
1 Singular support

1.1 Closed conical subsets and the transversality

Definition 1.1.1. Let C be a closed conical subset of the cotangent bundle T ∗X and let
h : W → X be a morphism of smooth schemes over k.

We say that h is C-transversal if the intersection of the subsets h∗C = W ×X C and
Ker(W ×X T ∗X → T ∗W ) of W ×X T ∗X is a subset of the 0-section.

The intersection C ∩ T ∗
XX with the 0-section X = T ∗

XX is called the base of C.

If h is smooth, then h is C-transversal for any C.
If C is a subset of the 0-section, any h is C-transversal.
If C ⊂ C ′, the C ′-transversality implies the C-transversality.
The transversality is an open condition.

Lemma 1.1.2. Assume that h : W → X is C-transversal. Then, W ×X T ∗X → T ∗W is
finite on h∗C.

Lemma 1.1.3. dimh∗C ≧ dimC + dimW − dimX.

Lemma 1.1.4. Assume that h : W → X is C-transversal. For a morphism g : V → W of
smooth schemes over k, the following conditions are equivalent:

(1) g is h◦C-transversal.
(2) h ◦ g is C-transversal.

Definition 1.1.5. Let C be a closed conical subset of the cotangent bundle T ∗X and C ′

be a closed conical subset of the cotangent bundle T ∗Y . Let h : W → X and f : W → Y
be morphisms of smooth schemes over k.

1. We say that (h, f) is (C,C ′)-transversal if (h, f) : W → X×Y is C×C ′-transversal.
2. If h = 1X and C ′ = T ∗Y , we say that f is C-transversal if (1X , f) is (C, T ∗Y )-

transversal.

Lemma 1.1.6. 1. The following conditions are equivalent:
(1) h : W → X is C-transversal.
(2) (h, 1W ) is (C, T ∗

WW )-transversal.
1. The following conditions are equivalent:
(1) f : X → Y is C-transversal.
(2) The inverse image of C by X ×Y T ∗Y → T ∗X is a subset of the 0-section.
2. The following conditions are equivalent:
(1) (h, f) is (C, T ∗Y )-transversal.
(2) h : W → X is C-transversal and f : W → X is h◦C-transversal.

f : X → Y is T ∗
XX-transversal if and only if f is smooth.

If f : X → Y is C-transversal, then f is smooth on a neighborhood of the base of C.

Definition 1.1.7. Let C ⊂ T ∗X be a closed conical subset and f : X → Y be a morphism
of smooth schemes over k. Assume that f is proper on the base of C. Then, we define a
closed conical subset f◦C ⊂ T ∗Y by the algebraic correspondence T ∗X ← X ×Y T ∗Y →
T ∗Y .
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Proposition 1.1.8. Let g : X ′ → X be a morphism of smooth schemes over k and let
C ⊂ T ∗X ′ be a closed conical subset. Assume that g is proper on the basis B′ of C ′ and
define C = g◦C

′ ⊂ T ∗X.
1. Let h : W → X be a morphism of smooth schemes over k and

X ′ h′
←−−− W ′

g

y yg′

X
h←−−− W

be a cartesian diagram. Assume that h is C-transversal. Then, there exists an open
neighborhood U ′ of the inverse image B′

W ′ = h′−1(B′) ⊂ W ′ smooth over W .
2. For a morphism f : W → Y of smooth schemes over k, the following conditions are

equivalent:
(1) (h, f) is C-transversal.
(2) (h′|U ′ , f ◦ g′|U ′) is C ′-transversal.

1.2 Legendre transform

Let P be a projective space, P∨ be the dual projective space and Q ⊂ P × P∨ be the
universal hyperplane. The kernel Ker((T ∗P×T ∗P∨)×P×P∨Q→ T ∗Q equals the conormal
bundle T ∗

Q(P×P∨).
We identify Q as the projective space bundle P(T ∗P) associated to the vector bundle

T ∗P. Symmetrically, Q is identified with P(T ∗P∨).

