Modular forms in high-energy physics

Francis Brown
All Souls College, Oxford

Abel Symposium
27th May 2016
I. Particle physics
Collision of beam particles

Test the laws of physics by analysing particle tracks.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman \textit{amplitude} is a complex probability assigned to G.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman *amplitude* is a complex probability assigned to G.
General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.

Feynman *amplitude* is a complex probability assigned to G.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman *amplitude* is a complex probability assigned to G.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.
Feynman amplitude is a complex probability assigned to G.
General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman *amplitude* is a complex probability assigned to G.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman \textit{amplitude} is a complex probability assigned to G.
The blue line (background) requires calculating a huge number of Feynman amplitudes.
II. Graphs and Numbers
Let $G = (V_G, E_G)$ be a connected graph. The graph polynomial

$$\Psi_G \in \mathbb{Z}[\alpha_e, e \in E(G)]$$

is a sum over spanning trees T of G

$$\Psi_G = \sum_{T \subset G} \prod_{e \notin T} \alpha_e$$
Let $G = (V_G, E_G)$ be a connected graph. The graph polynomial

$$\Psi_G \in \mathbb{Z}[\alpha_e, e \in E(G)]$$

is a sum over spanning trees T of G

$$\Psi_G = \sum_{T \subset G, e \notin T} \prod_{e \in E(G)} \alpha_e$$

A tree $T \subset G$ is spanning if $V_T = V_G$.
Example

\[\psi_G = ? \]
Example

$\psi_G = \alpha_3 \alpha_4$
Example

\[\Psi_G = \alpha_3\alpha_4 + \alpha_2\alpha_4 \]
In general, G is homogeneous of degree h_G ('loop number').

Physically relevant graphs have vertices of degree ≤ 4. (G in $\{1, 2, 3, 4\}$).

\[
\psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4
\]
In general, G is homogeneous of degree h_G ('loop number').

Physically relevant graphs have vertices of degree ∇. ('G in ∇').

$$\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3$$
Example

\[\psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3 \]
Example

\[\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3 \]

In general, \(\Psi_G \) is homogeneous of degree \(h_G \) ('loop number').

\[\text{deg} \Psi_G = h_G \quad N_G = \#E(G) \]
\[\psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3 \]

In general, \(\psi_G \) is homogeneous of degree \(h_G \) (‘loop number’).

\[
\text{deg } \psi_G = h_G \quad \quad N_G = \#E(G)
\]

Physically relevant graphs have vertices of degree \(\leq 4 \). (‘\(G \) in \(\phi^4 \)’).
Feynman integrals

For convergence, assume

- $N_G = 2h_G$
- $N_\gamma > 2h_\gamma \text{ for all } \gamma \subset G.$
Feynman integrals

For convergence, assume

- $N_G = 2h_G$
- $N_\gamma > 2h_\gamma$ for all $\gamma \subsetneq G$.

The *residue* is the convergent integral

$$I_G = \int_\sigma \frac{\Omega_G}{\Psi^2_G} \in \mathbb{R}$$
Feynman integrals

For convergence, assume

- \(N_G = 2h_G \)
- \(N_\gamma > 2h_\gamma \) for all \(\gamma \subsetneq G \).

The *residue* is the convergent integral

\[
I_G = \int_\sigma \frac{\Omega_G}{\Psi_G^2} \quad \in \quad \mathbb{R}
\]

where

\[
\Omega_G = \sum_{i=1}^{N_G} (-1)^i \alpha_i d\alpha_1 \wedge \ldots \wedge \hat{d\alpha_i} \wedge \ldots d\alpha_{N_G}
\]
Feynman integrals

For convergence, assume

- \(N_G = 2h_G \)
- \(N_\gamma > 2h_\gamma \) for all \(\gamma \subset G \).

