifying cyclic isogenies ρ : E → E ′ of degree N of

elliptic curves.

Warning: The case of elliptic curves is misleading as it might appear that ML(C) has a

moduli interpretation. This is not the case if the dimension n + 2 of V is large. In this case

ML(C) does not in general represent a PEL type moduli problem, i.e., does not classify abelian

varieties with given polarization, endomorphisms and level structures. As we will see, this is the

source of complications when one attempts to provide integral models for ML(C).

4 Extra structures on GSpin-Shimura Varieties

Recall the notation. We fixed a vector space V over Q of dimension n+ 2, and a quadratic form

QV → Q of signature (n, 2), with a maximal quadratic lattice L ⊂ V . We let G = GSpin(V ),

and then defined

ML(C) = G(Q)\D ×G(Af )/KL

for a particular choice of compact open subgroup KL associated to the lattice L.

We have a natural functor

{ Algebraic Representations of G} → { Local Systems of Q vector spaces on ML(C)}

given by

(G→ GL(W )) 7→ WBetti,Q −→ML(C)

where

WBetti,Q := G(Q)\(W ×D)×G(Af )/KL
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Note that this gives us a unique pair (WdR,∇) of a locally free OML(C)-module with integral

connection. Namely WdR := WBetti,Q⊗QOML(C) with the connection ∇ = 1⊗ d. Then (WdR,∇)

is characterized as the vector bundle with integrable connection such that

W∇=0
dR = WBetti,Q ⊗Q C.

We further have the following extra properties:

a. For any z in the symmetric space D, the map

hz : S→ GR → GL(WR)

induces a map

S(C) = C∗ × C∗ → GL(WR ⊗R C) = GL(WC)

and the fiber WdR,z at z has a bigraduation ⊕p,qW p,q
dR,z obtained by the decomposition of

WC according to the action of C∗ × C∗.

b. WdR is endowed with a decreasing filtration FilJ(WdR) ⊂ WdR by holomorphic sub-bundles

of WdR, defined pointwise by

FilJ(WdR,z) := ⊕p≥JW p,q
dR,z.

A Q-local system on ML(C) with these properties is called a variation of Q-Hodge structures.

In particular, WBetti,Q is a variation of Q-Hodge structures.

4.1 Example 1: the representation V

Consider in particular the homomorphism

G→ SO(V )

given by

x 7→ {y 7→ xyx−1}

as a map V → V inside SO(V ). Now we get as before a variation of Q-Hodge structures VBetti

and even a variation of Z-Hodge structures VBetti. In particular we get a vector bundle with

connection VdR. They are all endowed with a quadratic form QBetti and QdR respectively.

For any (z, g) ∈ ML(C) with z ∈ DC and g ∈ G(Af ), where DC is the incarnation of the

symmetric space as the isotropic lines in VC, the morphism hz defines a decomposition

VC = Cz ⊕ (Cz ⊕ Cz)
⊥ ⊕ Cz ⊂ End(H1,dR(Az))

The filtration is given by

Fil1(VdR,z) = Cz

Fil0(VdR,z) = Cz ⊕ (Cz ⊕ Cz̄)⊥

Fil−1(VdR,z) = Cz ⊕ (Cz ⊕ Cz̄)⊥ ⊕ Cz̄.
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4.2 Example 2: the Kuga-Stake abelian scheme

Consider the representation C(V ) of G = GSpin(V ) via the inclusion G ⊂ C+(V )∗ and the map

C+(V )∗GL(C(V )) provided by left multiplication. As explained in §4 it provides a variation of

Hodge structures: for any z ∈ D, we have

C(V )z = C(V )−1,0
z ⊕ C(V )0,−1

z

which is equivalent to giving a complex structure on C(VR) and, in particular, we obtain a

complex abelian variety

Az := C(VR)/C(L),

called the Kuga-Satake abelian variety. It is proven in [AGHMP2] that it defines an abelian

scheme

A −→ML.

The associated vector bundle with connection C(V )dR extends to ML and coincides the

relative de Rham homology

C(V )dR = H1,dR(A),

the connection is the so called Gauss-Manin connection and the filtration is given by the Hodge

filtration

0 −→ R1π∗(OA)∨ → H1,dR(A) −→ π∗(Ω
1
A)∨ −→ 0.

Example 1. Recall that n = 0 and C+(L) ⊂ C+(V ) = K is an order in the quadratic

imaginary field K. In this case

Az = A+
z × A−z

where A+
z is an elliptic curve with complex multiplication by C+(L) and

A−z = A+
z ⊗C+(L) L.

Example 2. In this case V = M2×2(Q)Tr=0, we have

M(C) ∼= Y0(N)(C)

by z 7→ [Ez → E ′z]and

Az = A+
z × A−z

and

A+
z = A−z = Ez × E ′z.

