Shintani Generating Class and the *p*-adic Polylogarithm for Totally Real Fields

Kenichi Bannai

Keio University/RIKEN

May 27, 2020

Joint work with Kei Hagihara, Kazuki Yamada, and Shuji Yamamoto. Based on arXiv:1911.02650 [math.NT], arXiv:2003.08157 [math.NT]

Simple Question

Rational Field Q

1-t

Cyclotomic Units

► Imaginary Quadratic Field

Robert's Theta Function

 $\theta(t)$

Elliptic Units

► Totally Real Field

logarithmic derivative

 $\stackrel{\partial}{\mapsto}$

Generating Function

 $\frac{t}{1-t}$

Dirichlet L-values

 $\stackrel{\partial}{\mapsto}$

 $\frac{\theta'(t)}{\theta(t)}$

Hecke L-values

TODAY

 ∂

Hecke L-values

Generating Function

Theorem (Classical)

Let $\mathcal{G}(t) \coloneqq \frac{t}{1-t} \in \Gamma(\mathbb{G}_m, \mathcal{O}_{\mathbb{G}_m})$, and let $\partial \coloneqq t \frac{d}{dt}$. Then we have

$$\left. \partial^{k} \mathcal{G}(t) \right|_{t=\xi} = \mathcal{L}(\xi, -k)$$

for any integer $k \ge 0$ and any root of unity $\xi \ne 1$.

Here, $\mathcal{L}(\xi, s)$ is the Lerch zeta function, a function given by

$$\mathcal{L}(\xi, s) := \sum_{n=1}^{\infty} \xi(n) n^{-s}$$

for Re(s) > 1, where $\xi(n) := \xi^n$. This function has an analytic continuation to $s \in \mathbb{C}$.

Dirichlet L-functions

Let
$$c_{\chi}(\xi) := N^{-1} \sum_{m \in \mathbb{Z}/N\mathbb{Z}} \chi(m) \xi(-m)$$
.

Lemma

For N > 1, let $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character. Then we have

$$L(\chi,s) = \sum_{\xi \in \mu_N} c_{\chi}(\xi) \mathcal{L}(\xi,s).$$

If χ is primitive, then sum is over primitive N-th roots of unity in μ_N .

Proof. Follows from the Fourier transform for finite characters

$$L(\chi, s) = \sum_{n=1}^{\infty} \chi(n) n^{-s} = \sum_{n=1}^{\infty} \sum_{\xi \in \mu_N} c_{\chi}(\xi) \xi(n) n^{-s} = \sum_{\xi \in \mu_N} c_{\chi}(\xi) \sum_{n=1}^{\infty} \xi(n) n^{-s}$$

If χ is primitive, then sum is over primitive N-th roots of unity in μ_N .

Related Results

Our Results Based On:

- ► Shintani, Shintani zeta function and its generating function, Shintani decomposition.
- ▶ Barsky, Cassou-Nougès, Construction of the *p*-adic Hecke *L*-function for totally real fields.
- ightharpoonup Katz, Use of the algebraic torus $\mathbb{T}^{\mathfrak{a}}$.

► Related Results:

- Eisenstein Cocycles, Sczech's Cocycles, Shintani Cocycles... (Charollois–Dasgupta, Charollois–Dasgupta–Greenberg, ...)
- ► Topological Polylogarithms (Beilinson–Levin–Kings)
- Our Construction Algebraic, arising from study of polylogarithm.

Lerch Zeta Function for Totally Real Fields

Finite Hecke Character

- F: totally real field, degree $g := [F : \mathbb{Q}], O_F$: ring of integers.
- \triangleright F_{+}^{\times} : group of totally positive elements.
- ▶ \mathfrak{I} : group of nonzero fractional ideals of F. $\mathfrak{I}_{\mathfrak{g}}$: subgroup of nonzero fractional ideals prime to \mathfrak{g} , for any ideal $\mathfrak{g} \subset O_F$.
- $ightharpoonup \operatorname{Cl}_F^+(\mathfrak{g}) \coloneqq \mathfrak{I}_{\mathfrak{g}}/P_{\mathfrak{g}}^+, \text{ where } P_{\mathfrak{g}}^+ \coloneqq \{(\alpha) \mid \alpha \in F_+^{\times}, \alpha \equiv 1 \bmod^{\times} \mathfrak{g}\}.$

Definition (Finite Hecke Character)

A finite Hecke character is a homomorphism $\chi: \operatorname{Cl}_F^+(\mathfrak{g}) \to \mathbb{C}^{\times}$.

