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Generating Function

Theorem (Classical)

Let G(t) = 1 t—t

c I'(Gp, Og, ), and let 0 := t%. Then we have

8kg(t)‘t:§: — ‘[r(é:a _k)
for any integer k > 0 and any root of unity & # 1.

Here, L(&, s) is the Lerch zeta function, a function given by

L(Es)= ) Emn®
n=1

for Re(s) > 1, where £(n) := &". This function has an analytic continuation to s € C.



Dirichlet L-functions

Let ¢, (¢) = N7' X ez/nz X (M)E(—m).
LLemma
For N > 1, let y: (Z/NZ)* — C* be a Dirichlet character. Then we have

L(x,s) = Z (&) LIS, )

& EUN

If x is primitive, then sum is over primitive N-th roots of unity in .

Proof. Follows from the Fourier transtorm for finite characters Re(s) > 1
L(x.s) = Zx(n)n‘s Z Do @EmMNT = ) ey (&) ) EmnS
n=1 &ecuy & EUN n=1

It y is primitive, then sum is over primitive N-th roots of unity in uy.




Related Results

» QOur Results Based On:

> Shintani, Shintani zeta function and its generating function, Shintani decomposition.

> Barsky, Cassou-Nouges, Construction of the p-adic Hecke L-function for totally real
fields.

> Katz, Use of the algebraic torus T".

» Related Results:

> Eisenstein Cocycles, Sczech’s Cocycles, Shintani Cocycles... (Charollois—Dasgupta,
Charollois—Dasgupta—Greenberg, ...)

> Topological Polylogarithms (Beilinson—Levin—Kings)

» Our Construction — Algebraic, arising from study of polylogarithm.



Lerch Zeta Function for
Totally Real Flelds



Finite Hecke Character

> F: totally real field, degree g := [F : Q], Of: ring of integers.
> F: group of totally positive elements.

> 3: group of nonzero fractional ideals of F.
J,: subgroup of nonzero fractional ideals prime to g, for any ideal g C OF.

> Cli(g) := 34/P;, where P{ := {(@) | @ € F,@ = 1mod”™ g}.

Definition (Finite Hecke Character)

A finite Hecke character is a homomorphism y: ClZ(g) — C*.

Extend y to a function on 3 by zero. The Hecke L-function is defined by

L(x,8) = ) x(Q)Na™,

C(COF

which converges absolutely for Re(s) > 1.



Finite Hecke Character

Let
> CIZ(1) = 3/P*: narrow ray class group, where P* := {(a) | @ € F}.
> a,: subset of totally positive elements in a, for a € 3.
> A= OF,: set of totally positive units in OF.

Then we have

L(y,s) = Z y(@)Na ™ = Z Z )(_1N(a_1a)_s.

aCOF aeClf(1) @eA\ay FER—

For any fractional ideal a prime to g, we let

Xa - (a/ga)” — C7, Yol@) = )((a_1cz) Va € a,,

where (a/ag)™ C a/ag is the set of generators of a/ag as a O /g-module.



I .erch Zeta Function

Definition (Lerch Zeta Function)

Let £ € T* .= Homz(a, C*) be a torsion element. Define the Lerch zeta function for the
totally real case by

LENS) = ), EA@NG@a)™,

acA\ay

where §A = Dl ca\a €7 for Ay == {e € A[ &% = &} Here, E8(a) = &(ea) for any a € a.

L.emma

Let y: ClZ(g) — C* be a finite Hecke character. Then we have

Les)= ), ), cl&)LEAs),

aeCli(1) £€Tg]/A

where ¢, (&) = 2 gea/ga Xa(B)E(=p) for any & € T*[g] := Homz(a/ga, C*).



Shintani Zeta Function
and the Generating Function



Cones in RY.

Let/ := Hom(F,R) = {7y, ..., 73}. Then we have

FRR =R, d®1 - (a).

We define a cone in RY U {0} as follows.

Definition (Cone)

We define a g-dimensional F-rational simplicial closed polyhedral cone in RY U {0}, which
we simply call a cone, to be the set of the form

0‘a = {X-Ia’-l + .- +XgC¥g ‘X‘],...,Xg c RZO}

for some @ = (4, ...,qy) € F? linearly independent over R. In this case, we say that « is
the generator of oy,.



Shintani Zeta Function

Fix a fractional ideal a € .
Definition (Shintani Zeta Function)

Let o be a cone, and let & # 1 be a torsion element in T*(C) = Homz(a, C*). The Shintani
Zeta Function is given by

évo-(f, (81, c .o Sg)) = Z g(a,)a,1—81 e CL,{;Sg.

This function has analytic continuation to s4,...,8, € C.

Here, o is the upper closure of o given by

oc={u=()eRY|36>0,0<V <9, (uq,...,Uug_1,Uuy —9") € o}.