The *residue* is the convergent integral

\[
I_G = \int_\sigma \frac{\Omega_G}{\Psi_G^2} \quad \in \quad \mathbb{R}
\]

where

\[
\Omega_G = \sum_{i=1}^{N_G} (-1)^i \alpha_i d\alpha_1 \wedge \ldots \wedge \widehat{d\alpha_i} \wedge \ldots d\alpha_{N_G}
\]

\[
\sigma = \{(\alpha_1 : \ldots : \alpha_{N_G}) \in \mathbb{P}^{N_G-1}(\mathbb{R}) \text{ such that } \alpha_i \geq 0\}
\]
We obtain a map

\[I : \{\text{convergent graphs in } \phi^4\} \rightarrow \mathbb{R} \]
We obtain a map

\[I : \{ \text{convergent graphs in } \phi^4 \} \rightarrow \mathbb{R} \]

Example:
We obtain a map

\[I : \{ \text{convergent graphs in } \phi^4 \} \rightarrow \mathbb{R} \]

Example:

\[\Psi_G = \alpha_1 + \alpha_2 \]
Graphs and numbers

We obtain a map

\[I : \{ \text{convergent graphs in } \phi^4 \} \rightarrow \mathbb{R} \]

Example:

\[
\Psi_G = \alpha_1 + \alpha_2
\]

\[
I_G = \int_{\sigma} \frac{\alpha_2 d\alpha_1 - \alpha_1 d\alpha_2}{(\alpha_1 + \alpha_2)^2} = \int_{\alpha_1 \geq 0} \frac{d\alpha_1}{(\alpha_1 + 1)^2} = 1
\]
The Zoo

\[I_G : \quad 6\zeta(3) \quad 20\zeta(5) \quad 36\zeta(3)^2 \quad N_{3,5} \]
$I_G : \quad 6\zeta(3) \quad 20\zeta(5) \quad 36\zeta(3)^2 \quad N_{3,5}$

\[N_{3,5} = \frac{27}{5} \zeta(5, 3) + \frac{45}{4} \zeta(5)\zeta(3) - \frac{261}{20} \zeta(8) \]
\[N_{3,5} = \frac{27}{5} \zeta(5, 3) + \frac{45}{4} \zeta(5) \zeta(3) - \frac{261}{20} \zeta(8) \]

Multiple Zeta Values, defined for \(n_1, \ldots, n_{r-1} \geq 1 \), and \(n_r \geq 2 \):

\[\zeta(n_1, \ldots, n_r) = \sum_{1 \leq k_1 < k_2 < \ldots < k_r} \frac{1}{k_1^{n_1} \ldots k_r^{n_r}} \in \mathbb{R} \]
Folklore conjecture 90’s

The numbers I_G are \mathbb{Q}-linear combinations of multiple zeta values.
Folklore conjecture 90’s

The numbers I_G are \mathbb{Q}-linear combinations of multiple zeta values.

Known to be true for some infinite classes of graphs.
Folklore conjecture 90’s

The numbers I_G are \mathbb{Q}-linear combinations of multiple zeta values.

Known to be true for some infinite classes of graphs.

Closed formula known for only one infinite family:

\[Z_5 \propto \zeta(2n - 3) \]
Folklore conjecture 90’s

The numbers I_{G} are \mathbb{Q}-linear combinations of multiple zeta values.

Known to be true for some infinite classes of graphs.

Closed formula known for only one infinite family:

In general, very hard to compute the integrals even numerically because they are highly singular.
Properties I

1. Contraction-Deletion:

\[\Psi_G = \alpha_e \Psi_{G\setminus e} + \Psi_{G/\setminus e} \]
Properties I

1. Contraction-Deletion:

\[\psi_G = \alpha_e \psi_{G \setminus e} + \psi_{G / e} \]

2. Partial factorisation:

\[\psi_G = \psi_\gamma \psi_{G / \gamma} + R_{\gamma, G} \]
Properties I

1. Contraction-Deletion:

\[\Psi_G = \alpha_e \Psi_{G \backslash e} + \Psi_{G / e} \]

2. Partial factorisation:

\[\Psi_G = \Psi_\gamma \Psi_{G / \gamma} + R_{\gamma,G} \]
1) Contraction-Deletion:

\[\psi_G = \alpha_e \psi_{G \setminus e} + \psi_{G / e} \]

