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Some Coleman functions

In Q2,



Some Coleman functions

in the 2-adics.
Actually, also true in Q, for all p.
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Some Coleman functions

Right hand side can be defined via

1 [7dt/t  [5(dt/t)(dt/(1— t))]
Mg = |0 1 JZdt/(1—1t)

0 0 1

where M is the holonomy of the rank 3 unipotent connection on
P\ {0,1,00} given by the connection form

0 dt/t 0
— {0 0 dt/(1- t)]
0 O 0



Some Coleman functions

Locally, we are solving the equations

dl; = dt/(1—t); dly = l1dt/t.

Given a unipotent connection (V/, V) and two points
x,y € P1\ {0, 1,00}(Qp)

(possibly tangental), there is a canonical isomorphism

MLV, V) VRDY=" — V(7)Y

determined by the property that it's compatible with Frobenius
pull-backs. This is the holonomy matrix above.



Some Coleman functions

More generally, the k-logarithm

l(2) = /Oz(df/t)(df/t) - (dt/t)(dt/(1 - 1))

is defined as the upper right hand corner of the holonomy matrix
arising from the (k + 1) x (k 4+ 1) connection form

[0 dt/t O o ... 0 0
0 0 dt/t 0 ... O 0
0 0 0 dt/t 0 0
: dt/t 0
0 O 0 0 0 dt/(1-1t)
0 O 0 0 0 0




Some Coleman functions

Coleman derived the following functional equations:

0(2) + (~1) Lz = %11 log(2):

Dy(z) = —D2(z*1);
Dy(z) = —Dy(1 — z);

where
Da(2) = £a(2) + (1/2) log(z) log(1 — 2).
(The upper right hand corner of the log of the holonomy matrix.)



Some Coleman functions

From this, we get

Dy(=1) = =Dx(1/(-1)) =0,

and
Dy(2) = —Dy(1—2) =0.
But
D>(2) = £2(2) + (1/2) log(2) log(—1) = £2(2).
Also,

D(1/2) = —Ds(2) = 0.



Some Coleman functions

Note:

{-1,2,1/2}

are exactly the 2-integral points of P!\ {0, 1, 00}, and one can give
a global proof of the vanishing.

Use, in some sense, the arithmetic geometry of

Spec(Z) \ {2, p, 00}



Some Coleman functions

[Ishai Dan-Cohen and Stefan Wewers]

Let
D4(z) = ((3)la(z) + (8/7)[Iog3 2/24 + 04(1/2)/ log 2] log(z)¢3(z2)

+[(4/21)(log®2/24 + £4(1/2)/ log 2) + ¢(3)/24] log®(2) log(1 — 2).

= ((3)l4(2) + Alog(z)l3(z) + Blog*(z) log(1 — 2).



Some Coleman functions

Then
[P*\ {0,1,00}](2[1/2]) C {D2(2) = 0, Da(2) = 0}
and numerical computations for p < 29 indicate equality.

The inclusions above are examples of non-abelian explicit
reciprocity laws.

Remark: The extra equation is definitely necessary in general, since,
for example, v/5 € Z11, and

~1++5 3+v6,  _ 1+£+5

Do(————) = D




Diophantine Geometry: Main Local-to-Global Problem

Given number field F and X/F smooth variety (with an integral

model), locate
!

X(F)c X(ar) = [T X(F)

v

The question is

How do the global points sit inside the local points?

In fact, there is a classical answer for X = G,,, in which case

X(F)=F* X(F,)=F,.

Problem becomes that of locating

F* C Af.



Diophantine Geometry: Abelian Class Field Theory

We have the Artin reciprocity map

rec = H rec, : Af —— GEb

and the reciprocity law, which says that the composed map
F*—— Af — G

is zero.

That is, the reciprocity map gives a defining equation for

Gm(F) C Gm(AF).



Diophantine Geometry: Non-Abelian Reciprocity?

We would like to generalize this to other equations by way of a
non-abelian reciprocity law.

Start with a rather general variety X for which we would like to
understand
X(F)

via

recNA

X(F) — X(Af) = ‘ some target with base-point 0

in such way that
M =o.

becomes an equation for X(F).