Consider ` : V ↪→ End(C(V )) given by

v 7→ `v := { left multiplication by v on C(V )}.
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It is a morphism in the category of representation of G which induces a morphism of Hodge

structures

`Betti : VBetti ↪→ End(H1(A,Q)) (3)

and a morphism of vector bundle with connections over ML

`dR : VdR ↪→ End(H1,dR(A)). (4)

5 The big CM points

We follow here [BKY]. Let E be a CM filed of degree 2d with totally real subfield F (of degree

d). We label the embeddings {σ0, . . . , σd−1} = Hom(F,R). For every integer 0 ≤ i ≤ d− 1 label

by σi and σi : E → C the two conjugate emebddings of E extending σi : F → R.

Let λ ∈ F be an element such that σ0(λ) < 0 and σi(λ) > 0 for 1 ≤ i ≤ d− 1. Consider the

quadratic space W = E of dimension 2 over F with bilinear pairing

BW : W ×W −→ F, (x, y) 7→ BW (x, y) = TrE/F (λxȳ).

It is negative definite at one place and positive definite at the others. Namely, for all embedding

σi : F → R with i 6= 0 the induced bilinear form BW : WR ×WR −→ R is positive definite, and

it is negative definite at the remaining place σ0. We let

QW (x) =
1

2
BW (x, x)

the associated quadratic form. The even Clifford algebra C+(W ), over F , is identified with E.

One then lets

V = ResF/Q(W ).

That is, V is simply E, viewed as a quadratic Q-vector space of dimension 2d, equipped with

the form

BV (x, y) = TrE/Q(λxȳ).

Example Let L = a be a fractional ideal of E. Let L̄ := a be the image of a under

complex conjugation. Then BV is integrally valued on L if and only if λaa ⊂ D−1
E/Q. In this case

L∨ = (λDE/Qa)−1 and

L∨/L ∼= OE/λDE/QNormE/F (a) (5)

Definition 5.1. Given a quadratic lattice L ⊂ V we say that the prime p is good for L if the

following conditions hold. For every prime p of F over p set

Lp = (L⊗ Zp) ∩ Vp.

We demand that
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• For every p | p unramified in E, the Zp-lattice Lp is OE,p-stable and self-dual for the

induced Zp-valued quadratic form.

• For every p | p ramified in E, the Zp-lattice Lp is maximal for the induced Zp-valued

quadratic form, and there exists an OE,q-stable lattice Λp ⊂ Vp such that

Λp ⊂ Lp ( d−1
Eq/Fp

Λp.

where q ⊂ OE is the unique prime above p.

All but finitely many primes are good: Choose any OE-stable lattice Λ ⊂ L. Then, for all

but finitely many primes p, ΛZp = LZp will be self-dual and hence good. We let DL,bad be the

product of all primes that are not good for L.

Note that there are maps∏
j

C+(Wσj) −→ ⊗jC+(Wσj) −→ C+(
⊕
j

Wσj).

(The tensor product is over R or more generally any field over which F splits completely.) The

first map is multiplicative and multi-linear and the second map is a ring homomorphism. The

ring C+(W ) has a basis over F given by {1, e1e2}. A general element of it has the form a+be1e2;

via the isomorphism C+(W )⊗QR ∼=
∏

j C
+(Wσj) and the maps above, the image of this element

in C+(
⊕

jWσj) is
∏

j(σj(a) + σj(b)e
j
1e
j
2) (product in the Clifford algebra). In particular, a ∈ F

is mapped to NormF/Q(a) and e1e2 to
∏

j e
j
1e
j
2.

Passing to GSpin, making use of GSpinF (W ) = C+(W )×, we conclude a homomorphism of

groups over R (or any field splitting F ):∏
j

GSpinR(Wσj) −→ GSpinR(
⊕
j

Wσj). (6)

The homomorphism (6) descends to a homomorphism of algebraic groups over Q

g : ResF/Q(GSpinF (W )) −→ GSpin(V ) (7)

(Cf. [BKY, §2]). Let T be the image in GSpin(V ) of this homomorphism, it is a torus and there

is an exact sequence (loc. cit.)

1 −→ TNm=1
F −→ TE

g−→ T −→ 1.

Here TE = ResE/Q(Gm,E) = ResF/Q(GSpinF (W )) and TNm=1
F is the subgroup of norm 1 elements

of TF = ResF/Q(Gm,F ).

Note that there is a unique, up to isomorphism, rank 2 non-split torus over R and, thus,

there is an isomorphism

h : S ∼= GSpin(Wσ0) ⊂ ResF/Q(GSpinF (W ))(R). (8)
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This gives a point z0 ∈ DR. Fixing a quadratic lattice L ⊂ V we get the Shimura variety

ML(C) as explained in §3.4. Taking a compact open subgroup KT ⊂ KL ∩ T (Af ) we can define

the Shimura variety

YL(C) = T (Q)\{z0} × T (Af )/KT ,

which consists of finitely many points, and a homomorphism

YL(C)→ML(C) = ML(C) = G(Q)\D ×G(Af )/KL,

whose image is called the big CM cycle associated to (E, σ0, λ) (the specific subgroup KT we

will consider depends only on L). It is defined over its reflex field E and we let YL be the

normalization of Spec(OE) in YL.