Definition 1.2.1. Let C be a closed conical subset C ⊂ T ∗P. We consider the pro-
jectivization E = P(C) ⊂ P(T ∗P) = Q as a closed subset of Q. Define the Legendre
transform C∨ = LC by C∨ = p∨◦ p

◦C.

Lemma 1.2.2. The intersection of C×T ∗P∨ with Ker((T ∗P×T ∗P∨)×P×P∨ Q→ T ∗Q =
T ∗
Q(P×P∨) equals the union of T ∗

Q(P×P∨)×Q E with the 0-section on p−1B.

Proof. Since the image of the conormal bundle T ∗
Q(P×P∨) ⊂ (T ∗P× T ∗P∨)×P×P∨ Q in

T ∗P×P Q by the first projection is the tautological line bundle, the assertion follows.

Proposition 1.2.3. 1. The complement Q E is the largest open subset where (p, p∨) is
C-transversal.

2. C is equal to the image of the intersection of (C × T ∗P∨) ∩ T ∗
Q(P × P∨) by the

composition (T ∗P× T ∗P∨)×P×P∨ Q→ T ∗P×P Q→ T ∗P.

Proof. 1. Clear from Lemma.
2.

Corollary 1.2.4. P(C) = P(C∨).

Proof. Since C∨ is equal to the image of the intersection of (C × T ∗P∨)∩ T ∗
Q(P×P∨) by

the composition (T ∗P×T ∗P∨)×P×P∨ Q→ T ∗P∨×P∨ Q→ T ∗P∨, it follows from Lemma
and Proposition.

Proposition 1.2.5. Let C+ = C ⊂ T ∗
PP be the union with the 0-section. Then, we have

C+ = p◦(p
∨◦T ∗P∨ ×Q E) ∪ T ∗

PP.
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Proof. By Lemma and Proposition, we have C ⊂ p◦(p
∨◦T ∗P∨ ×Q E) ∪ T ∗

PP ⊂ C+.

Corollary 1.2.6. We consider a cartesian diagram

P∨ p∨←−−− Q
hQ←−−− QW

p

y □
ypW

P
h←−−− W

f−−−→ Y

of smooth schemes over k. For a closed conical subset C ⊂ T ∗P and its Legendre transform
C∨ ⊂ T ∗P∨ and the union C+ = C ∪ T ∗

PP with the 0-section, the following conditions are
equivalent:

(1) (h, f) is C+-transversal.
(2) f : W → Y is smooth and QW → P∨ × Y is smooth of the inverse image EW =

E ×Q QW .

Proof. Since C+ = p◦(p
∨◦T ∗P∨ ×Q E) ∪ T ∗

PP by Lemma, the condition (1) is equivalent
to the combination of the following conditions.

(1′) (h, f) is T ∗
PP-transversal.

(1′′) (h, f) is p◦(p
∨◦T ∗P∨ ×Q E)-transversal.

The condition (1′) is equivalent to that f : W → Y is smooth. Since p is proper
and smooth, by Lemma, the condition (1′′) is equivalent to (hQ, f ◦ pW ) is p∨◦T ∗P∨ ×Q

E-transversal. Since the transversality is an open condition, this is equivalent to that
(hQ, f ◦ pW ) is p∨◦T ∗P∨-transversal on a neighborhood of EW . By Lemma, this is further
equivalent to that (p ∨ ◦hQ, f ◦ pW ) is T ∗P∨-transversal on a neighborhood of EW . This
means that QW → P∨ × Y is smooth of the inverse image EW = E ×Q QW .

Let h : W → P be an immersion and f : W → Y be a smooth morphism. Define sub
vector bundles CW ⊂ Cf ⊂ T ∗P ×P W by CW = T ∗

WP and Cf as the inverse image of
W ×Y T ∗Y ⊂ T ∗W by the surjection T ∗P×P W → T ∗W .

Lemma 1.2.7. Let C∨ ⊂ T ∗P∨ be a closed conical subset and let C = L∨C∨ ⊂ T ∗P be
the inverse Legendre transform.