Diophantine Geometry: Non-Abelian Reciprocity

Notation:

F: number field.

Gr = Gal(F/F).

G, = Gal(F,/F,) for a place v of F.
S: finite set of places of F.

Afg: finite Adeles of F

Aﬁ: finite S-integral adeles of F.

Gs = Gal(F° /F), where F* is the maximal extension of F
unramified outside S.

[Is: product over non-Archimedean places in S.

[T° H*(G,, A): product over non-Archimedean places in S and
‘unramified cohomology’ outside of S.



Diophantine Geometry: Non-Abelian Reciprocity

X: a smooth variety over F.
Fix base-point b € X(F) (sometimes tangential).

A= 771()_(7 b)(2)7

pro-finite prime-to-2, étale fundamental group of
X=X XSpec(F) Spec(F)
with base-point b.
Al

lower central series with Altl = A.

A, =A/AIH

T, = Al Al

Denote by AM (A, )M, TM pro-M quotients for various finite sets
of prime M.



Diophantine Geometry: Non-Abelian Reciprocity

[Coh]
For each n and M sufficiently large, TM is torsion-free.
This implies
| /
HY(GE, TY) == J] H'(G.. T")
is injective.

Assuming [Coh], we get a non-abelian class field theory with
coefficients in the nilpotent completion of X.



Diophantine Geometry: Non-Abelian Reciprocity
This consists of a filtration
X(Af) = X(Af)1 D X(Af)? D X(Ar)2 D X(Af)3
D X(AF)3 D X(Ap)3D -+
and a sequence of maps
rech : X(Af)y — &p(X)

rec™ : X(Ap)M — &1TH(X)

to a sequence &,(X), 8™1(X) of profinite abelian groups in such
a way that

X(Ap)™ = rec;1(0)

and
X(AF)ns1 = (rect™)74(0).



Diophantine Geometry: Non-Abelian Reciprocity

- rec; 1(0) C(rect) T (0)C rec;t(0) € X(AF)




Diophantine Geometry: Non-Abelian Reciprocity
The &,(X) are defined as
&,(X) =

Hom[H(GFr, D(T,)),Q/Z]

where
D(T,) = ||.m>Hom(Tn,um).
BIH(X) = limllim ST (T,)]
M S
where

/
SHIE(Tply) = Ker[H(GZ, Tply) — []HA(Gv, Th10)):



Diophantine Geometry: Non-Abelian Reciprocity

When X = G,,, then
®,(X)=0

for n > 2,
67 (X)=0

for all n, and
&1 = Hom[H(Gr, D(Z(1)®)), Q/Z]
= Hom[H'(GF, [Q/Z]?),Q/Z] = [P

In this case, rec; reduces to the prime-to-2 part of the usual
reciprocity map.



Diophantine Geometry: Non-Abelian Reciprocity

The reciprocity maps are defined using the local period maps
j¥: X(F,)) — HY(G,,D);
X = [7T§2)()_<; b, x)].
Because the homotopy classes of étale paths
ﬂgz)()_(; b, x)

form a torsor for A with compatible action of G,, we get a
corresponding class in non-abelian cohomology of G, with
coefficients in A.



Diophantine Geometry: Non-Abelian Reciprocity

These assemble to a map
j° X(AF) — [[H'(G, ),
which comes in levels

i X(AF) — J[H"(Gu. 2).
Also have pro-M versions

!
i X(AF) — J[H"(Gv. A))

and integral versions

S
e X(AR) — J[H"(Go. ).



Diophantine Geometry: Non-Abelian Reciprocity

To indicate the definition of the reciprocity maps, will just define
pro-M versions on X(A?) and assume that

HA(GE. T %5 T HA (G, T
S
are injective.

In general, one needs first to work with a pro-M quotient for a finite
set of primes M and S D M. Then take a limit over S and M.



Diophantine Geometry: Non-Abelian Reciprocity

The first reciprocity map is just defined using
x € X(AF) = di(j*(x));
where
loc”

D1 : [[H (G, AY) — ] HY(G.. D(aM)) ==~
S S

HY(GE, D(AY)),

is obtained from Tate duality and the dual of localization.