Extend χ to a function on 3 by zero. The Hecke L-function is defined by

$$L(\chi,s) = \sum_{\mathfrak{a} \subset O_F} \chi(\mathfrak{a}) N \mathfrak{a}^{-s},$$

which converges absolutely for Re(s) > 1.

Finite Hecke Character

Let

- ightharpoonup $Cl_F^+(1) := \Im/P^+$: narrow ray class group, where $P^+ := \{(\alpha) \mid \alpha \in F_+^\times\}$.
- ightharpoonup a₊: subset of totally positive elements in a, for a $\in \mathfrak{I}$.
- $\blacktriangleright \Delta := O_{F+}^{\times}$: set of totally positive units in O_F .

Then we have

$$L(\chi, s) = \sum_{\mathfrak{a} \subset O_F} \chi(\mathfrak{a}) N \mathfrak{a}^{-s} = \sum_{\mathfrak{a} \in \mathsf{Cl}_F^+(1)} \sum_{\alpha \in \Delta \setminus \mathfrak{a}_+} \chi(\mathfrak{a}^{-1}\alpha) N(\mathfrak{a}^{-1}\alpha)^{-s}.$$

For any fractional ideal a prime to g, we let

$$\chi_{\mathfrak{a}}: (\mathfrak{a}/\mathfrak{ga})^{\times} \to \mathbb{C}^{\times}, \qquad \qquad \chi_{\mathfrak{a}}(\alpha) \coloneqq \chi(\mathfrak{a}^{-1}\alpha) \quad \forall \alpha \in \mathfrak{a}_{+},$$

where $(\mathfrak{a}/\mathfrak{ag})^{\times} \subset \mathfrak{a}/\mathfrak{ag}$ is the set of generators of $\mathfrak{a}/\mathfrak{ag}$ as a O_F/\mathfrak{g} -module.

Lerch Zeta Function

Definition (Lerch Zeta Function)

Let $\xi \in \mathbb{T}^{\mathfrak{a}} := \operatorname{Hom}_{\mathbb{Z}}(\mathfrak{a}, \mathbb{C}^{\times})$ be a torsion element. Define the *Lerch zeta function for the totally real case* by

$$\mathcal{L}(\xi \Delta, s) := \sum_{\alpha \in \Delta \setminus \mathfrak{a}_{+}} \xi \Delta(\alpha) \mathcal{N}(\mathfrak{a}^{-1}\alpha)^{-s},$$

where $\xi \Delta \coloneqq \sum_{\varepsilon \in \Delta_{\varepsilon} \setminus \Delta} \xi^{\varepsilon}$ for $\Delta_{\xi} \coloneqq \{ \varepsilon \in \Delta \mid \xi^{\varepsilon} = \xi \}$. Here, $\xi^{\varepsilon}(\alpha) \coloneqq \xi(\varepsilon\alpha)$ for any $\alpha \in \mathfrak{a}$.

Lemma

Let $\chi: \operatorname{Cl}_F^+(\mathfrak{g}) \to \mathbb{C}^{\times}$ be a finite Hecke character. Then we have

$$L(\chi, s) = \sum_{\alpha \in \text{Cl}_F^+(1)} \sum_{\xi \in \mathbb{T}^{\alpha}[\mathfrak{g}]/\Delta} c_{\chi}(\xi) \mathcal{L}(\xi \Delta, s),$$

where $c_{\chi}(\xi) := \sum_{\beta \in \mathfrak{a}/\mathfrak{ga}} \chi_{\mathfrak{a}}(\beta) \xi(-\beta)$ for any $\xi \in \mathbb{T}^{\mathfrak{a}}[\mathfrak{g}] := \text{Hom}_{\mathbb{Z}}(\mathfrak{a}/\mathfrak{ga}, \mathbb{C}^{\times})$.

Shintani Zeta Function and the Generating Function

Cones in \mathbb{R}_{+}^{g} .

Let $I := \text{Hom}(F, \mathbb{R}) = \{\tau_1, \dots, \tau_g\}$. Then we have

$$F\otimes\mathbb{R}\cong\mathbb{R}^g,\qquad \alpha\otimes\mathbf{1}\mapsto(\alpha^{\tau_i}).$$

We define a cone in $\mathbb{R}_+^g \cup \{0\}$ as follows.