2) Partial factorisation:

\[\psi_G = \psi_{\gamma} \psi_{G / \gamma} + R_{\gamma, G} \]

\[\psi_G = (\alpha_3 + \alpha_4)(\alpha_1 + \alpha_2) + \alpha_3 \alpha_4 \]

\[\psi_G = (\alpha_3 + \alpha_4)(\alpha_1 + \alpha_2) + \alpha_3 \alpha_4 \]
Properties I

1. Contraction-Deletion:
\[\Psi_G = \alpha_e \Psi_{G \setminus e} + \Psi_{G/e} \]

2. Partial factorisation:
\[\Psi_G = \Psi_\gamma \Psi_{G/\gamma} + R_{\gamma,G} \]

\[\Psi_G = (\alpha_3 + \alpha_4)(\alpha_1 + \alpha_2) + \alpha_3 \alpha_4 \]

\[\psi_\gamma \quad \psi_{G/\gamma} \quad R_{\gamma,G} \]

Determines \(\Psi_G \) essentially uniquely.
The graph polynomial is a determinant

\[\Psi_G = \det(L_G) \]

where \(L_G \) is the reduced graph Laplacian matrix.
The graph polynomial is a determinant

\[\Psi_G = \det(L_G) \]

where \(L_G \) is the reduced graph Laplacian matrix.

Many identities between \(I_G \). For example:

\[I_{G_1} I_{G_2} = I_{G_1:G_2} \]
The graph polynomial is a determinant

$$\Psi_G = \det(L_G)$$

where L_G is the reduced graph Laplacian matrix.

Many identities between I_G. For example:

$$I_{G_1} I_{G_2} = I_{G_1:G_2}$$

and planar duals, completion (Fourier transform), ...
III. Point-counting
Points over finite fields

Let \(f_1, \ldots, f_n \in \mathbb{Z}[x_1, \ldots, x_N] \). Let \(X \) denote the algebraic variety (affine scheme over \(\mathbb{Z} \)) defined by

\[
f_1 = \ldots = f_n = 0.
\]
Let $f_1, \ldots, f_n \in \mathbb{Z}[x_1, \ldots, x_N]$. Let X denote the algebraic variety (affine scheme over \mathbb{Z}) defined by

$$f_1 = \ldots = f_n = 0.$$

For every prime power $q = p^e$, let

$$[X]_q = \#X(\mathbb{F}_q).$$
Points over finite fields

Let $f_1, \ldots, f_n \in \mathbb{Z}[x_1, \ldots, x_N]$. Let X denote the algebraic variety (affine scheme over \mathbb{Z}) defined by

$$f_1 = \ldots = f_n = 0.$$

For every prime power $q = p^e$, let

$$[X]_q = \#X(\mathbb{F}_q).$$

$$[X] : \{\text{prime powers}\} \rightarrow \mathbb{N}$$
Let $f_1, \ldots, f_n \in \mathbb{Z}[x_1, \ldots, x_N]$. Let X denote the algebraic variety (affine scheme over \mathbb{Z}) defined by

$$f_1 = \ldots = f_n = 0.$$

For every prime power $q = p^e$, let

$$[X]_q = \#X(\mathbb{F}_q).$$

$$[X] : \{\text{prime powers}\} \rightarrow \mathbb{N}$$

For example,

$$[X]_p = \#\{(x_1, \ldots, x_N) : x_i \in \mathbb{F}_p, f_i(x_1, \ldots, x_N) \equiv 0 \mod p \text{ for all } i\}$$
Some general results

Serre: if \([X]_p = [Y]_p\) for a set of primes \(p\) of density 1, then

\[[X]_{p^e} = [Y]_{p^e} \]

for all \(e \geq 1\), provided \(p \geq p_0\) sufficiently large.
Some general results

Serre: if \([X]_p = [Y]_p\) for a set of primes \(p\) of density 1, then

\[[X]_p^e = [Y]_p^e\]

for all \(e \geq 1\), provided \(p \geq p_0\) sufficiently large.