Shintani Zeta Function

Upper Closure

oc={u=(W)eRI|3F6>00<Vs <6, (U1,...,Usj_1,Uu; —06") € 0}



Shintani Decomposition

The Shintani decomposition gives a choice of a fundamental domain of A\a,..

Theorem (Shintani, Yamamoto |2, Proposition 5.6])

There exists a set @ of g-dimensional cones stable under the action of A, such that A\® is a

finite set, and
Sk

oecd

Using this decomposition, for any torsion & € T%(C) such that & # 1, we have the following.

LEAS) = ) EA@N@ @) =Na® > > Lp(& 5 ->9)

acA\a, O EA\D E€EA/As  mowmmmpmmennnmmpirmme

Shintani Zeta Function has a
Generating Function



Underlying Geometry

> F=Q > . Totally Real Field
Gm(C) = Hom(Z, C*) T%(C) = Hom(a, C*)
W W
& o (nH &)
G, = Hom(Z, G,,) T" = Hom(a, G,,)

= SpecZ[t, t7] = SpecZ[t? | a € a]

G(t) = —

[



Generating Function

We say that a € a is primitive, if a/N ¢ a for any integer N > 0. Let .o7; be the set of
primitive elements in a. For any @ = (a1, ...,ay) € ;z/ag and cone o = o0, let

tcz

N~

acanPy

(1—t*1)---(1 - %)

Gy, (1) =

where Py, = {xya1 + -+ x9a4 | 0 < x1,...,X5 < 1} is the parallelepiped defined by
@ = (ay,...,q9). WeletU;, == T" \ {t¥ = 1}.

Theorem (Shintani)

For any integer ki, ..., kg > 0 and torsion point £ in U, N --- N Ugg, we have
01 -+ 02 G, (D], = Lo € (ks —kg))
T1 TgId O t=§_ O« ” | EIRICIRR gl

where 0; is the differential satisfying 0,(t%) = a"t® forany 7: F — R.



Generating Function

Since for a Shimura decomposition @, we have

LEAS) = ) EA@N@ ') =Na® ) > [ (s.....9)).

acA\a, o eA\D ecA/Ag

Got)= ) D G

o eA\D ge€A/Ag

If we let

then for 0 := [[7_, 8;,, we have 9" Qg)(t)‘ e L(£A, —k) for any integer k > 0, if G (1) is

=1
defined at £. However,

> Qg)(t) depends on &.
> G (t) depends on the choice of the Shintani decomposition ©.

How can we create a canonical generating function?



Shintani Generating Class



Action ot a Group

112

Any x € F defines an isomorphism a — xa of Or-modules. This gives an isomorphism

Y

(x): T — T,
which on C-valued points is given by

(x): T(C) = T"(C),
£ xa — C* — E:a— C”

E(a) = éxa) VYa e a.
More generally, if we let T = [[,.x T9, then x € F' induces
(x): T 5 T,

hence an action of F; on T.



Equivariant Sheat and Cohomology

LetT :=]],exT" and U = | ], U", where U" := T \ {1}. Then U also has an action of
F> induced from the action on T.

Equivariant Sheat

We define a F -equivariant sheaf on U to be a family of Oy«-modules (.%,).c5 With
isomorphisms ¢y o : (X)*#, = %4, for any x € F, compatible with the composition.

We define the equivariant cohomology of U with coefficients in .% by
H"(U/F", %) = R"T(U/F;, %),

where R"TI'(U/F7, %) is the m-th right derived functor of I'(U, )+ A

We next define an explicit complex to
calculate this cohomology



Cech Cocycle

We let U}, .= T \ {t* =1} forany a € o7,. Then U := {U}, }.c3.accz, 1S an afline open
covering of U := [ ] U". The group F naturally acts on the sets [ [,cx <% and U = {U" }.

Definition (Equivariant Cech Complex)
Let .# = (%#,) be a F-equivariant sheaf on U. Define the complex C*(U/F},.%#) by

X
alt Fy

/L Z)y = | || Ty, n--nUs. %)

+1
AES EQ/q

for any integer g > 0, with the usual Cech differential.

Then we have
H™(U/FL, .7) = H"(C*(U/FL, 7).



Shintani Generating Class

We fix a numbering / = {1y, ..., 75}. Forany @ = (a1, ..., ay) € &7, let sgn(a) be the sign
of the determinant of the matrix (aI.T" ). Then we may see that

alt F
(sgn(@)Gg, ) e || | | | TS n---nU; . On)
AEI CL’E%Q

Theorem (B.—Hagihara—Yamada—Yamamoto)

The functions (sgn(a@ )G, (t)) define a cocycle, and form a canonical class

G(t) = (sgn(@)Gy, (1)) € H'(U/FZ, O),
which we call the Shintani Generating Class.

The generating functions paste together to form a single canonical class!