Definition (Cone)

We define a *g*-dimensional *F*-rational simplicial closed polyhedral cone in $\mathbb{R}_+^g \cup \{0\}$, which we simply call a *cone*, to be the set of the form

$$\sigma_{\alpha} := \{x_1 \alpha_1 + \cdots + x_g \alpha_g \mid x_1, \dots, x_g \in \mathbb{R}_{\geq 0}\}$$

for some $\alpha = (\alpha_1, \dots, \alpha_g) \in F_+^g$ linearly independent over \mathbb{R} . In this case, we say that α is the generator of σ_{α} .

Shintani Zeta Function

Fix a fractional ideal $a \in \Im$.

Definition (Shintani Zeta Function)

Let σ be a cone, and let $\xi \neq 1$ be a torsion element in $\mathbb{T}^{\mathfrak{a}}(\mathbb{C}) = \operatorname{Hom}_{\mathbb{Z}}(\mathfrak{a}, \mathbb{C}^{\times})$. The Shintani Zeta Function is given by

$$\zeta_{\sigma}(\xi,(s_1,\ldots,s_g)) := \sum_{\alpha \in \mathfrak{a} \cap \widehat{\sigma}} \xi(\alpha)\alpha_1^{-s_1} \cdots \alpha_g^{-s_g}.$$

This function has analytic continuation to $s_1, \ldots, s_g \in \mathbb{C}$.

Here, $\widehat{\sigma}$ is the upper closure of σ given by

$$\widehat{\sigma} := \{u = (u_i) \in \mathbb{R}^g \mid \exists \delta > 0, 0 < \forall \delta' < \delta, (u_1, \ldots, u_{g-1}, u_g - \delta') \in \sigma\}.$$

Shintani Zeta Function

Upper Closure

$$\widehat{\sigma} := \{ u = (u_i) \in \mathbb{R}^g \mid \exists \delta > 0, 0 < \forall \delta' < \delta, (u_1, \dots, u_{g-1}, u_g - \delta') \in \sigma \}$$

Shintani Decomposition

The Shintani decomposition gives a choice of a fundamental domain of $\Delta \setminus \mathfrak{a}_+$.

Theorem (Shintani, Yamamoto [2, Proposition 5.6])

There exists a set Φ of g-dimensional cones stable under the action of Δ , such that $\Delta \setminus \Phi$ is a finite set, and

$$\mathbb{R}^g_+ = \coprod_{\sigma \in \Phi} \widehat{\sigma}.$$

Using this decomposition, for any torsion $\xi \in \mathbb{T}^{\mathfrak{a}}(\mathbb{C})$ such that $\xi \neq 1$, we have the following.

$$\mathcal{L}(\xi \Delta, s) = \sum_{\alpha \in \Delta \setminus \mathfrak{a}_{+}} \xi \Delta(\alpha) \mathcal{N}(\mathfrak{a}^{-1} \alpha)^{-s} = \mathcal{N}\mathfrak{a}^{s} \sum_{\sigma \in \Delta \setminus \Phi} \sum_{\varepsilon \in \Delta / \Delta_{\xi}} \zeta_{\sigma}(\xi^{\varepsilon}, (s, \ldots, s)).$$

Shintani Zeta Function has a Generating Function

Underlying Geometry

$$ightharpoonup F = \mathbb{Q}$$

$$\mathbb{G}_{m}(\mathbb{C}) = \operatorname{Hom}(\mathbb{Z}, \mathbb{C}^{\times})$$

$$\psi$$

$$\xi \mapsto (n \mapsto \xi^{n})$$

$$\mathbb{G}_m = \text{Hom}(\mathbb{Z}, \mathbb{G}_m)$$

$$= \text{Spec } \mathbb{Z}[t, t^{-1}]$$

$$\mathcal{G}(t) = \frac{t}{1-t}$$

F: Totally Real Field

$$\mathbb{T}^{\mathfrak{a}}(\mathbb{C}) = \mathsf{Hom}(\mathfrak{a}, \mathbb{C}^{\times})$$

$$\mathbb{T}^{\mathfrak{a}} = \operatorname{Hom}(\mathfrak{a}, \mathbb{G}_{m})$$
$$= \operatorname{Spec} \mathbb{Z}[t^{\alpha} \mid \alpha \in \mathfrak{a}]$$