Grothendieck-Lefschetz trace formula:

\([X]_q = \sum_i (-1)^i Tr(F : H^i_c(X_{\overline{F}_q}, \mathbb{Q}_\ell))\]

Dwork, Deligne.
Graph hypersurfaces

Graph hypersurface:

\[X_G \subset \mathbb{A}^{N_G} \]

zero locus of the graph polynomial \(\Psi_G \). Highly singular.
Graph hypersurfaces

Graph hypersurface:

\[X_G \subset \mathbb{A}^{N_G} \]

zero locus of the graph polynomial \(\Psi_G \). Highly singular.

\[[G]_q = [X_G]_q = \#\{ (\alpha_1, \ldots, \alpha_N), \alpha_i \in \mathbb{F}_q : \Psi_G(\alpha_e) = 0 \} . \]
Graph hypersurfaces

Graph hypersurface:

$$X_G \subset \mathbb{A}^{N_G}$$

zero locus of the graph polynomial Ψ_G. Highly singular.

$$[G]_q = [X_G]_q = \#\{(\alpha_1, \ldots, \alpha_N), \alpha_i \in \mathbb{F}_q : \Psi_G(\alpha_e) = 0\}.$$

Example:

$$\Psi_G = \alpha_1 + \alpha_2 \quad , \quad [G]_q = q$$
Examples

<table>
<thead>
<tr>
<th>I_G</th>
<th>$[G]_q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6\zeta(3)$</td>
<td>$q^5 - q^3 - q^2$</td>
</tr>
<tr>
<td>$20\zeta(5)$</td>
<td>$q^7 + 3q^5 - 6q^4 + 4q^3 - q^2$</td>
</tr>
<tr>
<td>$36\zeta(3)^2$</td>
<td>$q^9 + 4q^7 - 7q^6 + 3q^5$</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>I_G</th>
<th>$[G]_q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6\zeta(3)$</td>
<td>$q^5 - q^3 - q^2$</td>
</tr>
<tr>
<td>$20\zeta(5)$</td>
<td>$q^7 + 3q^5 - 6q^4 + 4q^3 - q^2$</td>
</tr>
<tr>
<td>$36\zeta(3)^2$</td>
<td>$q^9 + 4q^7 - 7q^6 + 3q^5$</td>
</tr>
</tbody>
</table>

Notice that

$$[G]_q \equiv 0 \mod q^2$$
Examples

\[
\begin{array}{c|c}
I_G & [G]_q \\
6\zeta(3) & q^5 - q^3 - q^2 \\
20\zeta(5) & q^7 + 3q^5 - 6q^4 + 4q^3 - q^2 \\
36\zeta(3)^2 & q^9 + 4q^7 - 7q^6 + 3q^5 \\
\end{array}
\]

Notice that
\[
[G]_q \equiv 0 \mod q^2
\]

Question: is \([X_G]_q\) always a polynomial in \(q\)?
The periods detect extensions, but the trace of Frobenius only depends on the semi-simplification Ms of a motive M. There exists an abelian category of mixed Tate motives over number fields (Levine, using Beilinson-Soulé vanishing via Borel). Their point-counting functions are polynomials in q.

Diagram:

- **I-adic Galois reps**
- **Mixed Motives over \mathbb{Q}**
- **Period integrals**

Connections:
- I from **I-adic Galois reps** to **Mixed Motives over \mathbb{Q}**
- B from **Mixed Motives over \mathbb{Q}** to **Period integrals**
- dR from **Mixed Motives over \mathbb{Q}** to **Period integrals**
The periods detect *extensions*, but the trace of Frobenius only depends on the *semi-simplification* M^{ss} of a motive M.
The periods detect *extensions*, but the trace of Frobenius only depends on the *semi-simplification* M^{ss} of a motive M.

