K₂ FOR BIQUATERNION ALGEBRAS

A. SUSLIN (NORTHWESTERN UNIVERSITY)

Let D/F be a central division algebra. For any finite splitting field E/F of D we have a canonical homomorphism $K_i(E) \xrightarrow{\lambda_E} K_i(D)$. The quotient of $K_i(D)$ modulo the sum of images of all $K_i(E)$ is denoted $\overline{K}_i(D)$. Note that $\overline{K}_1(D)$ is always trivial. The vanishing of $\overline{K}_2(D)$ for algebras of squarefree degree was established long time ago by Merkurjev and myself. The proof used the classical theorem of Wang concerning vanishing of SK_1 for such algebras. Since SK_1 for biquaternion division algebras is generically non zero it seems possible that \overline{K}_2 for such algebras is non trivial as well.

The subject of this talk is to relate the group \overline{K}_2 of a biquaternion algebra to Galois cohomology.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

1