Generating Function

We say that $\alpha \in \mathfrak{a}$ is *primitive*, if $\alpha/N \notin \mathfrak{a}$ for any integer N > 0. Let $\mathscr{A}_{\mathfrak{a}}$ be the set of primitive elements in \mathfrak{a} . For any $\alpha = (\alpha_1, \dots, \alpha_g) \in \mathscr{A}_{\mathfrak{a}}^g$ and cone $\sigma := \sigma_{\alpha}$, let

$$\mathcal{G}^{\mathfrak{a}}_{\sigma_{lpha}}(t) \coloneqq rac{\sum_{lpha \in \mathfrak{a} \cap \widehat{P}_{lpha}} t^{lpha}}{(1 - t^{lpha_{1}}) \cdots (1 - t^{lpha_{g}})},$$

where $P_{\alpha} := \{x_1 \alpha_1 + \dots + x_g \alpha_g \mid 0 < x_1, \dots, x_g < 1\}$ is the parallelepiped defined by $\alpha = (\alpha_1, \dots, \alpha_g)$. We let $U_{\alpha}^{\alpha} := \mathbb{T}^{\alpha} \setminus \{t^{\alpha} = 1\}$.

Theorem (Shintani)

For any integer $k_1, \ldots, k_g \ge 0$ and torsion point ξ in $U_{\alpha_1}^{\mathfrak{a}} \cap \cdots \cap U_{\alpha_g}^{\mathfrak{a}}$, we have

$$\partial_{\tau_1}^{k_1} \cdots \partial_{\tau_g}^{k_g} \mathcal{G}_{\sigma_{\alpha}}^{\mathfrak{a}}(t) \Big|_{t=\xi} = \zeta_{\sigma_{\alpha}}(\xi, (-k_1, \ldots, -k_g)),$$

where ∂_{τ} is the differential satisfying $\partial_{\tau}(t^{\alpha}) = \alpha^{\tau}t^{\alpha}$ for any $\tau : F \hookrightarrow \mathbb{R}$.

Generating Function

Since for a Shimura decomposition Φ , we have

$$\mathcal{L}(\xi\Delta,s) = \sum_{\alpha\in\Delta\setminus\mathfrak{a}_{+}} \xi\Delta(\alpha)N(\mathfrak{a}^{-1}\alpha)^{-s} = N\mathfrak{a}^{s} \sum_{\sigma\in\Delta\setminus\Phi} \sum_{\varepsilon\in\Delta/\Delta_{\xi}} \zeta_{\sigma}(\xi^{\varepsilon},(s,\ldots,s)).$$

If we let

$$\mathcal{G}_{\Phi}^{\mathfrak{a}}(t) \coloneqq \sum_{\sigma \in \Delta \setminus \Phi} \sum_{\varepsilon \in \Delta / \Delta_{\varepsilon}} \mathcal{G}_{\sigma}^{\mathfrak{a}}(t^{\varepsilon}),$$

then for $\partial := \prod_{i=1}^g \partial_{\tau_i}$, we have $\partial^k \mathcal{G}_{\Phi}^{\mathfrak{a}}(t)\big|_{t=\xi} = \mathcal{L}(\xi \Delta, -k)$ for any integer $k \geq 0$, if $\mathcal{G}_{\Phi}^{\mathfrak{a}}(t)$ is defined at ξ . However,

- $ightharpoonup \mathcal{G}_{\Phi}^{\mathfrak{a}}(t)$ depends on ξ .
- $ightharpoonup \mathcal{G}_{\Phi}^{\mathfrak{a}}(t)$ depends on the choice of the Shintani decomposition Φ .

How can we create a canonical generating function?