There exists abelian category of mixed *Tate* motives over number fields (Levine, using Beilinson-Soulé vanishing via Borel).
The periods detect extensions, but the trace of Frobenius only depends on the semi-simplification M^{ss} of a motive M.

There exists abelian category of mixed Tate motives over number fields (Levine, using Beilinson-Soulé vanishing via Borel).
Philosophy

The periods detect extensions, but the trace of Frobenius only depends on the semi-simplification M^{ss} of a motive M.

There exists abelian category of mixed Tate motives over number fields (Levine, using Beilinson-Soulé vanishing via Borel).

Their point-counting functions are polynomials in q.

Results

Stembridge (1998): True for all graphs G with $N_G \leq 12$.

Belkale, Brosnan (2003): The function G_q is of general type. Given any X, there exist graphs G_1, \ldots, G_k such that $r_0[X] = \sum_{i=1}^k r_i[G_i]$ where $r_i \in \mathbb{Z}[q]$ are polynomials in q. Uses Mnev universality.

The graphs G_i have vertices of huge degrees. But physics demands that the vertices be of degree at most 4.
Stembridge (1998): True for all graphs G with $N_G \leq 12$.

Belkale, Brosnan (2003): The function G_q is of general type. Given any X, there exist graphs G_1, \ldots, G_k such that

$$r_0[X] = k \sum_{i=1}^{r_i} G_i$$

where $r_i \in \mathbb{Z}[q]$ are polynomials in q. Uses Mnev universality.

The graphs G_i have vertices of huge degrees. But physics demands that the vertices be of degree at most 4.
Stembridge (1998): True for all graphs G with $N_G \leq 12$.

Belkale, Brosnan (2003): The function $[G]_q$ is of general type.
Stembridge (1998): True for all graphs G with $N_G \leq 12$.

Belkale, Brosnan (2003): The function $[G]_q$ is of general type.

Given any X, there exist graphs G_1, \ldots, G_k such that

$$r_0 [X]_q = \sum_{i=1}^{k} r_i [G_i]_q$$

where $r_i \in \mathbb{Z}[q]$ are polynomials in q. Uses Mnëv universality.
Stembridge (1998): True for all graphs G with $N_G \leq 12$.

Belkale, Brosnan (2003): The function $[G]_q$ is of general type.

Given any X, there exist graphs G_1, \ldots, G_k such that

$$r_0 [X]_q = \sum_{i=1}^{k} r_i [G_i]_q$$

where $r_i \in \mathbb{Z}[q]$ are polynomials in q. Uses Mnëv universality.

The graphs G_i have vertices of huge degrees. But physics demands that the vertices be of degree at most 4.
IV. Modularity
Consider the quantities

$$[X]_p \mod p$$

for all primes p.
Consider the quantities

\[[X]_p \mod p\]

for all primes \(p \). They define an element

\(([X]_p \mod p)_p \in \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_5 \times \ldots\)
Consider the quantities

\[[X]_p \mod p \]

for all primes \(p \). They define an element

\[([X]_p \mod p)_p \in \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_5 \times \ldots \]

Suppose \(X \) defined by one polynomial \(f(x_1, \ldots, x_N) \).
Consider the quantities

\[[X]_p \mod p \]

for all primes \(p \). They define an element

\[([X]_p \mod p)_p \in \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_5 \times \ldots \]

Suppose \(X \) defined by one polynomial \(f(x_1, \ldots, x_N) \).

1. If \(\deg f = N \),

\[[X]_p \equiv (\text{coeff. of } (x_1 \ldots x_N)^{p-1} \text{ in } f^{p-1}) \mod p \]
Consider the quantities

$$[X]_p \mod p$$

for all primes p. They define an element

$$([X]_p \mod p)_p \in \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_5 \times \ldots$$

Suppose X defined by one polynomial $f(x_1, \ldots, x_N)$.