1. The following conditions are equivalent:
(1) h is C-transversal.
(2) The intersection of P(C) ⊂ P(T ∗P) = Q and P(CW ) ⊂ P(T ∗P×PW ) = Q×PW ⊂

Q is empty.
2. Assume that h : W → P is C-transversal. Then Q×P W → P∨ is C∨-transversal.

The complement Q×P W P(C ∩Cf ) equals the largest open subset U ⊂ Q×P W where
(p∨ : Q ×P W → P∨, fp : Q ×P W → W → Y ) is C∨-transversal. Further P(C ∩ Cf )
is a subset of the inverse image of the complement of the largest open subset where f is
h◦C-transversal.

3. Further if dimY = 1, the closed subset P(C ∩ Cf ) ⊂ Q×P W is finite over W .

Proof. 1. (1) means C ∩CW is a closed subset of the zero-section and is equivalent to (2).
2. By Proposition 1.1.8, the C-transversality of h : W → P implies the C∨-transversality

of Q×P W → Q. Since p∨ : Q→ P∨ is smooth, the first assertion follows.
The largest open subset U ⊂ Q ×P W is the same as that where (p∨, p) is C∨ × Cf -

transversal. Hence, it equals the complement of P(C∨) ∩ P(Cf ) = P(C) ∩ P(Cf ) =
P(C ∩ Cf ).
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If f is h◦C-transversal, then (p∨, fp) is C∨-transversal and the last assertion follows.
3. Since dimY = 1, the subvector bundle CW ⊂ Cf is of codimension 1 and the

complement P(Cf ) P(CW ) is a vector bundle over W . Since P(C ∩ CW ) is empty by
1, the intersection P(C ∩ Cf ) is a closed subset of P(Cf CW ). Hence its closed subset
P(C ∩ Cf ) proper over W is finite over W .

1.3 Local acyclicity

Let f : X → S be a morphism of schemes. Let x→ X and t→ S be geometric points and
let S(s) be the strict localization at the image s = f(x) → S of x. Then a specialization
x← t is a lifting of t→ S to t→ S(s).

Definition 1.3.1. Let f : X → S be a morphism of schemes and F be a complex of
torsion sheaves on X. We say that f is locally acyclic relatively to F if for each geometric
points x → X and t → S and each specialization x ← t, the canonical morphism Fx →
R(X(x) ×S(s)

t,F) is an isomorphism.
We say that f is universally locally acyclic relatively to F , if for every morphism

S ′ → S, the base change of f is locally acyclic relatively to the pull-back of F .

For geometric points s, t of S and a specialization t→ S(s), let i : Xs → X ×S S(s) and
j : Xt → X ×S S(s) denote the canonical morphisms. Then, the local acyclity is equivalent
to that the canonical morphism i∗F → i∗Rj∗F is an isomorphism for each s, t and s← t.

If F is a constructible sheaf on X, F is locally constant if and only if 1X is locally
acyclic relatively to F .

The local acyclicity is preserved by quasi-finite base change S ′ → S. Hence for con-
structible F , the universal local acyclicity is reduced to smooth base change.

Theorem 1.3.2. 1. (local acyclicity of smooth morphism) Assume that f : X → S is
smooth and that F is locally constant killed by an integer invertible on S. Then f is ula
relatively to F .

2. (generic local acyclicity) Assume that f : X → S is of finite type and that F is
constructible. Then, there exists a dense open subscheme U ⊂ S such that the base change
of f to U is ula relatively to the restriction of F .

Corollary 1.3.3. Assume that g : Y → S is smooth, that f : X → Y is la relatively to F
and F is killed by an integer invertible on S. Then, gf is locally acyclic relatively to F .

Lemma 1.3.4. Let f : X → Y be a proper morphism of schemes over S and assume that
X → S is locally acyclic relatively to F . Then Y → S is locally acyclic relatively to Rf∗F .

Proof. Proper base change theorem.

1.4 Micro support

Definition 1.4.1. Let F be a constructible complex on X and C ⊂ T ∗X be a closed
conical subset. We say that F is micro supported on C, if for every C-transversal pair
(h, f) of h : W → X and f : W → Y , f is (universally) locally acyclic relatively to h∗F .