Remark 5.2. The world big suggests the existence of a small CM cycle. This is the case and it is

constructed starting from a quadratic imaginary extension of Q instead of a CM filed extension

of degree n− 2. There are interesting conjectures in this setting as well in the spirit of Kudla’s

programme, elaborated by Bruinier and Yang in [BY]. These conjectures have been proven

under some mild assumptions in [AGHMP1].

5.1 The total reflex algebra

Write

VC = E ⊗Q C =
⊕

ρ∈Hom(E,C)

C · eρ. (9)

where the eρ’s are orthogonal idempotents of the algebra E ⊗Q C.

Lemma 5.3. Define for ρ ∈ Hom(E,C) an element of C+(VC),

δρ =
1

ρ(λ)
eρeρ̄.

There are 2d such elements δρ. They all commute. Furthermore δ2
ρ = δρ and δρδρ̄ = 0.

Denote by CM(E) the set of CM types on E.

Lemma 5.4. For every φ ∈ CM(E) define the following element of C+(VC):

∆φ :=
∏

ρ∈CM(E)

δρ

1. There are 2d such elements ∆φ. They all commute.

2. ∆2
φ = ∆φ.

3. ∆φ1∆φ2 = 0 if φ1 6= φ2.

4. for α ∈ Aut(C/Q), α(∆φ) = ∆αφ.

14



5.
∑

φ∈Φ ∆φ = 1.

In particular the Q-span of the ∆Φ in C+(V )⊗Q is an étale subalgebra. Taking Gal(Q/Q)-

invariants we realize E] as a Q-subalgebra of C+(V ). We write V ] := E] if we consider E]

simply as a Q-vector space.

Using (6), we also obtain a multiplicative homomorphism, called the complete reflex norm,

that factors through T :

TE −→ TE] ↪→ GSpin(V ),
∑
ρ

xρeρ 7→
∏
j

(xρjδρj + xρ̄jδρ̄j). (10)

In particular the inclusion T ⊂ G factors via TE] . We denote by V ] := E], as a Q-

representation of T . The induced map TE → GL(V ]) is given by sending α ∈ E∗ to the

automorphism V ] → V ] sending ∆Φ to
∏

ρ∈Φ ρ(α)∆Φ.

We further get a homomorphism:

` : V → End(V ]) (11)

defined by sending eρ ∈ VC = EC to the C-linear endomorphism of V ]
C = ⊕Φ∈CM(E)C∆Φ given

by eρ 7→
∑

ρ∈Φ∈CM(E) ∆Φ ⊗∆∨Φ∪{ρ}\{ρ}.

Corollary 5.5. Let h : S
∼=−→ GSpin(Wσ0) ⊂ ResF/Q(GSpinF (W ))(R) = (E⊗QR)× be as in (8).

There is a unique way to choose h so that g ◦ h(i), where g is the homomorphism (7), is the

element

ϕ(ieρ0 − ieρ̄0 +
∑

ρ6∈{ρ0,ρ̄0}

eρ).

That is,

g ◦ h(i) =
∑
φ∈Φ

ε(φ) · i ·∆φ, ε(φ) =

{
1 ρ0 ∈ φ
−1 ρ0 6∈ φ.

In the following, we shall denote g ◦ h : S −→ GSpin(VR) simply by h.

5.2 Extra structure on the Big CM cycle

We start with

Lemma 5.6. The action of E = C+(W ) on W = C−(W ) gives an action of E on V , as V is

equal to W only viewed as a rational vector space. This action will be denoted β ·v, β ∈ E, v ∈ V .

On the other hand, through the homomorphisms

E×
g−→ GSpin(V )

π−→ SO(V ),

we get another action of E× on V that we call ρ(β)v, β ∈ E, v ∈ V (ρ = π ◦ g). The actions are

related as follows:

ρ(β)v = (ββ̄−1) · v.

In particular the homomorphism ` of (11) is a homomorphism as representations of T .
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Proof. We denote the action of E× on W , by β ·w, β ∈ E,w ∈ W , and the action of E obtained

via E× −→ C+(W )× −→ SO(W ) by ρ(β)w are related by the formula ρ(β)w = (ββ̄−1) ·w. But,

ρ(β)w = βwβ−1 = (ββ̄−1)w = (ββ̄−1) · w. The lemma now follows by applying restriction of

scalars and the commutativity of the following diagram:

C+(W )⊗Q R
∼= //

∏
j C

+(Wj) //

��

GSpin(V )

��∏
j SO(Wj) // SO(V ).

