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Serre’s conjectures on `-independence

References

J.-P. Serre, J. Tate. Good reduction of abelian varieties. Ann. Math.
(1968).

J.-P. Serre. Facteurs locaux des fonctions zêta des variétés algébriques
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Serre proposed conjectures C1–C8 related to the definition of the
Hasse-Weil zeta functions of projective smooth varieties over global fields.
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Serre’s conjectures on `-independence

Arithmetic zeta function

Riemann zeta function:

ζ(s) =
∑
n≥1

1

ns
=

∏
p

1

1− p−s
.

Let X be a scheme of finite type over Spec(Z).
Arithmetic zeta function:

ζX (s) =
∑

C∈Zeff
0 (X )

1

(NC )s
=

∏
x∈|X |

1

1− (Nx)−s

=
∏

v∈|V |

ZXv ((Nv)−s)

for X over V of finite type over Spec(Z).
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Serre’s conjectures on `-independence

Cohomological interpretation

Let X be a variety (= scheme separated of finite type) over a field k . For
each ` 6= char(k), Grothendieck defined a finite-dimensional Q`-vector
space H i

`,c = H i
c(Xk̄ ,Q`), equipped with a continuous action of Gal(k̄/k).

Theorem (Grothendieck)

Let X be a variety over k = Fq. For each ` - q,

ZX (t) =
∏
i

Pi ,`(t)(−1)i+1
,

where
Pi ,`(t) = det(1− Frt,H i

`,c).
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Serre’s conjectures on `-independence

Weil conjectures (continued)

Let X be a proper smooth variety over k = Fq.

Theorem (Deligne, C2)

The reciprocal roots of Pi ,` are of weight i (algebraic numbers with all
complex conjugates of absolute value qi/2).

Corollary (C1)

Pi ,` ∈ Z[t] and is independent of `.

Corollary

Let X be a proper smooth variety over an arbitrary field k . Then the Betti
number dimH i (Xk̄ ,Q`) is independent of ` 6= char(k).
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Serre’s conjectures on `-independence

Hasse-Weil zeta function

Let X be a proper smooth variety over a global field F .

ζX (s) =
∏
i

Li (s)(−1)i+1
,

Li (s) =
∏
v

det(1− Frq−sv , (H i
`)

Iv ),

where v runs over finite places of F , and Iv denotes the inertia group at v .
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Serre’s conjectures on `-independence

`-independence

Let K be a local field: a complete discrete valuation field of finite residue
field Fq. Let X be a proper smooth variety over K .

Conjecture

(Serre, C5) det(1− Frt, (H i
`)

IK ) ∈ Z[t] and is independent of ` - q.

(Serre-Tate, C8) For each lifting F ∈ Gal(K̄/K ) of Fr,
det(1− Ft,H i

`) ∈ Z[t] and is independent of ` - q.
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Serre’s conjectures on `-independence

Monodromy Weight Conjecture

Let M denote the monodromy filtration.

Conjecture

Eigenvalues of F lifting Fr on grMn H i
` are of weight i + n.

C8 + Monodromy Weight Conjecture
⇒ det(1− Ft, grMn H i

`) ∈ Z[t] and is independent of `
⇒ C5

(Monodromy Weight Conjecture ⇒ C6 + C7)
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Serre’s conjectures on `-independence

General residue field

Let K be a complete discrete valuation field of residue field k . Let X be a
proper smooth variety over K .

Conjecture (Serre-Tate, C4)

For each F ∈ IK , det(1− Ft,H i
`) ∈ Z[t] and is independent of ` 6= char(k).
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Serre’s conjectures on `-independence

Local monodromy theorem

Let X be a variety over K .

Theorem

(Grothendieck) An open subgroup of IK acts on H i
`,c unipotently.

(Deligne, Gabber, Illusie) There exists an open subgroup I ′ of IK ,
independent of `, such that for every g ∈ I ′, (g − 1)i+1 acts by 0 on
H i
` and H i

`,c .
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Serre’s conjectures on `-independence

Equal characteristic case

Theorem (Deligne, Terasoma, Ito)

Monodromy Weight Conjecture holds in equal characteristic.
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Serre’s conjectures on `-independence

Equal characteristic case (continued)

Let K be a complete discrete valuation field of residue field k , both of
characteristic p > 0. Let X be a proper smooth variety over K .

Theorem

(Lu-Z., C4) For each F ∈ IK , det(1− Ft,H i
`) ∈ Z[t] and is

independent of ` 6= p.

(Deligne, Terasoma, Lu-Z., C8) Assume k = Fq. For each lifting
F ∈ Gal(K̄/K ) of Fr, det(1− Ft,H i

`) ∈ Z[t] and is independent of
` 6= p.