If F is micro supported on C ⊂ C ′, then F is micro supported on C ′.

Lemma 1.4.2. If F is micro supported on C, then the support of F is a subset of the
base B of C.
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Proof. Let U = X B. It suffices to show that F|U = 0. The pair U → X,U → 0 ⊂ A1

is C-transversal. Hence U → A1 is locally acyclic relatively to F|U and F|U = 0.

Lemma 1.4.3. Let U ⊂ X be an open subscheme and A be the complement. Assume that
F is micro supported on C and assume that F|U is micro supported on C ′

U . Then F is
micro supported on the union of C|A and the closure C ′ of C ′

U .

Lemma 1.4.4. Let → F ′ → F → F ′′ → be a distinguished triangle and suppose that F ′

and F ′′ are micro supported on C ′ and on C ′′ respectively. Then F is micro supported on
C = C ′ ∪ C ′′.

Lemma 1.4.5. The following conditions are equivalent:
(1) F is locally constant.
(2) F is micro supported on the 0-section T ∗

XX.

Proof. (h, f) is T ∗
XX-transversal if and only if f is smooth.

(1)⇒(2): f is universally locally acyclic relatively to locally constant h∗F .
(2)⇒(1): (1X , 1X) is T

∗
XX-transversal. Hence, 1X is locally acyclic relatively to F and

F is locally constant.

Lemma 1.4.6. Any constructible F is micro supported on T ∗X.

Proof. Suppose (h, f) is T ∗X-transversal. ThenW → X×Y is smooth. Locally,W → Y is
the composition of an étale morphismW → X×An×Y with the projection X×An×Y →
Y . Hence the local acyclicity follows from the generic local acyclicity and Corollary 1.3.3.

Lemma 1.4.7. Assume that F is micro supported on C.
1. If h : W → X is C-transversal, then h∗F is micro supported on h◦C.
2. If f : X → Y is proper on the base of C, then Rf∗F is micro supported on f◦C.

Proof. 1. Suppose g : V → W, f : V → Y is h◦C-transversal. Then, (hg, f) is C-
transversal and f is locally acyclic relatively to (hg)∗F .

2. Suppose h : W → Y, g : W → Z is f◦C-transversal. Then, hX : W ×Y X → X, g ◦
fW : W ×Y X → W → Z is C-transversal and h∗

XF is locally acyclic relatively to g ◦ fW .
Hence h∗Rf∗F = RfW∗h

∗
XF is locally acyclic relatively to g.

1.5 Singular support

Definition 1.5.1. We say that C ⊂ T ∗X is the singular support of F if for C ′ ⊂ T ∗X,
the inclusion C ⊂ C ′ is equivalent to the condition that F is micro supported on C.

Lemma 1.5.2. Let F be a constructible sheaf on X.
1. Let U ⊂ X be an open subscheme. Assume that C ⊂ T ∗X is the singular support

of F . Then, C|U is the singular support of F|U .
2. Let (Ui) be an open covering of X and Ci be the singular support of F|Ui

. Then,
C =

∪
iCi is the singular support of F .

Lemma 1.5.3. Let i : X → P be a closed immersion. Assume that CP ⊂ T ∗P is the
singular support of i∗F .

1. CP is a subset of T ∗P |X and its image C ⊂ T ∗X is the singular support of F .
2. We have CP = i◦C.
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Proof. 1. By Lemma 1.4.3, CP is a subset of T ∗P |X .
To show C = SSF , it suffices to show the following:
(1) If F is micro supported on C ′, we have C ⊂ C ′.
(2) C is closed and F is micro supported on C.
We show (1). Suppose F is micro supported on C ′. Then by Lemma ??, i∗F is micro

supported on i◦C
′. Since CP is the smallest, we have CP ⊂ i◦C

′ and hence C ⊂ C ′.
We show (2). Since the assertion is local, we may assume that there exists a cartesian

diagram

P
i←−−− Xy y

An
k ←−−− Am

k

such that the vertical arrows are isomorphism. Then, by choosing a projection An
k → Am

k

inducing the identity on Am
k , we obtain a cartesian diagram

P ←−−− Qy yr

Am
k ←−−− X

where the horizontal arrows are étale. The immersionX → P induces a section i′ : X → Q.
Since h : Q → P is étale, i′∗F is micro supported on h◦CP . By Lemma ??, F = r∗j∗F is
micro supported on Cr = r◦h

◦CP . Hence by (1), we have C ⊂ Cr. Since Cr ⊂ C, we have
Cr = C and C is closed and F is micro supported on C = Cr.