1. If $\deg f = N$,

$$[X]_p \equiv (\text{coeff. of } (x_1 \ldots x_N)^{p-1} \text{ in } f^{p-1}) \mod p$$

2. (Chevalley-Warning theorem). If degree $f < N$ then

$$[X]_p \equiv 0 \mod p$$
For one of our graphs, G, define $c_G(p)$ as:

$$c_G(p) := \left[G \right] \pmod{p^2}$$

If G is a polynomial, then $c_G(p)$ is the coefficient k taken modulo all primes. Therefore, $c_G = (k \pmod{2}, k \pmod{3}, k \pmod{5}, ...)$

Call such a sequence constant.
For \(G \) one of our graphs, \([G]_p \equiv 0 \mod p^2 \). Define
\[
c_G(p) := \frac{[G]_p}{p^2} \mod p
\]
For G one of our graphs, $[G]_p \equiv 0 \mod p^2$. Define

$$c_G(p) := \frac{[G]_p}{p^2} \mod p$$

If $[G]_q \in \mathbb{Z}[q]$ polynomial then $c_G(p)$ is its coefficient k of q^2 taken modulo all primes. Therefore

$$c_G = (k \mod 2, k \mod 3, k \mod 5, \ldots)$$
For G one of our graphs, $[G]_p \equiv 0 \mod p^2$. Define

$$c_G(p) := \frac{[G]_p}{p^2} \mod p$$

If $[G]_q \in \mathbb{Z}[q]$ polynomial then $c_G(p)$ is its coefficient k of q^2 taken modulo all primes. Therefore

$$c_G = (k \mod 2, k \mod 3, k \mod 5, \ldots)$$

Call such a sequence constant.
The c-invariant contains the relevant information about I_G. Conjecture: If $I_G = I_G^0$ then $c_G = c_G^0$.

6$\zeta(3)$

20$\zeta(5)$

36$\zeta(3)^2$

c-invariant examples

<table>
<thead>
<tr>
<th>Graph</th>
<th>$[G]_p$</th>
<th>c_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6\zeta(3)$</td>
<td>$p^5 - p^3 - p^2$</td>
<td>$-1 \mod p$</td>
</tr>
<tr>
<td>$20\zeta(5)$</td>
<td>$p^7 + 3p^5 - 6p^4 + 4p^3 - p^2$</td>
<td>$-1 \mod p$</td>
</tr>
<tr>
<td>$36\zeta(3)^2$</td>
<td>$p^9 + 4p^7 - 7p^6 + 3p^5$</td>
<td>$0 \mod p$</td>
</tr>
</tbody>
</table>
The c_G invariant contains the relevant information about I_G.

<table>
<thead>
<tr>
<th>Graph</th>
<th>$[G]_p$</th>
<th>c_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6\zeta(3)$</td>
<td>$p^5 - p^3 - p^2$</td>
<td>$-1 \mod p$</td>
</tr>
<tr>
<td>$20\zeta(5)$</td>
<td>$p^7 + 3p^5 - 6p^4 + 4p^3 - p^2$</td>
<td>$-1 \mod p$</td>
</tr>
<tr>
<td>$36\zeta(3)^2$</td>
<td>$p^9 + 4p^7 - 7p^6 + 3p^5$</td>
<td>$0 \mod p$</td>
</tr>
</tbody>
</table>
The c_G invariant contains the relevant information about I_G.

Conjecture: If $I_G = I_{G'}$, then $c_G = c_{G'}$.
For each of the two (convergent, ϕ^4) graphs:

\[
G(p) \mod p \quad \alpha \quad \beta
\]

are Fourier coefficients of modular form of weight 3, level 7:

\[
X_n z^n = z^3 + 5z^7 + 7z^{11} + 15z^{15} + \ldots
\]
For each of the two (convergent, ϕ^4) graphs:

\[c_G(p) \equiv a_p \mod p \]
Modular graphs (w/ O. Schnetz, 2012)

For each of the two (convergent, ϕ^4) graphs:

$c_G(p) \equiv a_p \mod p$

a_p are Fourier coeffs. of modular form of weight 3, level 7:
For each of the two (convergent, ϕ^4) graphs:

\[c_G(p) \equiv a_p \mod p \]

a_p are Fourier coeffs. of modular form of weight 3, level 7:

\[
\sum a_n z^n = z \prod_{n \geq 1} ((1 - z^n)(1 - z^{7n}))^3 \\
= z - 3z^2 + 5z^4 - 7z^7 - 3z^8 + \ldots
\]
\[\Psi_G \] of degree 8 in 16 variables, and 3785 terms.
\(\Psi_G \) of degree 8 in 16 variables, and 3785 terms.