Shintani Generating Class

Action of a Group

Any $x \in F_+^{\times}$ defines an isomorphism $\mathfrak{a} \xrightarrow{\cong} x\mathfrak{a}$ of O_F -modules. This gives an isomorphism

$$\langle x \rangle : \mathbb{T}^{X\mathfrak{a}} \xrightarrow{\cong} \mathbb{T}^{\mathfrak{a}},$$

which on C-valued points is given by

$$\langle x \rangle \colon \mathbb{T}^{x\mathfrak{a}}(\mathbb{C}) \xrightarrow{\cong} \mathbb{T}^{\mathfrak{a}}(\mathbb{C}),$$

$$\xi \colon x\mathfrak{a} \to \mathbb{C}^{\times} \qquad \mapsto \qquad \xi^{x} \colon \mathfrak{a} \to \mathbb{C}^{\times}$$

$$\xi^{x}(\alpha) = \xi(x\alpha) \quad \forall \alpha \in \mathfrak{a}.$$

More generally, if we let $\mathbb{T} := \coprod_{\alpha \in \mathfrak{I}} \mathbb{T}^{\alpha}$, then $x \in F_+^{\times}$ induces

$$\langle x \rangle \colon \mathbb{T} \xrightarrow{\cong} \mathbb{T},$$

hence an action of F_+^{\times} on \mathbb{T} .

Equivariant Sheaf and Cohomology

Let $\mathbb{T} := \coprod_{\alpha \in \mathfrak{I}} \mathbb{T}^{\alpha}$, and $U := \coprod_{\alpha \in \mathfrak{I}} U^{\alpha}$, where $U^{\alpha} := \mathbb{T}^{\alpha} \setminus \{1\}$. Then U also has an action of F_{+}^{\times} induced from the action on \mathbb{T} .

Equivariant Sheaf

We define a F_+^{\times} -equivariant sheaf on U to be a family of $O_{U^{\alpha}}$ -modules $(\mathscr{F}_{\alpha})_{\alpha \in \mathfrak{I}}$ with isomorphisms $\iota_{X,\alpha}: \langle x \rangle^* \mathscr{F}_{\alpha} \cong \mathscr{F}_{X\alpha}$ for any $x \in F_+^{\times}$, compatible with the composition.

We define the equivariant cohomology of U with coefficients in \mathscr{F} by

$$H^{m}(U/F_{+}^{\times},\mathscr{F}):=R^{m}\Gamma(U/F_{+}^{\times},\mathscr{F}),$$

where $R^m\Gamma(U/F_+^{\times},\mathscr{F})$ is the *m*-th right derived functor of $\Gamma(U,-)^{F_+^{\times}}$.

We next define an explicit complex to calculate this cohomology

Čech Cocycle

We let $U_{\alpha}^{\mathfrak{a}} \coloneqq \mathbb{T}^{\mathfrak{a}} \setminus \{t^{\alpha} = 1\}$ for any $\alpha \in \mathscr{A}_{\mathfrak{a}}$. Then $\mathfrak{U} \coloneqq \{U_{\alpha}^{\mathfrak{a}}\}_{\mathfrak{a} \in \mathfrak{I}, \alpha \in \mathscr{A}_{\mathfrak{a}}}$ is an affine open covering of $U \coloneqq \coprod U^{\mathfrak{a}}$. The group F_{+}^{\times} naturally acts on the sets $\coprod_{\mathfrak{a} \in \mathfrak{I}} \mathscr{A}_{\mathfrak{a}}$ and $\mathfrak{U} = \{U_{\alpha}^{\mathfrak{a}}\}$.

Definition (Equivariant Čech Complex)

Let $\mathscr{F} = (\mathscr{F}_{\mathfrak{a}})$ be a F_{+}^{\times} -equivariant sheaf on U. Define the complex $C^{\bullet}(\mathfrak{U}/F_{+}^{\times},\mathscr{F})$ by

$$C^{q}(\mathfrak{U}/F_{+}^{\times},\mathscr{F}) \coloneqq \left(\prod_{\mathfrak{a}\in\mathfrak{I}}\prod_{\alpha\in\mathscr{A}_{\mathfrak{a}}^{q+1}}^{\mathsf{alt}}\Gamma(U_{\alpha_{0}}^{\mathfrak{a}}\cap\cdots\cap U_{\alpha_{q}}^{\mathfrak{a}},\mathscr{F}_{\mathfrak{a}})\right)^{F_{+}^{\times}}$$

for any integer $q \ge 0$, with the usual Čech differential.

