K_2 FOR BIQUATERNION ALGEBRAS

A. Suslin (Northwestern University)

Let D/F be a central division algebra. For any finite splitting field E/F of D we
have a canonical homomorphism $K_i(E) \xrightarrow{\lambda_{E/F}} K_i(D)$. The quotient of $K_i(D)$ modulo
the sum of images of all $K_i(E)$ is denoted $\overline{K_i}(D)$. Note that $\overline{K_1}(D)$ is always
trivial. The vanishing of $\overline{K_2}(D)$ for algebras of squarefree degree was established
long time ago by Merkurjev and myself. The proof used the classical theorem of
Wang concerning vanishing of SK_1 for such algebras. Since SK_1 for biquaternion
division algebras is generically non zero it seems possible that $\overline{K_2}$ for such algebras
is non trivial as well.

The subject of this talk is to relate the group $\overline{K_2}$ of a biquaternion algebra to
Galois cohomology.