Proposition 5.7. The endomorphism ring of V as a rational Hodge structure is precisely E

with the “dot action”. Moreover, E, viewed in End(V ) via the “dot action” is the Q-linear span

of the image of T (Q).

Proof. Let TE be the Q-torus associated to E and let γ : TE −→ TE be the morphism given

by α 7→ α/ᾱ on C-points. This morphism is defined over Q and its image, by Lemma 5.6, is

nothing but Tso(Q) ⊆ GL(V ). One can check that E is the Q-span of the elements of T (Q),

namely {α/ᾱ : α ∈ E×}.

Notice that V has the extra structure of E-vector space that defines endomorphisms of

VBetti|Y (C). In fact, for any z ∈ Y (C) the E action on VBetti,Q,z induces a decomposition

VBetti,Q,z ⊗Q C = VdR,z = ⊕di=0VdR,z(σi)⊕ VdR,z(σi)

where VdR,z(σ) is the 1-dimensional C-vector space on which E acts via σ : E → C. Then

Fil1VdR,z = VdR,z(σ0),Gr−1VdR,z = VdR,z(σ0)

and

Gr0VdR,z = ⊕di=1VdR,z(σi)⊕ VdR,z(σi).

We summarize our findings. Write V := E, considered as Q-vector space

• there is a morphism TE → GSpin(V ), factoring through T , where α ∈ TE(Q) = E× acts

on V = E through multiplication by αᾱ−1;

• we can realize E] as a Q-subalgebra of C+(V ) such that the homomorphism T → GSpin(V )

factors via the subtorus TE] ⊂ GSpin(V ).

• there is a morphism h : S→ T inducing a Hodge structure on V where

Fil1VC = E ⊗σ0
E C,Gr−1VC = E ⊗σ0

E C,Gr0VC = ⊕d−1
i=1 (E ⊗σiE C⊕ E ⊗σiE C)
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and a Hodge structure of type (−1, 0) and (0,−1) on V ] where, writing V ]
C = E] ⊗Q C =

⊕Φ∈CM(E)C∆Φ as a sum of idempotents,

(V ]
C)(−1,0) = ⊕σ0∈Φ∈CM(E)C∆Φ, (V ]

C)(0,−1) = ⊕σ0∈Φ∈CM(E)C∆Φ

• there is an embedding j : V → C+(V ) such that multiplication on C+(V ) induces a T -

equivariant morphism ` : V → End(V ]).

We now consider a second level structure K0 ⊂ T (Af ) defining a CM cycle

Y0(C) = T (Q)\{z0} × T (Af )/K0.

We define K0 =
∏

pK0,p where K0,p ⊂ T (Qp) sits in an exact sequence

1→ Z×p → K0,p →
(Zp ⊗Z OE)×

(Zp ⊗Z OF )×
→ 1

via the exact sequence

1→ Gm → T → TE/TF → 1

defined by the natural projection T = TE/T
Nm=1
F → TE/TF . Then Y0 is defined over E and we

let Y0 be the normalization of Spec(OE) in Y0.

Consider the integral structures L0 := OE ⊂ E = V and L]0 := OE] ⊂ E] = V ]. Then K0

preserves their profinite completions and the Hodge structure V ] of type (−1, 0) and (0,−1)

defines an abelian variety A] over Y0 as follows: given z := (z0, g) ∈ Y0(C) := T (Q)\{z0} ×
T (Af )/K0 then A]z := V ]

R/(V
] ∩ gL̂]0g−1). It extends to an abelian scheme A] over Y0. We let

H] be its first de Rham homology group. It is a filtered OY0-module. Thanks to the choice of

the compact open subgroup K0 we have

Proposition 5.8. Y0 is étale over Spec(OE). Furthermore the inclusion ` : V → End(V ])

defines a strict morphism of filtered OY0-module

` : V0,dR → End(H])

and the OE-action on L0 extends to a OE-action on V0,dR

Proof. The first claim follows from Shimura’s reciprocity laws. The second claim follows from

Kisin’s theory.

In particular we define the invertible OY0-module ω0 := Fil1V0,dR. We endow it with a

metric at infinity given by induced by the standard Hermitian metric Q0 on VC = E ⊗Q C,

x 7→ Q0(x) := TrF/Q(xx̄).
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6 Integral models

In order to proceed with the computation of the intersections numbers we want, we need models

for ML(C) and the CM cycle YL(C) over Z.

6.1 Integral models of GSpin-Shimura varieties

By Deligne, we know that ML(C) is the complex analytic space associated to a quasi-projective

variety ML over a number field K called the reflex field. In the case of GSpin, for n ≥ 1, the

reflex field is Q. For n = 0 it is the quadratic imaginary field K = C+(V ).