Then we have

$$H^{m}(U/F_{+}^{\times},\mathscr{F})=H^{m}(C^{\bullet}(\mathfrak{U}/F_{+}^{\times},\mathscr{F})).$$

Shintani Generating Class

We fix a numbering $I = \{\tau_1, \dots, \tau_g\}$. For any $\alpha = (\alpha_1, \dots, \alpha_g) \in \mathscr{A}_{\mathfrak{a}}^g$, let $\operatorname{sgn}(\alpha)$ be the sign of the determinant of the matrix $(\alpha_i^{\tau_j})$. Then we may see that

$$(\operatorname{sgn}(\alpha)\mathcal{G}_{\sigma_{\alpha}}^{\mathfrak{a}}(t)) \in \left(\prod_{\mathfrak{a} \in \mathfrak{I}} \prod_{\alpha \in \mathscr{A}_{\mathfrak{a}}^{g}}^{\operatorname{alt}} \Gamma(U_{\alpha_{1}}^{\mathfrak{a}} \cap \cdots \cap U_{\alpha_{g}}^{\mathfrak{a}}, \mathscr{O}_{\mathbb{T}^{\mathfrak{a}}})\right)^{F_{+}^{\times}}.$$

Theorem (B.–Hagihara–Yamada–Yamamoto)

The functions $(sgn(\alpha)\mathcal{G}_{\sigma_{\alpha}}(t))$ define a cocycle, and form a canonical class

$$\mathcal{G}(t) = (\operatorname{sgn}(\alpha)\mathcal{G}_{\sigma_{\alpha}}^{\mathfrak{a}}(t)) \in H^{g-1}(U/F_{+}^{\times}, \mathcal{O}_{\mathbb{T}}),$$

which we call the Shintani Generating Class.

The generating functions paste together to form a single canonical class!

Main Theorem

The differential $\partial := \prod_{i=1}^g \partial_{\tau}$ induces an homomorphism

$$\partial: H^{g-1}(U/F_+^{\times}, \mathscr{O}_{\mathbb{T}}) \to H^{g-1}(U/F_+^{\times}, \mathscr{O}_{\mathbb{T}}).$$

 ∂ is given by $\partial(t^{\alpha}) = N(\alpha)t^{\alpha}$ for any $\alpha \in \mathfrak{a}$ on $U^{\mathfrak{a}}$.

Theorem (B.-Hagihara-Yamada-Yamamoto)

For any integer $k \ge 0$ and any torsion point $\xi \ne 1$ in $\mathbb{T}^{\mathfrak{a}}(\overline{\mathbb{Q}})$, we have

$$H^{g-1}(U/F_{+}^{\times}, \mathcal{O}_{\mathbb{T}}) \quad \ni \quad \partial^{k}\mathcal{G}(t)$$

$$\downarrow i_{\xi}^{*} \qquad \qquad \downarrow$$

$$\Delta \cong \mathbb{Z}^{g-1} \qquad H^{g-1}(\xi \Delta/\Delta, \mathcal{O}_{\xi \Delta}) = \mathbb{Q}(\xi) \quad \ni \quad \partial^{k}\mathcal{G}(t)|_{t=\xi} = \mathcal{L}(\xi \Delta, -k),$$

where $i_{\xi}: \xi \Delta \to U$ is equivariant with respect to the action of Δ .

Case g=1 is exactly the Theorem (Classical)

We fix embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$. We let K be a finite extension of \mathbb{Q}_p containing the Galois closure of F. Let $A := O_K[t^\alpha \mid \alpha \in \mathfrak{a}]$, $\widehat{\mathbb{T}}_K^{\mathfrak{a}} := \operatorname{Sp}(A \widehat{\otimes} K)$ be the affinoid space associated to $(A \widehat{\otimes} K)$, and $\widehat{U}_{\alpha K}^{\mathfrak{a}} := \operatorname{Sp}(A[(t^\alpha - 1)^{-1}]\widehat{\otimes} K) = \widehat{\mathbb{T}}_K^{\mathfrak{a}} \setminus]t^\alpha = 1[$. We let

$$\widehat{U}_{K}^{\mathfrak{a}} := \bigcup_{\alpha \in \mathscr{A}_{\mathfrak{a}}} \widehat{U}_{\alpha K}^{\mathfrak{a}} \subset \widehat{\mathbb{T}}_{K}^{\mathfrak{a}}, \qquad \widehat{U}_{K} := \coprod_{\alpha \in \mathfrak{I}} \widehat{U}_{K}^{\mathfrak{a}} \subset \widehat{\mathbb{T}}_{K}.$$

Proposition (B.-Hagihara-Yamada-Yamamoto)