2. By the proof of (2), we have C = Cr′ for any projection r′. If k is infinite, this
implies CP = i◦C.

Theorem 1.5.4. (Beilinson) SSF exists.

Proof will be given at the end of next section.

Theorem 1.5.5. (Beilinson) 1. dimE ≦ dimP− 1.
2. Every irreducible component of E has dimP− 1.

1.6 Radon transform

We define the naive Radon transform RF to be Rp∨∗ p
∗F and the naive inverse Radon

transform R∨G to be Rp∗p
∨∗G.

Proposition 1.6.1. There exists a distinguished triangle

→
n−2⊕
q=0

RΓ(Pk̄,F)(q)[2q]→ R∨RF → F(n− 1)[2(n− 1)]→ .
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Proof. By the cartesian diagram

P
p←−−− Q

pr1←−−− Q×P∨ Q

p∨

y ypr2

P∨ p∨←−−− Qyp

P

and the proper base change theorem, we have a canonical isomorphism

R∨RF → Rpr2∗
(
pr∗1F ⊗R(p× p)∗ΛQ×P∨Q

)
for p× p : Q×P∨ Q→ P×P.

We compute R(p × p)∗ΛQ×P∨Q. The closed scheme Q ×P∨ Q ⊂ P × P × P∨ is the
Pn−1-bundle Q on the diagonal P ⊂ P × P. On the complement P × P P, it is a sub
Pn−2-bundle. Hence, we have a distinguished triangle

→ τ≦2(n−2)RΓ(P∨
k̄ ,Λ)⊗ ΛP×P → R(p× p)∗ΛQ×P∨Q → ΛP(n− 1)[2(n− 1)]→ .

Proposition 1.6.2. For G on P∨ and C∨ ⊂ T ∗P∨, we have implications (1)⇒(2)⇒(3).
(1) G is micro supported on C∨.
(2) p is universally locally acyclic relatively to p∨∗G outside E = P(C∨).
(3) R∨G is micro supported on C+.

Proof. (1)⇒(2): Since p∨ : Q→ P∨, p : Q→ P is C∨-transversal outside E = P(C∨), p is
universally locally acyclic relatively to p∨∗G outside E.

(2)⇒(3): Assume h : W → P, f : W → Y is C+-transversal. We consider the cartesian
diagram

P∨ p∨←−−− Q
h′
←−−− QW

p

y □
yp′

P
h←−−− Wyf

Y.

We first show that fp′ : QW → Y is locally acyclic relatively to GQW
= h′∗p∨∗G. By (2),

p′ : QW → W is locally acyclic relatively to GQW
outside the inverse image EW ⊂ QW of

E. By Corollary 1.2.6, f : W → Y is smooth and QW → P∨× Y is smooth on the inverse
image EW .

Hence by Corollary 1.3.3, fp′ : QW → Y is locally acyclic relatively to GQW
outside

EW . Further by the generic local acyclicity and Corollary 1.3.3, fp′ : QW → Y is locally
acyclic relatively to GQW

on a neighborhood of EW . Thus, fp′ : QW → Y is locally
acyclic relatively to GQW

. Hence by Lemma, f : W → Y is locally acyclic relatively to
Rp′∗GQW

= h∗R∨G.
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Proof of Theorem 1.5.4. It is reduced to the case X is affine, an affine space and then a
projective space.

Let E ⊂ Q be the smallest closed subset such that p : Q → P is universally locally
acyclic relatively to p∨∗RF on the complement Q E. Let C ⊂ T ∗P be the closed conical
subset defined by E. Then, by ??, R∨RF is micro supported on C+. Hence by ??, F is
also micro supported on C+.