We assume next that n ≥ 1. Let ∆L be the discriminant ∆L := [L∨ : L] where L∨ is the

Z-dual of L and the inclusion L ⊂ L∨ is defined using the bilinear form [ , ]. By work of Vasiu

and Kisin (see in particular [Kis]) the scheme ML has a canonical integral modelM
L,Z[2−1|∆L|−1],

smooth over Z[2−1|∆L|−1]. Also VdR has a model VdR which is a locally free OM
L,Z[2−1|∆L|−1]

-

module, endowed with a descending filtration by locally free submodules, Fil•VdR and an inte-

grable connection satisfying Griffiths’ transversality. For the purpose of computing some arith-

metic intersection we wish to have a model

M−→ Spec(Z)

over Z, to which some of the extra structures described above extend as well.

If L is maximal among the quadratic lattices of V and is self dual at 2 Madapusi Pera [MP]

constructed such a canonical integral model which has singular fibers at the primes dividing

∆L. Unfortunately at primes whose square divides ∆L this model is not well behaved: For

our purposes the CM cycle YL will have a model YL, finite over Spec(OE) but the morphism

YL → ML on the generic fiber does not in general extend to a a morphism from Y to the

Madapusi Pera model. In [AGHMP2] we proceeded differently. Let p a prime dividing ∆L and

let L ⊂ L� be an isometric embedding of quadratic lattices with signature (n, 2) and (n�, 2)

respectively. We take L� that is self-dual at p. By functoriality we will have a morphism of

Shimura varieties ML → ML� and ML� will admit an integral model ML�,Z[∆−1
L� ] smooth over

Spec(Z[∆−1
L� ]). We defineML,Z[∆−1

L� ] to be the normalization ofML�,Z[∆−1
L� ] in ML. The restriction

of the tautological bundle on ML�,Z[∆−1
L� ] defines a line bundle on ωL� on ML,Z[∆−1

L� ]. We have

the following Proposition proven in [AGHMP2]

Proposition 6.1. The models ML,Z[∆−1
L� ] and the line bundles ωL� glue to a normal model ML

over Spec(Z) and a line bundle ω that agree with the construction on M
L,Z[2−1|∆L|−1] provided

by Kisin and Vasiu.

Via the uniformization map

D →ML(C), z 7→ (z, g)
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the fiber of ω at z ∈ D is the isotropic line Cz = V
(1,−1)
C ⊂ VC. We then endow ω with the

metric ||z||2 := −[z, z], called the Petersson metric, we obtain a metrized line bundle

ω̂ ∈ P̂ic(ML).

6.2 Integral models of big CM cycles

Consider now the big CM cycles YL (associated to the compact open subgroup KT := KL ∩K0)

and Y0 constructed in the previous sections. By construction of ML the morphism YL(C) →
ML(C) extends to a morphism YL →ML. As KT ⊂ K0 we get the following diagram

YL −→ ML

↓
Y0

.

In particular we have two metrized line bundles on YL: the pull back ω̂YL of ω̂ and the pull back

ω̂0,YL of ω̂0.

For the first we will be able to compute the arithmetic degree using work of Bruinier, Kudla

and Yang. The second is related to the Faltings’ height of the abelian variety A] which has an

action of OE] . Let us start with this connection. Recall from Proposition 5.8 that we have a

strict morphism of filtered OY0-module

` : V0,dR → End(H])

where H] is the de Rham homology of A] (the extension of A] to an abelian scheme over A]).
Then ω0 = Fil1V0,dR maps to the endomorphisms of H] sending Gr−1H] → Fil0H], i.e., upon

taking determinants we have a map of OY0-modules

ω2d−1

0 ⊗OY0
detGr−1H] −→ detFil0H].

By definition of the Hodge filtration of H] we have (detGr−1H])−1 = ω], the Hodge bundle of

A]. We have

Theorem 6.2. The following holds

1

2d

∑
Φ

hFalt
(E,Φ) =

1

4

d̂eg(ω̂0)

degC(Y0)
− 1

4
log |DF |+

1

2
d · log(2π).

Proof. We first use (1) to relate
∑

Φ h
Falt
(E,Φ) with hFalt

(E],Φ])
via the formula 2dhFalt

(E],Φ])
=
∑

Φ h
Falt
(E,Φ).

Second we know that the degree of the metrized Hodge bundle Ω̂] of A] satisfies

degΩ̂]

degY0

= 2dhFalt
(E],Φ]).

Finally we study the inclusion of invertible sheaves:
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ω2d−1

0 ⊂ (detGr−1H])−2 ⊗OY0
detH] ∼= (ω])2 ⊗OY0

detH].

One proves that the metrics on the two sides coincide; here detH] is endowed with the standard

metric given by integration over A](C) of top degree C∞ de Rham classes. Its arithmetic degree

is

dim(A]) · degY0 · log(2π) = 2dd · degY0 · log(2π).