Main Theorem
The differential 0 := ?:1 0r induces an homomorphism

0: H\(U/FY, Or) — HI"(U/FY, Or).
0 is given by 0(t%) = N(a)t? for any @ € a on U".
Theorem (B.—Hagihara—Yamada—Yamamoto)

For any integer k > 0 and any torsion point & # 1 in T%(Q), we have

HI"Y(U/F%, Or) > 9°G(t)

i I

Y
A=79" HITWEA/A, Opn) = QE) 2 0G|, = LEA k)

where /g : EA — U is equivariant with respect to the action of A.

Case g=1 is exactly the Theorem (Classical)



p-adic Polylogarithm



p-adic Polylogarithm

We fix embeddings @ — C and @ — C,. We let K be a finite extension of Q, containing
the Galois closure of F. Let A := Ok[t” | a € a], T}, = Sp(A®K) be the affinoid space

associated to (A®K), and U;K = Sp(A[(t* — 1) 1|®K) = @(\]t“ = 1]. We let

Uf( = U UgKC%a, UK = UU&C%K.

Q €.97, e

Proposition (B.—Hagihara—Yamada—Yamamoto)

Fora € 3, k € Z, and cone o, we have

Lif{:((f)(t) = Z (*N(a) ™ € T(U,, OU?KK)’
acoNa
ae(a®Zp)”

where (a ® Z,)™ is the set of generators of the (Or ® Z,)-module a ® Z,,.



p-adic Polylogarithm

We fix a numbering / = {71,...,7,}. Forany @ = (a1, ..., ay) € &, let sgn(a) be the sign
of the determinant of the matrix (cyl.Tj ). Then we may see that

alt F>
'aa(p> T 'y
(sgn(e) LiyP(t)) € ]—[ ]—[ (U 0N Ug k0 O)
AEI Qe%g

Theorem (B.—Hagihara—Yamada—Yamamoto)

The functions (sgn(a) Lig’ ((f)(t)) define a cocycle, and form a canonical class

LiP(t) = (sgn(@) Liy V(1) € H97 (U /FY, 0%, ).

We will prove it’s relation to special values of p-adic L-functions



p-adic Polylogarithm

Theorem (B.—Hagihara—Yamada—Yamamoto)

The functions (sgn(a) Li/i’ (5)(1‘)) define a cocycle, and form a canonical class

LiP () = (sgn(e) Liy P (1) € H97 (U /FY, 0%, ).

One can evaluate the polylogarithm at any torsion point & in Uf(

H= Uk /FL 0y 2 LiP()

. I
Y

A=797" HITU(EAA Oep) =K(E) D LiP),,

where ig 1 EA — U is equivariant with respect to the action of A.



p-adic L-functions

Theorem (Barsky, Cassou-Nouges, Deligne-Ribet)

Let g # (1) be a nonzero fractional ideal of F, and let y: ClZ(g) — C* be a finite primitive
Hecke character. There exists an analytic function L,(y, s) for s € Z, satisfying

Lp(x, —K) = (H (1 = xw," (NP) |L (xw, ", k)
p|(p)

for any integer kK > 0, where wp, denotes the composition of the norm map with the
Teichmuiller character.



Action of ClZ(g) on H[g].

For any integral ideal b C Of, the natural inclusion ab C a for a € J induces a map
p(b): T* — T*°. This induces a map

o(b): T — T,

which is compatible with the action of F7. Let

Tolal = (| | Tolal) /P

=R

where Tj[g] is the set of primitive g-torsion points in T* (Q). Then p gives an action of
ClZ(g) on H[g] which is simply transitive. For any ¢ € T%[g] and integral ideal b prime to

g, we let £ == p(b)(¢) € T*[g].



Result concerning p-adic L-functions

Theorem (B.—Hagihara—Yamada—Yamamoto)

Suppose g does not divide any power of (p), and let £ be an arbitrary primitive g-torsion
point in T%(Q). Then for any integer k € Z, we have

LP(Xw;_k’ k) - g(/)\i, > Z X(b)_1 Li/c(o)(t)‘tsza
J beClZ(g)

where g(x, §) = NQC)((S) — Zﬁea/ag Xa(B)E(=P).



Conclusion

> We newly defined the Lerch zeta function for totally real fields.

> We constructed the Shintani generating class as a canonical class in cohomology, and
proved that it generates all non-positive special values of Lerch zeta functions for all
nontrivial finite characters.

> We constructed the p-adic polylogarithm and gave its relation to the special values of
p-adic Hecke L-functions for totally real fields.



Conjectures/Questions

> We conjecture that the specialization to torsion points of the equivariant plectic
polylogarithm for T should be related to positive values ot our Lerch zeta function.

> We conjecture that the syntomic relalization of the equivariant plectic polylogarithm
for T should be expressed using our p-adic polylogarithm Lil((p)(t).

> The stack .77 := T/F; seems to contain important arithmetic information, somewhat
similar to information possessed by elliptic curves with complex multiplication in the
imaginary quadratic case. What does this mean?