Let U = P B be the complement of the base of C. Then, since C+ ∩ T ∗U = T ∗
UU ,

the restriction F|U is locally constant. If F|U = 0, F is micro supported on C. We show
that C is the singular support of F if F|U = 0 and that C+ is the singular support of F
if otherwise.

Suppose F is micro supported on C ′. Then by (1)⇒(3), G = RF is micro supported
on C ′∨+. Hence by (1)⇒(2), p : Q → P is universally locally acyclic relatively to p∨∗G
outside E ′ = P(C ′∨) = P(C ′). Since E is the smallest, we have E ⊂ E ′ and hence C ⊂ C ′.
If F|U ̸= 0, we have suppF = P and hence T ∗

PP ⊂ C ′ and C+ ⊂ C ′.

2 Characteristic cycle

2.1 Characteristic cycles

Theorem 2.1.1. There exists a unique way to attach a Z-linear combination CCF =∑
a maCa of irreducible components SSF =

∪
a Ca for each constructible complex F of

Λ-modules on a smooth scheme X over k, satisfying the following axioms:
(1) (normalization) For X = Spec k and F = Λ, we have

(2.1) CCΛ = T ∗
XX.

(2) (additivity) For distringuished triangle → F ′ → F → F ′′ →, we have

(2.2) CCF = CCF ′ + CCF ′′.

(3) (pull-back) For SSF-transversal morphism h : W → X of smooth schemes over k,
we have

(2.3) CCh∗F = h!CCF .

(4) (closed immersion) For closed immersion i : X → P of smooth schemes over k, we
have

(2.4) CCi∗F = i!CCF .

(5) (Radon transform) For X = Pn and for the Radon transform, we have

(2.5) CCRF = LCCF .

Corollary 2.1.2. (index formula) Assume that X is projective and smooth. Then, we
have

(2.6) χ(Xk̄,F) = (CCF , T ∗
XX).
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Proof. By (1), (2) and (3), if F is locally constant, we have

(2.7) CCF = (−1)nrankF · T ∗
XX.

By (4), we may assume that X = Pn and n ≧ 2. Then, we have

(2.8) CCR∨RF = CCF + (n− 1) · χ(Pn
k̄ ,F)[T

∗
PnPn].

By (5) and (2), we have CC(R∨RF) − CCF = L∨LCCF − CCF . Hence, we have
(n− 1)χ(Pn

k̄
,F) = (n− 1)(CCF , T ∗

PnPn) and (2.6).
We will deduce Theorem 2.1.1 from the following variant.

Theorem 2.1.3. There exists a unique way to attach a Q-linear combination CCF =∑
a maCa of irreducible components SSF =

∪
aCa for each constructible complex F of

Λ-modules on smooth smooth scheme X over k, satisfying the following axioms:
(1) (Milnor formula) Let f : X → Y be a proper morphism over k to a smooth curve

Y over k and x ∈ X be a closed point such that f is SSF-transversal on the complement
of x. Then, the coefficient of the fiber T ∗

y Y at y = f(x) in f◦CCF is minus the Artin
conductor −axRf∗F .

(3) For étale morphism h : W → X of smooth schemes over k, we have (2.3).
(4) For closed immersion i : X → P of smooth schemes over k, we have (2.4).

Outline and key points of proof of theorems.

Proof of Theorem 2.1.3. We show the uniqueness. By (3), we may assume X is affine. By
(4), we may assume X = An. By (3), we may assume X is projective. We may take
a Lefschetz pencil. Since it suffices to determine the coefficient ma for each Ca, we may
assume that f : W → L is Cb-transversal for Cb ̸= Ca and Ca-transversal except at x and
is not Ca-transversal at x. Then, by (1), we have

(2.9) ma(Ca, df)x = −ax

and the uniqueness follows.
To show the existence, first we show that the coefficient ma determined by (2.9) is well-

defined. This follows from the (semi-)continuity of Swan conductor and the formalism
of vanishing cycles over general base. Then CCF characterized by (2.9) satisfies the
conditions (3) and (4) by standard properties of usual vanishing cycles.