We are left to study the cokernel of the displayed inclusion. A delicate algebra computa-

tion, see [AGHMP2, Prop. 9.4.1], shows that the difference of these line bundles has degree

2d−1degY0 log |DF | and the claim follows.

Next we compare the metrized line bundles ω̂YL of ω̂ and ω̂0,YL .

Proposition 6.3. We have deg(ω̂YL) ∼L deg(ω̂0,YL) + log |DF | where ∼L means equal up to

rational linear combinations of log of primes dividing DL,bad; see Definition 5.1.

Proof. Over Q the two sheaves coincide as they are associated to the same Hodge structure,

namely V . Via this identification the metric on ω is the metric on ω0 times σ0(λ) (recall that

the quadratic form on V is defined by x 7→ TrF/Q(λxx̄)). We have only to check that over

YL[D−1
L,bad] we have ω = λD−1

F/Q ⊗OF ω0. Using Kisin’s correspondence one is reduced to prove

this statement for the lattices L and L0 of V and the claim follows by local calculations (see the

proof of [AGHMP2, Prop. 9.5.1] using Definition 5.1).

7 The Bruinier, Kudla, Yang conjecture

Thanks to Theorem 6.2 and Proposition 6.3 and the Q-linear independence of log of primes, in

order to conclude the proof of the averaged version of Colmez’s conjecture we need to prove the

following

Theorem 7.1. The degree of ω̂YL satisfies

degω̂YL
degYL

∼L −
2Λ′(χ, 0)

Λ(χ, 0)
− d log(4πeγ).

Moreover ∩LDL,bad = ∅.

Here Λ(χ, 0) is the complete L-function associated to the character χ. The fact that ∩LDL,bad =

∅ can be turned via (5) into a class field theory question that we do no discuss here; we refer to

[AGHMP2, Prop. 9.5.2] for details.

The main idea is then to realize ω̂ as a combination of arithmetic divisors using Borcherds

theory and results of Bruinier, Kudla, Yang that compute the contribution at infinity of the

intersection of these arithmetic divisors with YL. Bruinier, Kudla, Yang provided also conjectures

for the contribution at finite places that we verify in [AGHMP2] in sufficiently many cases to

get the result.
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7.1 Heegner divisors

In this section we will show how, given an element λ ∈ V with Q(λ) > 0, we can construct a

divisor in ML(C) as a Shimura subvariety. These will give the Heegner divisors mentioned in the

introduction. The fact that we have such a large supply of easily constructed divisors, and in

general of cycles of higher codimension obtained by intersection such divisors, make the theory

of GSpin-Shimura varieties extremely rich.

Given λ as above, set Vλ := λ⊥ ⊂ V . This is a dimension (n − 1) + 2 subspace of V and

Qλ := Q|Vλ is a quadratic form of signature (n− 1, 2). Then we get a subgroup

Gλ = GSpin(Vλ, Qλ) ⊂ GSpin(V ) = G

The symmetric space Dλ for Gλ is identified with

Dλ =
{

[z] ∈ DC ⊂ VC\{0} : z ∈ Vλ,G = λ⊥
}
/C∗

Let Lλ := L ∩ Vλ so we have Kλ ⊂ Gλ(Af ) and we get a GSpin-Shimura variety

Mλ(C) = Gλ(Q)\Dλ ×Gλ(Af )/Kλ

together with a homomorphism

Mλ(C)→ML(C) = G(Q)\D ×G(Af )/KL

Notice that such map is in general not an injection but the image of this map consists

of divisors of ML(C). The discrepancy between Mλ(C) and its image in ML(C) makes the

intersection theory of Heegner divisors more involved. We will ignore this issue here for sake of

simplicity and pretend that we can identify Mλ(C) and its image. We refer to [AGHMP2] for

the correct treatment using stacks.

Definition 7.2. For any m ∈ N>0 and every µ ∈ L∨/L, let

Z(m,µ)(C) := qg∈G(Q)\G(Af )/KLΓg\
(
qλ∈µg+Lg

Q(λ)=m

Dλ

)
.

where Γg = G(Q) ∩ gKLg
−1, Lg ⊂ V is the lattice V ∩ (gL̂g−1), and µg ∈ L∨g /Lg is the class of

gµg−1.

Recall that ML(C) = qg∈G(Q)\G(Af )/KLΓg\DC so that we have a natural morphism

Z(m,µ)(C)→ML(C)

whose image is the union of the images of various Mλ(C).

The image of Z(m,µ)(C) singles out points z of ML(C) where the Z-Hodge structure V∨Betti,z

acquires a Hodge (0, 0)-class λz of norm QBetti(λz) = m and whose class in V∨Betti,z/VBetti,z, which

can be canonically identified with L∨/L, is µ ∈ L∨/L.