1. Find a polynomial \(f \) with \(\deg f = \# \{\text{variables of } f\} \) s.t.

\[
c_G(p) \equiv -[f]_p \pmod{p}
\]
Ψ_G of degree 8 in 16 variables, and 3785 terms.

1. Find a polynomial f with $\text{deg } f = \# \{\text{variables of } f\}$ s.t.

$$c_G(p) \equiv -[f]_p \mod p$$

2. Eliminate variables in the right order from f to reduce the dimension. Uses Chevalley-Warning, combinatorics of G, ...
Ψ_G of degree 8 in 16 variables, and 3785 terms.

1. Find a polynomial f with $\deg f = \# \{\text{variables of } f\}$ s.t.

 $$c_G(p) \equiv -[f]_p \mod p$$

2. Eliminate variables in the right order from f to reduce the dimension. Uses Chevalley-Warning, combinatorics of G, . . .

3. Upshot:

 $$c_G(p) \equiv [F]_p \mod p$$

where F is of degree 4 in 4 variables:
Ψ_G of degree 8 in 16 variables, and 3785 terms.

1. Find a polynomial f with $\deg f = \#\{\text{variables of } f\}$ s.t.

$$c_G(p) \equiv -[f]_p \mod p$$

2. Eliminate variables in the right order from f to reduce the dimension. Uses Chevalley-Warning, combinatorics of G, ...

3. Upshot:

$$c_G(p) \equiv [F]_p \mod p$$

where F is of degree 4 in 4 variables:

$$F = b(a + c)(ac + bd) - ad(b + c)(c + d)$$

The zero locus of F defines a singular K_3 surface.
Singular K3 surfaces (maximal Picard rank 20) over \mathbb{Q} are modular. Modular forms of weight 3 with CM by $\mathbb{Q}(\sqrt{-d})$, and rational coefficients. Follows from Livné (1995), modularity of two-dimensional CM Galois representations. Elkies and Schütt: they all arise in this way (2013).
Singular K3 surfaces (maximal Picard rank 20) over \mathbb{Q} are modular. Modular forms of weight 3 with CM by $\mathbb{Q}(\sqrt{-d})$, and rational coefficients. Follows from Livné (1995), modularity of two-dimensional CM Galois representations. Elkies and Schütt: they all arise in this way (2013).

Rigid Calabi-Yau three-folds over \mathbb{Q} are modular (\ldots, Gouvêa-Yui (2010)). Uses proof of Serre’s modularity conjecture by Khare and Wintenberger.
V. Questions
More modular counter-examples in ϕ^4 (O. Schnetz)

<table>
<thead>
<tr>
<th>weight</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>11</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>6</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>9</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>12</td>
<td>7</td>
<td>9</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>19</td>
<td>13</td>
<td>9</td>
<td>19</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>20</td>
<td>17</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

The subscript is the first loop order it occurs.
The subscript is the first loop order it occurs.

Adam Logan (2016) has proved three more entries.
The subscript is the first loop order it occurs.

Adam Logan (2016) has proved three more entries.

No modular forms of weight 2?
What does this mean for Feynman amplitudes?

The point-counting function depends on $M_{pt} = N_1 \times \prod_{i=0}^{\infty} H_i c(X_G; Q)$.

The period integral depends on a piece of $M_{int} = H N_1 \left(\bigcap_{P} N_1 \cap X_G \cap D \cap (D \setminus X_G) \right)$.

X_G is the graph hypersurface (Bloch-Esnault-Kreimer).