Diophantine Geometry: Non-Abelian Reciprocity

To define the higher reciprocity maps, we use the exact sequences
n+1
0— Hl(GFv Tn+1) - Hl(GFvAn+1) . Hl(G,:f,A,,)

nH H2(GF’ n+1)

for non-abelian cohomology and Poitou-Tate duality stating that

HY(GE, M) — [T HM(Gy, Ti) 225 HY(Gs, D(TN))Y
S

is exact.



Diophantine Geometry: Non-Abelian Reciprocity

We proceed as follows:
recf (x) = &2 o loc™* (ja(x)) € LLIZ(T)
and

reca(x) = Da(loc((pf)~H(loc™* (j1(x)))) —j2(x)) € H'(Gs, D(T3"))".



Diophantine Geometry: Non-Abelian Reciprocity

HYGE, T") — [ H' (G, T2)> ko
S

| |

[p7] M (loc ™ (j2)) €H(GE, AY') = [[ H'(Gv, AY)3 2
S

| |

IOC_l(j]_) € Hl(GI:Sa TlM) — H Hl(GVa TlM)B.jl
S

ka(x) := loc[[p3] ! (loc ™ (j1(x)))] — ja(x)
— Da(ka(x)) € HY(GZ, D(TM))Y



In general,

rect ™ (x) = Spy1 0 loc™ (jn(x)) € TIE(TM,)

and
recp+1(x)

= D((loc(py 1) " (jn(x))) — Jnt1(x)) € H(Gs, D(T3"))".



Diophantine Geometry: Non-Abelian Reciprocity

Put
X(AF)oo = ﬂﬁ):IX(AF)n.

Theorem (Non-abelian reciprocity)

X(F) € X(AF)oo.



Diophantine Geometry: Non-Abelian Reciprocity

Remark: When F = Q and p is a prime of good reduction, suppose
there is a finite set T of places such that

HY(GE,Ap) — ] H'(G., A%)
veT

is injective. Then the reciprocity law implies finiteness of X(F).



Non-Abelian Reciprocity: idea of proof

X(F) ———— X(&f)

jﬁl e

[
HY(GE, AM) 25 T HH (G, A

Hl(Glg?AnM—i-l

g

X(F) 2"~ H'(GE, M)



Non-Abelian Reciprocity: ldea of proof

If x € X(AF) comes from a global point x8 € X(F), then there will

be a class
JjE(x8) € HY(GZ, Al

for every n corresponding to the global torsor
wft’M()_(; b, x8).
That is, j5 (x8) = Iocfl(j,’,"c(x)),
Ont105 (x5)) = 0
and
loc[(pp ™) (loc™* Un(x))] = jn+1(x) = loc(jf,1) = Jnt1(x) = 0

for every n.



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Let
Pr, : X(Ap) — X(F.,)

be the projection to the v-adic component of the adeles.

Define
X(Fy)n = Pr,(X(AF)n)

and
X(F)ML = Pr,(X(Ap)™H).

Thus,
X(Fv) :X(Fv)l D) X(Fv)i > X(Fv)2 DR X(Fv)oo D) X(F)

Conjecture: Let X/Q be a projective smooth curve of genus at
least 2. Then for any prime p of good reduction, we have



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Can consider more generally S-integral points on affine hyperbolic
X as well where we get an induced filtration

X(AZ) D X(AR)T D X(AR)2 D X(AR)3 > -+
By projecting to X(OF,) for v ¢ S, get a flitration
X(OF,) > X(OF,)31 2 X(OF,)s2 2 X(OF, )52 2 -+ -

and
X(OFV)S,OO = ﬁn)<(OFV)S,n-



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Conjecture: Let X/Q be an affine smooth curve with non-abelian
fundamental group and S a finite set of primes. Then for any prime
p ¢ S of good reduction, we have

X(Z[1/5]) = X(Zp)s 00-

These give us conjectural methods to ‘compute’

X(Q) € X(Qp)

or
X(Z[1/S]) € X(Z,).