Corollary (C5)

Assume k = Fq. For each lifting F ∈ Gal(K̄/K ) of Fr,
det(1− Ft, (H i

`)
IK ) ∈ Z[t] and is independent of ` - q.
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Serre’s conjectures on `-independence

General characteristic: alternating sums

Let X be a variety over a field K .

Theorem

(Gabber, C1’) Assume K = Fq. For each F ∈W (K̄/K ),∑
i (−1)i tr(F ,H i

`) ∈ Q and is independent of ` - q.

(Vidal, C4’) Assume K is a complete discrete valuation field of
residue characteristic p > 0. For each F ∈ IK ,

∑
i (−1)i tr(F ,H i

`) ∈ Z
and is independent of ` 6= p.

(Ochiai, Z., C8’) Assume K is a local field of residue field Fq. For
each F ∈W (K̄/K ),

∑
i (−1)i tr(F ,H i

`) ∈ Q and is independent of
` - q.
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Compatible systems along the boundary

Spreading out

Let X be a proper smooth variety over a field F of characteristic p > 0.
There exists a scheme B of finite type over Fp and a Cartesian square

X //

��

X

f
��

Spec(F ) // B

with f proper smooth. We have

H i (XF̄ ,Q`) ' (R i f∗Q`)F̄

This leads us to study the system (R i f∗Q`)` of (lisse) Q`-sheaves on B.
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Compatible systems along the boundary

Compatible systems

Let OK be an excellent Henselian discrete valuation ring of residue field
k = Fq (no restriction on the characteristic of the fraction field K ). Let X
be a scheme of finite type over S = Spec(OK ). Let K (X ,Q`) be the
Grothendieck group of Q`-sheaves on X . Fix `i , i ∈ I .

Definition

(Li ) ∈
∏

i K (X ,Q`i ) is compatible if for every x ∈ |X |, and every
F ∈W (x̄/x), tr(F , (Li )x̄) ∈ Q and is independent of i . Here
|X | := |XK | ∪ |Xk | denotes the set of locally closed points of X .

More general notion with fixed embeddings Q ↪→ Q`i .

Weizhe Zheng Compatible systems along the boundary June 15, 2018 18 / 30



Compatible systems along the boundary

Compatible systems

Let OK be an excellent Henselian discrete valuation ring of residue field
k = Fq (no restriction on the characteristic of the fraction field K ). Let X
be a scheme of finite type over S = Spec(OK ). Let K (X ,Q`) be the
Grothendieck group of Q`-sheaves on X . Fix `i , i ∈ I .

Definition

(Li ) ∈
∏

i K (X ,Q`i ) is compatible if for every x ∈ |X |, and every
F ∈W (x̄/x), tr(F , (Li )x̄) ∈ Q and is independent of i . Here
|X | := |XK | ∪ |Xk | denotes the set of locally closed points of X .

More general notion with fixed embeddings Q ↪→ Q`i .

Weizhe Zheng Compatible systems along the boundary June 15, 2018 18 / 30



Compatible systems along the boundary

Gabber’s theorem

Theorem (Gabber, Z.)

Over S , compatible systems are preserved by duality and Grothendieck’s
six operations:

f ∗, f∗, f!, f
!,⊗,RHom.
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Compatible systems along the boundary

Local fundamental groups

Let C̄ be a smooth curve over Fq and let C ⊆ C̄ be a Zariski dense open.
For x ∈ C̄\C , we have Spec(Kx) = C̄(x) ×C̄ C → C , where C̄(x) denotes

the Henselization of C̄ at x . Short exact sequence:

1→ Ix → Gal(Kx/Kx)→ Gal(x̄/x)→ 1.

More generally, let X̄ be a normal scheme of finite type over S and let
X ⊆ X̄ be a Zariski dense open. For x ∈ X̄ , the open immersion
X̄(x) ×X̄ X ⊆ X̄(x) induces a surjection

π1(X̄(x) ×X̄ X )→ π1(X̄(x)) ' Gal(x̄/x).
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Compatible systems along the boundary

Compatible systems along the boundary

Definition

(Li ) ∈
∏

i Klisse(X ,Q`i ) is compatible on X̄ if for every x ∈ |X̄ |, for every
F ∈W (X̄(x) ×X̄ X , ā) (where ā is a geometric point), tr(F , (Li )ā) ∈ Q and
is independent of i .

Question

Assume (Li ) ∈
∏

i Klisse(X ,Q`i ) compatible on X . Is (Li ) compatible on
X̄?

Yes up to stratification or modification.
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Compatible systems along the boundary

Compatible ⇒ Compatible along the boundary up to ...

Theorem (Lu-Z.)