For $a \in \mathcal{I}$, $k \in \mathbb{Z}$, and cone σ , we have

$$\mathsf{Li}_{k,\sigma}^{\mathfrak{a},(p)}(t) \coloneqq \sum_{\substack{\alpha \in \widehat{\sigma} \cap \mathfrak{a} \\ \alpha \in (\mathfrak{a} \otimes \mathbb{Z}_p)^{\times}}} t^{\alpha} \mathsf{N}(\alpha)^{-k} \in \Gamma(\widehat{U}_{\alpha K}^{\mathfrak{a}}, \mathcal{O}_{\widehat{U}_{\alpha K}^{\mathfrak{a}}}),$$

where $(\mathfrak{a} \otimes \mathbb{Z}_p)^{\times}$ is the set of generators of the $(O_F \otimes \mathbb{Z}_p)$ -module $\mathfrak{a} \otimes \mathbb{Z}_p$.

We fix a numbering $I = \{\tau_1, \dots, \tau_g\}$. For any $\alpha = (\alpha_1, \dots, \alpha_g) \in \mathscr{A}_{\mathfrak{a}}^g$, let $\operatorname{sgn}(\alpha)$ be the sign of the determinant of the matrix $(\alpha_i^{\tau_j})$. Then we may see that

$$(\operatorname{sgn}(\alpha)\operatorname{Li}_{k,\sigma}^{\mathfrak{a},(p)}(t)) \in \left(\prod_{\mathfrak{a} \in \mathfrak{I}} \prod_{\alpha \in \mathscr{A}_{\mathfrak{a}}^{g}}^{\operatorname{alt}} \Gamma(\widehat{U}_{\alpha_{1}K}^{\mathfrak{a}} \cap \cdots \cap \widehat{U}_{\alpha_{g}K}^{\mathfrak{a}}, \mathscr{O}_{\widehat{\mathbb{T}}_{K}^{\mathfrak{a}}})\right)^{F_{+}^{\times}}.$$

Theorem (B.-Hagihara-Yamada-Yamamoto)

The functions $(\operatorname{sgn}(\alpha)\operatorname{Li}_{k,\sigma}^{\mathfrak{a},(p)}(t))$ define a cocycle, and form a canonical class

$$\operatorname{Li}_{k}^{(p)}(t) = (\operatorname{sgn}(\alpha) \operatorname{Li}_{k,\sigma}^{\mathfrak{a},(p)}(t)) \in H^{g-1}(\widehat{U}_{K}/F_{+}^{\times}, \mathscr{O}_{\widehat{\mathbb{T}}_{K}}).$$

We will prove it's relation to special values of p-adic L-functions

Theorem (B.–Hagihara–Yamada–Yamamoto)

The functions $(\operatorname{sgn}(\alpha)\operatorname{Li}_{k,\sigma}^{\mathfrak{a},(p)}(t))$ define a cocycle, and form a canonical class

$$\operatorname{Li}_{k}^{(p)}(t) = (\operatorname{sgn}(\alpha) \operatorname{Li}_{k,\sigma}^{\mathfrak{a},(p)}(t)) \in H^{g-1}(\widehat{U}_{K}/F_{+}^{\times}, \mathscr{O}_{\widehat{\mathbb{T}}_{K}}).$$

One can evaluate the polylogarithm at any torsion point ξ in \widehat{U}_K^{α} .

$$H^{g-1}(\widehat{U}_{K}/F_{+}^{\times}, \mathcal{O}_{\mathbb{T}}) \quad \ni \quad \operatorname{Li}_{k}^{(p)}(t)$$

$$\downarrow^{i_{\xi}^{*}} \qquad \qquad \downarrow^{i_{\xi}^{*}}$$

$$\Delta \cong \mathbb{Z}^{g-1} \qquad H^{g-1}(\xi \Delta/\Delta, \mathcal{O}_{\xi \Delta}) = K(\xi) \quad \ni \quad \operatorname{Li}_{k}^{(p)}(t)|_{t=\xi}$$

where $i_{\xi}: \xi \Delta \to \widehat{U}_{K}$ is equivariant with respect to the action of Δ .

p-adic L-functions

Theorem (Barsky, Cassou-Nougès, Deligne-Ribet)

Let $g \neq (1)$ be a nonzero fractional ideal of F, and let $\chi \colon \operatorname{Cl}_F^+(\mathfrak{g}) \to \mathbb{C}^\times$ be a finite primitive Hecke character. There exists an analytic function $L_p(\chi, s)$ for $s \in \mathbb{Z}_p$ satisfying

$$L_{p}(\chi, -k) = \left(\prod_{\mathfrak{p}|(p)} \left(1 - \chi \omega_{p}^{-k-1}(\mathfrak{p}) N \mathfrak{p}^{k}\right)\right) L\left(\chi \omega_{p}^{-k-1}, -k\right)$$

for any integer $k \ge 0$, where ω_p denotes the composition of the norm map with the Teichmüller character.