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Whenever we have an element
kn € Hl(GT’ Hom(TrIJ\/IvQP(l)))y

we get a function

recn kn

X(Ag)s — HYGr,D(TM)Y —+ Q,

that kills X(Q) C X(Ag)n-

Need an explicit reciprocity law that describes the image

X(Qp)n-



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Computations all rely on the theory of
U(X, b),

the Qp-pro-unipotent fundamental group of X with Galois action,
and the diagram

X(Q) X(Qp)
jE Bl >

locP

~D
H}(GT, Un) —+ H}(Gp, Up) — UPR/FO



A non-abelian conjecture of Birch and Swinnerton-Dyer type

The key point is that the map
X(Qp) 22+ UPR/FC
can be computed explicitly using iterated integrals, and

X(Q) € X(Qp)n € Uiy "M lIm(D o locf)].



Explicit reciprocity laws: Examples

[Jennifer Balakrishnan, Ishai Dan-Cohen, Stefan Wewers, M.K.] and
[Dan-Cohen, Wewers]

Let X = P\ {0,1,00}. Then X(Z[1/2]) = {2,-1,1/2}.

X(ZP){2}72 C Unm{z | log(z) = nlog(2), log(1 — z) = mlog(2)}.

X(Zp){z},3
C [Um,n{z | log(z) = nlog(2),log(1—z) = mlog(2)}|n{D2(z) = 0}.



Explicit reciprocity laws: Examples

Probably,
X(Zp){z}A = X(Zp){2},3'

Also,
X(Zp){z},s

C [Um,n{z | log(z) = nlog(2),log(1 — z) = mlog(2)}]
N{Dy(z) = 0} N {D4(2) = 0}.

Numerically, this appears to be equal to {2,—1,1/2}.



Explicit reciprocity laws: Examples

[Balakrishnan, Dan-Cohen, Wewers, K.]

Let X = E'\ O where E is a semi-stable elliptic curve of rank 0 and
[I(E)(p)| < oo

log(2) = /,, (dx/y).

(b is a tangential base-point.)
Then

X(Zp)2 = {z € X(Z,) | log(2) = 0} = E(Z,)[tor] \ O.



Explicit reciprocity laws: Examples

Now examine the inclusion

X(Z) € X(Z,)s.

Let

Do(2) = /b " (dx/y)(xelx/y).



Explicit reciprocity laws: Examples

Let T be the set of primes of bad reduction. For each / € T, let
/V/ = Ol’d/(Ag),

where Ag is the minimal discriminant.
Define a set

W, = {(n(N/ — n)/2N/) |og/ | 0<n< N/},

and for each w = (w))jes € W :=[],cs W, define

Iwll = w.

leS



Explicit reciprocity laws: Examples

Theorem
Suppose E has rank zero and that Il1g[p>] < oco. With
assumptions as above

X(Zp)3 C UpewV¥(w),
where

V(w) = {z € X(Zp) |log(z) =0, Dx(z) = [[w]]}.

Of course,
X(Z) c X(Zp)s3,

but depending on the reduction of E, the latter could be made up
of a large number of W(w), creating potential for some discrepancy.



Explicit reciprocity laws: Examples

In fact, so far, we have checked
X(Z) = X(Zp)3

for the prime p = 5 and 256 semi-stable elliptic curves of rank zero.



Explicit reciprocity laws: Examples

Cremona label

number of ||w||-values

1122m1
1122m2
1122m4
125422
1302d2
1506a2
1806h1

2442h1
2442h2
2706d2
2082j1

2982j2

3054b1

128
384
84
140
96
112
120
78
84
120
160
140
108




Explicit reciprocity laws: Examples

Hence, for example, for the curve 1122m2,
y? 4+ xy = x> — 41608x — 90515392

there are potentially 384 of the W(w)'s that make up X(Zp)s.

Of these, all but 4 end up being empty, while the points in those
W(w) consist exactly of the integral points

(752, —17800), (752, 17048), (2864, —154024), (2864, 151160).