We can give an intrinsic characterization of the image of Z(m,µ)(C) in ML(C) as follows;

take (z, g) ∈ ML(C) and consider the corresponding element `Betti(λ) ∈ End(H1,Betti(A(z,g)))

(using 3). Then,
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Proposition 7.3. We have (z, g) is in the image of Dλ if and only if `Betti(λ) arises as the Betti

realization of an endomorphism `λ ∈ End(A(z,g)).

Proof. We have (z, g) ∈ Dλ if and only if

λ ∈ z⊥ = Fil0VdR,z ⊂ VdR,z

if and only if the element `dR(λ) ∈ End(H1,dR(A(z,g))) of (4) lies in Fil0End(H1,dR(A(z,g))), i.e.,

`dR(λ) preserves the Hodge filtration of H1,dR(A(z,g)). This is equivalent to require that the

element `Betti(λ) defines an endomorphism of A(z,g).

As before take λ ∈ V be an element with Q(λ) > 0. The next lemma shows that the images of

YL(C) and Mλ(C) in ML(C) do not intersect. This will imply that for the associated arithmetic

objects, i.e., the associated objects over Z, we have proper intersection. This is not at all the

case for the small CM points of Remark 5.2 where we have proper intersection; see [AGHMP1]

for a discussion.

Lemma 7.4. The intersection of the images YL(C) and Mλ(C) in ML(C) is empty.

Proof. Assume that we have an element z ∈ Dλ whose image on (z, g) ∈ ML(C) lies in the

image of YL(C). This is equivalent to saying that λ ∈ VBetti,Q,z is such that λ ∈ (Cz⊕Cz)⊥. But

VBetti,Q,z = V = E as a Q-vector space and we get that

V = E · λ ⊂ (Cz ⊕ Cz)⊥

as the pairing on V is E-hermitian. This is clearly a contradiction as (Cz⊕Cz)⊥⊕ (Cz⊕Cz) =

VC.

7.2 Integral models of Heegner divisors

We use the previous section to define models of the Heegner divisors Z(m,µ) over Q and even

their integral models Z(m,µ) over Z as the functor representing pairs (ρ, f) where ρ : S →ML

and f ∈ End0(A×ML
S) is a rational endomorphism of the Kuga-Satake abelian scheme AS :=

A×ML
S and

i. f ◦ f = [m] (multiplication by m map on AS);

ii. the endomorphism defined by f on the de Rham homology of AS, on the Tate module of

AS and on the crystal defined by AS is in the image of a class of the de Rham realization,

étale or crystalline realization of L∨ of class µ.

We explain what me mean in (ii). Over Z[∆−1
L ] the lattice L ⊂ V defines a motive V overML,

namely a Z-variation of Hodge structures over ML(C), a filtered vector bundle with connection

overML, a lisse `-adic étale sheaf overML[`−1], a crystal overML⊗Fp. The map ` defines an

embedding of motives V ⊂ End(H) where H is the motive associated to the abelian scheme A:
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its de Rham homology, its `-adic Tate module, its Dieudonné module. In (ii) we ask that the

realization of f lies in the image of V.

To extend this notion to the whole of Z one works with auxiliary lattices L ⊂ L�, that are

self dual at a given prime p and demands this condition working onML� . A result analogous to

Proposition 6.1 implies that we get a well-posed definition, independent of the auxiliary choice

of L�.

It is proven in [AGHMP2, Prop. 4.5.8] that the models Z(m,µ) have good properties,

namely they do not have vertical components that would create troubles in computing arithmetic

intersections:

Proposition 7.5. If V has dimension ≥ 5 then the Z(m,µ)’s are flat over Z[1/2] and even

over Z if L is self dual at 2.

7.3 Heegner divisors and ω̂

We now come to the main result express ω̂ as a combination of arithmetic Heegner divi-

sors. Thanks to Borcherds’ theory in fact the Heegner divisors Z(m,µ) are endowed with

natural Green functions Φm,µ (see [BY, (4.7)]). And we can consider the pair Ẑ(m,µ) :=

(Z(m,µ),Φm,µ) ∈ ĈH
1
(ML). We then have the following fundamental result:

Theorem 7.6. Suppose that n ≥ 3. There are finitely many integers c(−m,µ) for m ≥ 0 and

µ ∈ L∨/L with c(0, 0) 6= 0 and there exists a rational section Ψ of ω⊗c(0,0), defined over Q, such

that

ω̂⊗c(0,0) = d̂iv(Ψ)

=
∑
m,µ

c(−m,µ)Ẑ(m,µ)− cf (0, 0) · (0, log(4πeγ)) + Ê ,

where (0, log(4πeγ)) denotes the trivial divisor endowed with the constant Green function log(4πeγ)

(here γ = −Γ′(1) is the Euler-Mascheroni constant), and Ê = (E , 0) is a divisor with the trivial

Green function that decomposes

E =
∑
p|DL

Ep

such that Ep is supported on the special fiber ML,Fp, and:

• If p is odd and p2 - DL then Ep = 0;

• If n ≥ 5 then E = E2 is supported on ML,F2.