Action of $Cl_F^+(\mathfrak{g})$ on $\mathscr{T}_0[\mathfrak{g}]$.

For any integral ideal $\mathfrak{b} \subset \mathcal{O}_F$, the natural inclusion $\mathfrak{ab} \subset \mathfrak{a}$ for $\mathfrak{a} \in \mathfrak{I}$ induces a map $\rho(\mathfrak{b}) \colon \mathbb{T}^{\mathfrak{a}} \to \mathbb{T}^{\mathfrak{ab}}$. This induces a map

$$\rho(\mathfrak{b})\colon \mathbb{T} \to \mathbb{T},$$

which is compatible with the action of F_{+}^{\times} . Let

$$\mathscr{T}_0[\mathfrak{g}] := \left(\coprod_{\mathfrak{a} \in \mathfrak{I}} \mathbb{T}_0^{\mathfrak{a}}[\mathfrak{g}]\right) / F_+^{\times},$$

where $\mathbb{T}_0^{\mathfrak{a}}[\mathfrak{g}]$ is the set of primitive \mathfrak{g} -torsion points in $\mathbb{T}^{\mathfrak{a}}(\mathbb{Q})$. Then ρ gives an action of $\mathsf{Cl}_F^+(\mathfrak{g})$ on $\mathscr{T}_0[\mathfrak{g}]$ which is simply transitive. For any $\xi \in \mathbb{T}^{\mathfrak{a}}[\mathfrak{g}]$ and integral ideal \mathfrak{b} prime to \mathfrak{g} , we let $\xi^{\mathfrak{b}} \coloneqq \rho(\mathfrak{b})(\xi) \in \mathbb{T}^{\mathfrak{ab}}[\mathfrak{g}]$.

Result concerning *p*-adic *L*-functions

Theorem (B.-Hagihara-Yamada-Yamamoto)

Suppose g does not divide any power of (p), and let ξ be an arbitrary primitive g-torsion point in $\mathbb{T}^{\mathfrak{a}}(\overline{\mathbb{Q}})$. Then for any integer $k \in \mathbb{Z}$, we have

$$L_{p}(\chi \omega_{p}^{1-k}, k) = \frac{g(\chi, \xi)}{Ng} \sum_{\mathfrak{b} \in Cl_{F}^{+}(\mathfrak{g})} \chi(\mathfrak{b})^{-1} \operatorname{Li}_{k}^{(p)}(t)|_{t=\xi^{\mathfrak{b}}},$$

where $g(\chi, \xi) := Ngc_{\chi}(\xi) = \sum_{\beta \in \mathfrak{a}/\mathfrak{ag}} \chi_{\mathfrak{a}}(\beta)\xi(-\beta)$.

Conclusion

- ► We newly defined the Lerch zeta function for totally real fields.
- ► We constructed the Shintani generating class as a canonical class in cohomology, and proved that it generates *all* non-positive special values of Lerch zeta functions for *all* nontrivial finite characters.
- ► We constructed the *p*-adic polylogarithm and gave its relation to the special values of *p*-adic Hecke *L*-functions for totally real fields.

Conjectures/Questions

- \blacktriangleright We conjecture that the specialization to torsion points of the equivariant plectic polylogarithm for \mathbb{T} should be related to positive values of our Lerch zeta function.
- We conjecture that the syntomic relalization of the equivariant plectic polylogarithm for \mathbb{T} should be expressed using our p-adic polylogarithm $\operatorname{Li}_k^{(p)}(t)$.
- ► The stack $\mathcal{T} := \mathbb{T}/F_+^{\times}$ seems to contain important arithmetic information, somewhat similar to information possessed by elliptic curves with complex multiplication in the imaginary quadratic case. What does this mean?