Proof of the uniqueness in Theorem 2.1.1. By Corollary 2.1.2, we have the index formula
(2.6) for projective and smooth X. By comparing the index formula (2.6) for proper
smooth curve X and the Grothendieck-Ogg-Shafarevich formula and using (3) for étale
morphism of smooth curves and (2.7), we obtain (1) in Theorem 2.1.3 for f = 1X : X → X.

Similarly as in the proof of Theorem 2.1.3, it is reduced to the case whereX is projective
and smooth. Then by taking a Lefschetz pencil, it follows from (5), (3) and (1) in Theorem
2.1.3.

Proof of the existence in Theorem 2.1.1. We deduce the existence from Theorem 2.1.3.
We show that CCF satisfying the conditions in Theorem 2.1.3 also satisfies those in
Theorem 2.1.1. The conditions (1) and (2) in Theorem 2.1.1 follow from (1) in Theorem
2.1.3. The condition (4) in Theorem 2.1.1 is the same as (4) in Theorem 2.1.3. Hence it
remains to show the conditions (3), (5) and the integrality.
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The condition (3) for smooth morphism is a consequence of the Thom-Sebastiani for-
mula. The integrality in the case p ̸= 2 or non-exceptional case in p = 2 follows from (1)
in Theorem 2.1.3. In the exceptional case, it is reduced to the non-exceptional case using
the condition (3) for X ×A1 → X.

To show (3) in the case where h is an immersion, we first consider the case where X is
an projective space Pn.

Lemma 2.1.4. Let h : W → P = Pn be an immersion and

W
pW←−−− W ×P Q

p∨W−−−→ P∨

h

y y
P

p←−−− Q

be the cartesian diagram. Let G be a constructible complex on P∨ micro supported on C∨

and assume that h is properly C-transversal for C = L∨C∨. Then, we have

P(CCRpW∗p
∨∗
W G) = P(pW !p

∨!
WCCG).

Proof. Since the characteristic cycle is characterized by the Milnor formula, it suffices
to show that pW !p

∨!
WCCG satisfies the Milnor formula for RpW∗p

∨∗
W G and for smooth

morphisms f : W → Y to a curve defined locally on W . Since h is C-transversal,
p∨W : Q ×P W → P∨ is C∨-transversal by Lemma 1.2.7.2 and p∗WG is micro supported on
p∨WC∨. Since p∨W : Q×P W → P∨ is smooth outside P(CW ), we have CCp∨∗W G = p∨◦WCCG
outside P(CW ) as (3) is already proved for smooth morphisms.

Assume that f is smooth and has only isolated characteristic point. Then, by Lemma
1.2.7.2, the composition fpW is p∨C-transversal outside the inverse images of the charac-
teristic points. Further it is p∨C-transversal outside of finitely many closed points in the
inverse images by Lemma 1.2.7.3 and these points are not contained in P(CW ) by Lemma
1.2.7.1. Hence the assertion follows.

Lemma 2.1.4 implies also P(CCh∗F) = P(h!CCF). Since the coefficient of the 0-
section is determined by the generic rank as in (2.7), we deduce (3) in the case X = P.
In the general case, since the assertion is local, we may assume that there exists an open
subscheme U ⊂ P and a cartesian diagram

W
h−−−→ X

j

y □
yi

V
g−−−→ U ⊂ P

where i : X → U and g : V → U are closed immersions of smooth subschemes meeting
transversely. Then, since h is properly C-transversal, g is properly i◦C-transversal. Hence
the case where X = P implies CCg∗i∗F = g!CCi∗F = g!i!CCF . This implies j!CCh∗F =
CCj∗h

∗F = j!h
!CCF and (2.3).