• If n ≥ 5 and L(2) is self-dual, then E = 0.
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Given our lattice L coming from the CM field E will use the theorem first for the lattice L.

We will need it it also for some auxiliary lattice L ⊂ L�, self dual at a given bad prime p. In

this case some care is needed to assure that the Heegner divisors onML� do not contain the big

CM cycle, i.e., that we have proper intersection. In particular Ep = 0 and we will compute the

contribution at p of deg(ω̂YL) using the expression of ω̂ in terms of the divisors Ẑ(m,µ) provided

by the theorem above.

7.4 Arithmetic intersection and special values

Write [YL : Ẑ] for the arithmetic degree of the base change of Ẑ to YL. The main result that

finishes the proof of the averaged version of Colmez’s conjecture is the following:

Theorem 7.7. Consider the divisor Ẑ :=
∑

m,µ c(−m,µ)Ẑ(m,µ) of theorem 7.6. Then

[YL : Ẑ]

deg(Y )
∼L −2

Λ′(0, χ) · c(0, 0)

Λ(0, χ)

(recall that ∼L means equality up to a Q-linear combinations of {log(p) : p | DL,bad}).

There are two inputs in the proof of this result. The first is the computation of the con-

tribution at infinity of the degree, provided by the following theorem of Bruinier, Kudla and

Yang:

Theorem 7.8. Let Φ be the Green function associated to the arithmetic divisor Ẑ of the previous

theorem.
Φ(Y∞L )

2 deg(YL)
=

∑
µ∈L∨/L
m≥0

a(m,µ) · c(−m,µ)

Λ(0, χ)
,

where Y∞ = YL ×Q C and Φ(Y∞) is the weighted sum of the values of Φ

Φ(Y∞) =
∑

y∈Y∞(C)

Φ(y)

|Aut(y)|
.

Here the a(m,µ)/Λ(0, χ)’s are the coefficients of the formal q-expansion of the restriction of

the derivative of a suitable weight 1 Hilbert modular Eisenstein series introduced by Kudla [Ku].

In order to deduce Theorem 7.7 from the result of [BKY] one needs to:

1. compute the coefficients a(m,µ). Typically they are expressed as orbital integrals and one

wants to get explicit quantities;

2. prove that the finite part of the intersection is Z(m,µ) along YL is a(m,µ)/Λ(0, χ).

Both calculations need to be done up to Q-linear combinations of log(p)’s for p | DL,bad.

Computation (1) is due to Kudla and Yang [KY] (and [AGHMP2, §6] for the contribution at the

prime p = 2). Claim (2) is proven in §7 of [AGHMP2]. It is a remarkable instance of Kudla’s pro-

gramme relating generating series of (arithmetic) intersection numbers and automorphic forms.

24



References

[AGHMP1] F. Andreatta, E. Goren, B. Howard, and K. Madapusi Pera, Height pairings on

orthogonal Shimura varieties, Compositio Math., 153 (2017), no. 3, 474–534

[AGHMP2] F. Andreatta, E. Goren, B. Howard, and K. Madapusi Pera, Faltings heights of

abelian varieties with complex multiplication. Submitted.

[BY] J. H. Bruinier and T. Yang, Faltings heights of CM cycles and derivatives of L-functions,

Invent. Math. 177 (2009), no. 3, 631–681.

[BKY] J. H. Bruinier, S.S. Kudla and T. Yang, Special values of Green functions at big CM

points. Int. Math. Res. Not. IMRN (2012), no. 9, 1917–1967.
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[Ts] J. Tsimerman, A proof of the André-Oort conjecture for Ag, Preprint (2015).

[Ya] T. Yang Arithmetic intersection on a Hilbert modular surface and the Faltings height, Asian

J. Math. 17 (2013), no. 2, 335–381.

[YZ] X. Yuan and S.-W. Zhang, On the averaged Colmez conjecture, Preprint (2015).

25


	Introduction
	The average Colmez conjecture
	Faltings height
	Colmez theorem
	Colmez conjecture
	Some consequences and reduction steps

	Shimura varieties of orthogonal type and CM cycles
	GSpin Shimura varieties
	Examples of GSpin groups
	Example 1: the case n = 0
	Example 2: the case n = 1

	Hermitian symmetric spaces
	GSpin-Shimura varieties

	Extra structures on GSpin-Shimura Varieties
	Example 1: the representation V
	Example 2: the Kuga-Stake abelian scheme

	The big CM points
	The total reflex algebra
	Extra structure on the Big CM cycle

	Integral models
	Integral models of GSpin-Shimura varieties
	Integral models of big CM cycles

	The Bruinier, Kudla, Yang conjecture
	Heegner divisors
	Integral models of Heegner divisors
	Heegner divisors and "0362
	Arithmetic intersection and special values