Let X be a scheme of finite type over S and let (Li ) ∈
∏

i∈I Klisse(X ,Q`i )
compatible with I finite. There exists a partition X =

⋃
α Xα into locally

closed subschemes such that each Xα admits a normal compactification
Xα ⊆ X̄α over S with (Li |Xα) compatible on X̄α.

Theorem (Lu-Z.)

Let X̄ be a reduced scheme separated of finite type over S and let X ⊆ X̄
be a Zariski dense open. Let (Li ) ∈

∏
i∈I Klisse(X ,Q`i ) compatible with I

finite. There exists a proper birational transformation f : Ȳ → X̄ such that
(Li |f −1(X )) is compatible on Ȳ .

Due to Deligne in the case where X is a curve over Fq.
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Compatible systems along the boundary

Valuative criterion

Corollary

Let X be a scheme of finite type over S and let (Li ) ∈
∏

i∈I K (X ,Q`i ).
Consider commutative squares

Spec(L)� _

��

// X

��
Spec(OL) // S ,

where OL is a Henselian valuation ring and L = Frac(OL).

1 (Li )i∈I compatible ⇔ for every square with closed point of Spec(OL)
quasi-finite over S , tr(F , (Li )L̄) ∈ Q and is independent of ` for all
F ∈W (L̄/L).

2 (Li )i∈I compatible ⇒ for every square with OL strictly Henselian,
tr(F , (Li )L̄) ∈ Q and is independent of ` for all F ∈ Gal(L̄/L).
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Compatible systems along the boundary

Serre’s conjectures in equal characteristic

Let OL be a Henselian (not necessarily discrete) valuation field ring of
residue field k and characteristic p > 0. Let L = Frac(OL). Let X be a
proper smooth variety over L.

Corollary

(C4) For each F ∈ IL, det(1− Ft,H i
`) ∈ Z[t] and is independent of

` 6= p.

(C8) Assume k = Fq. For each lifting F ∈ Gal(L̄/L) of Fr,
det(1− Ft,H i

`) ∈ Z[t] and is independent of ` 6= p.

The valuative criterion was inspired by Gabber’s valuative criterion for the
ramified part of π1.
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Relation with wild ramification

Plan of the talk
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Relation with wild ramification

Ramified part of π1

Let OK be an encellent Henselian discrete valuation ring of residue
characteristic p > 0.

Definition (Vidal)

Let X be a integral normal scheme separated of finite type over
S = Spec(OK ). Closed subsets πwr

1 (X ) ⊆ πr
1(X ) ⊆ π1(X ):

For any normal compactification X ⊆ X̄ over S , πr
1(X )X̄ is the closure

of the union of the conjugates of Im(π1(X̄(x̄) ×X̄ X )→ π1(X )), where

x̄ runs through geometric points of X̄ .

(ramified part) πr
1(X ) =

⋂
X̄ π

r
1(X )X̄ .

(wildly ramified part) πwr
1 (X ) = πr

1(X ) ∩
⋃

H H, where H runs
through pro-p-Sylows of π1(X ).
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Relation with wild ramification

Gabber’s valuative criterion

Theorem (Gabber)

πr
1(X ) is the closure of the union of the conjugates of

Im(Gal(L̄/L)→ π1(X )), indexed by commutative squares

Spec(L)� _

��

// X

��
Spec(OL) // S

where OL is a strictly Henselian valuation ring.
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Relation with wild ramification

Compatible wild ramification

Let X be a scheme of finite type over S .

Definition

(Li ) ∈
∏

i∈I K (X ,F`i ) has compatible wild ramification if for every
separated integral normal subscheme Y and every g ∈ πwr

1 (Y , ā) (where ā
is a geometric point), trBr(g , (Li )ā) ∈ Q and is independent of ` (as long
as Li ∈ Klisse).

Saito-Yatagawa and Yatagawa studied a weaker condition “same wild
ramification”.

Theorem (Deligne, Vidal, Saito-Yatagawa, Yatagawa, Guo)

“Compatible wild ramification” is preserved by f ∗, f∗, f!, f
!,⊗,RHom.

“Same wild ramification” is preserved by f ∗, f∗, f!, f
!.
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Relation with wild ramification

Compatible ⇒ Compatible wild ramification

Assume that the residue field of OK is finite. The decomposition map d` is
the composition

K (X ,Q`)
∼←− K (X ,Z`)→ K (X ,F`),

where both arrows are given by extension of scalars. Combining Gabber’s
valuative criterion with ours, we get:

Corollary

(Li ) ∈
∏

i K (X ,Q`i ) compatible ⇒ (d`iLi ) ∈
∏

i K (X ,F`i ) has compatible
wild ramification.
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The End

Thank you!
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