Explicit reciprocity laws: Examples

[Jennifer Balakrishnan, Netan Dogra, Stefan Mueller-Stach, Jan
Tuitman, Jan Vonk]

XS (N) = X(N)/CF(N),
where X(N) is the compactification of the moduli space of pairs
(E.¢: E[N] = (Z/N)?),
and C;(N) C GLy(Z/N) is the normaliser of a split Cartan
subgroup.

Bilu-Parent-Rebolledo had shown that X" (p)(Q) consists entirely
of cusps and CM points for all primes p > 7, p # 13. They called
p = 13 the ‘cursed level'.



Explicit reciprocity laws: Examples

Theorem (BDMTV)

X (13)(Q) = X, (13)(Qur)s.

This set consists of 7 rational points, which are the cusp and 6 CM
points.

This concludes an important chapter of a question of Serre:

Find an absolute constant A such that
G — Aut(E[p])

is surjective for all non-CM elliptic curves E/Q and primes p > A.



Explicit reciprocity laws: Examples

Careful computation of the lower horizontal map, which is algebraic:

X(Q) X(Qp)
SO,
. . %
H )4 N
lock 1 b

H}(G-ﬁ Un) - Hf(GP7 Un) — UnDR/FO

The right vertical map is analytic and expressed in terms of iterated
integrals.

Defining equation for Im(locl) pulls back to analytic defining
equation for rational points.



Explicit reciprocity laws: Examples

In fact, in this case, there is a pushout:

0 U2 U8 U> bh

0 Qp(1) - Ws Ur

induced by a polarisation

U?/UP ~ N2Us /Qp(1) — Qp(1)

orthogonal to the Weil pairing. Recall that U; ~ V, = T,Jx ® Q,.



Explicit reciprocity laws: Examples

X(Q)

X(Qp)

N\

H}(GT, Wa) — H}(Gp, Wa) — WYR/F°




Explicit reciprocity laws: Examples
In fact, the target can be identified with a space of mixed
extensions:
E>E'> E?,
such that

Ey ~ Qp(1), E'/E*> > V,, E/E' ~ Q).

Thus, they are mixtures of
0— Q1) — E' — V, —0

and
0— V, — E/E> — Q, — 0,

coming up in Nekovar's theory of height pairings

H (V) x Hf (V) — Q.



Explicit reciprocity laws: Examples

We give a general idea of how this works with a simpler example:
X=E\O0

where E/Q is an elliptic curve of rank 1 with square-free minimal
discriminant.

We have
h : E(@) - QP7

the p-adic quadratic height.
Thus, if y € E(Q) is non-torsion, then
ce := h(y)/log?(y)

is independent of y.



Explicit reciprocity laws: Examples

But log is an analytic function on E(Qp), while h has a

decomposition
h=hp+ > hy,
v#£p
with
V4
hp(z) = /b af + Cg,
where
Ce = (a2 + 4a2)/12 — Eisy(E, ) /12,
« is an integral invariant differential, and 8 = xa.

But if z is integral, then



Explicit reciprocity laws: Examples

Thus, the equation

h(z)/log?(z) = ce = h(y)/log*(y)

becomes ;
/ o+ (Ce — cg)log?(z) =0,
b

a defining equation for integral points.

The case of X;7(13) is a substantially more complicated version of
this argument using relation between the functions

h(z), log;(z)log;(2)

for1<i<j<3.



Some speculations on rational points and critical points

Actually, interested in

Im(H'(Gr, U))n [ HF(G, V) C [ HY(Gu, ),
veT veT
where
H}(G,, U) C HY(G,, U)

is a subvariety defined by some integral or Hodge-theoretic
conditions.

In order to apply symplectic techniques, replace U by

T*(1)U = (LieU)*(1) % U.



Rational points and critical points

Then
I H(G.. T*(1)V)

veT

is a symplectic variety and

Im(H(Gr, T*(1)U)),  [] HHG., T*(1)V)

veT

are Lagrangian subvarieties.
Thus, the derived intersection
Im(H*(Gr, T*(1)U))n ] HHG., T* (1))
veT

has a [—1]-shifted symplectic structure.

Should be the critical set of a function.