We show (5). The case W = P in Lemma 2.1.4 means the projectivization

(2.10) P(CCRF) = P(LCCF)

of (5). Hence it remains to show that the coefficients of the 0-section in CCRF = LCCF
are the same. Similarly as in the proof of Corollary 2.1.2, this is equivalent to the index
formula (2.6) for X = Pn. To prove this, we introduce the characteristic class.
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2.2 Characteristic class

We identify the Chow group of the projective completion P(T ∗X ⊕A1
X) by the canonical

isomorphism

(2.11) CH•(X) =
n⊕

i=0

CHi(X)→ CHn(P(T ∗X ⊕A1
X)).

For a constructible complex F on X with the characteristic cycle CCF =
∑

a maCa, we
define the characteristic class

(2.12) ccX(F) ∈ CH•(X)

to be the class of
∑

a maC̄a ∈ CHn(P(T ∗X ⊕A1
X)).

Let K(X,Λ) denote the Grothendieck group of the category of constructible complexes
of Λ-modules on X. By the additivity, we have a morphism

(2.13) ccX : K(X,Λ)→ CH•(X)

sending the class F to ccXF . In characteristic 0, we recover the MacPherson Chern class.
The pull-back by the immersion P(T ∗X) → P(T ∗X ⊕A1

X) and the push-forward by
P(T ∗X ⊕A1

X)→ X induce an isomorphism

CHn(P(T ∗X ⊕A1
X))→ CHn−1(P(T ∗X))⊕ CHn(X).

For A =
∑

amaCa, the images of Ā =
∑

amaC̄a is the pair of P(A) =
∑

a maP(Ca) and
the coefficient of the 0-section.

End of Proof of Theorem 2.1.3. Under (2.10), the equality (2.5) is equivalent to the con-
dition that the diagram

(2.14)

K(Pn,Λ)
ccPn−−−→ CH•(P

n)

R

y yL

K(Pn∨,Λ)
ccPn∨−−−→ CH•(P

n∨)

gets commutative after composed with the projection CH•(P
n∨)→ CHn(P

n∨) and also to
the commutativity of the diagram (2.14) itself.

We prove the commutativity of (2.14) (CD n) and the index formula (2.6) for Pn (IF
n) by a simultaneous induction on n along the diagram; (IF n− 1) ⇒ (CD n) ⇒ (IF n).
For n ≦ 1, the commutativity of (2.14) is obvious. For n = 0, the index formula follows
from (2.7). For n = 1, this is nothing but the Grothendieck-Ogg-Shafarevich formula.

We prove (IF n − 1) ⇒ (CD n). Let i : H → Pn be the immersion of a hyperplane.
Then, the right square in

(2.15)

K(Pn,Λ)
ccPn−−−→ CH•(P

n)
i!−−−→ CHn−1(H)

R

y yL

ydeg

K(Pn∨,Λ)
ccPn∨−−−→ CH•(P

n∨) −−−→ CHn(P
n∨) = Z
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is commutative. Hence it suffices to show that the long rectangle is commutative. For F
on Pn, the generic rank of RF equals the Euler number χ(Hk̄,F) for a generic H. Hence
the composition via lower left sends the class of F to χ(Hk̄,F). By (3) for the immersion
i : H → Pn and (IF n − 1), we have χ(Hk̄,F) = (CCi∗F , T ∗

HH) = deg i!ccPnF and the
long rectangle is commutative.

We prove (CD n) ⇒ (IF n). Let χ : K(Pn,Λ)→ Z be the morphism sending the class
of F to the Euler number χ(Pn

k̄
,F). We show that there is a commutative diagram

(2.16) K(Pn,Λ)

χ

))SSS
SSS

SSS
SSS

SSS
S

ccPn // CH•(P
n)

��
Z.

Since ccPn is a surjection, it suffices to show that ccPnF = 0 implies χ(Pn
k̄
,F) = 0. By

(2.8), (CD n) and the assumption ccPnF = 0 imply χ(Pn
k̄
,F) = 0 for n − 1 ̸= 0. Thus,

there exists a unique morphism CH•(P
n) → Z making the diagram (2.16) commutative.

We show that the morphism CH•(P
n) → Z equals the degree mapping. This is reduced

to the case where F = ΛPi , i = 0, . . . , n generating CH•(P
n) = Zn+1.
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