No obvious relation between M_{pt} and M_{int}!
The point-counting function depends on

$$M_{pt} = \sum_{i=0}^{N-1} (-1)^i H^i_c(X_G; \mathbb{Q}_\ell)$$
What does this mean for Feynman amplitudes?

The point-counting function depends on

\[M_{pt} = \sum_{i=0}^{N-1} (-1)^i H^i_c(\overline{X}_G; \mathbb{Q}_\ell) \]

The period integral depends on a piece of

\[M_{int} = H^{N-1}(\mathbb{P}^{N-1} \setminus \overline{X}_G, D \setminus (\overline{D \cap X}_G)) \]

where \(X_G \) is the graph hypersurface (Bloch-Esnault-Kreimer).
What does this mean for Feynman amplitudes?

The point-counting function depends on

$$M_{pt} = \sum_{i=0}^{N-1} (-1)^i H_c^i(\overline{X_G}; \mathbb{Q}_\ell)$$

The period integral depends on a piece of

$$M_{int} = H^{N-1}(\overline{\mathbb{P}^{N-1}\setminus X_G}, D\setminus(D \cap X_G))$$

where X_G is the graph hypersurface (Bloch-Esnault-Kreimer).

No obvious relation between M_{pt} and $M_{int}!$
Failure of the conjecture

One can show that the 'modular' piece of M_{pt} actually arises in precisely the piece of M_{int} detected by the integral (Doryn).

Grothendieck's period conjecture $=\quad$ for modular G, I_G is transcendental over the ring of MZV's.

The folklore conjecture would be false.

Amplitudes are much more complicated than expected.
One can show that the ‘modular’ piece of M_{pt} actually arises in precisely the piece of M_{int} detected by the integral (Doryn).
One can show that the ‘modular’ piece of M_{pt} actually arises in precisely the piece of M_{int} detected by the integral (Doryn).

Grothendieck’s period conjecture

\implies

for modular G, I_G is *transcendental* over the ring of MZV’s.
Failure of the conjecture

One can show that the ‘modular’ piece of M_{pt} actually arises in precisely the piece of M_{int} detected by the integral (Doryn).

Grothendieck’s period conjecture

\[\implies \]

for modular G, I_G is \textit{transcendental} over the ring of MZV’s.

The folklore conjecture would be false.

Amplitudes are much more complicated than expected.
What numbers should we expect for these graphs?

<table>
<thead>
<tr>
<th>Pure motive</th>
<th>Pure periods</th>
<th>Hodge type</th>
<th>Mixed motives</th>
<th>Mixed periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Q}(-n)$</td>
<td>$(2i\pi)^n$</td>
<td>(p, p)</td>
<td>Mixed Tate motives over \mathbb{Z}</td>
<td>$\zeta(n), \ n \geq 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\zeta(n_1, \ldots, n_r)$</td>
</tr>
</tbody>
</table>
What numbers should we expect for these graphs?

<table>
<thead>
<tr>
<th>Pure motive</th>
<th>Pure periods</th>
<th>Hodge type</th>
<th>Mixed motives</th>
<th>Mixed periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Q}(-n)$</td>
<td>$(2i\pi)^n$</td>
<td>(p, p)</td>
<td>Mixed Tate over \mathbb{Z}</td>
<td>$\zeta(n), \ n \geq 2$</td>
</tr>
<tr>
<td>M_f</td>
<td>$L(f, n)$</td>
<td>$(k, 0)$</td>
<td>Mixed Modular</td>
<td>$L(f, n), \ n \geq wt(f)$</td>
</tr>
<tr>
<td>$0 < n < wt(f)$</td>
<td>$\oplus(0, k)$</td>
<td>$?????$</td>
<td>$?????$</td>
<td>$?????$</td>
</tr>
</tbody>
</table>
What numbers should we expect for these graphs?

<table>
<thead>
<tr>
<th>Pure motive</th>
<th>Pure periods</th>
<th>Hodge type</th>
<th>Mixed motives</th>
<th>Mixed periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Q}(-n)$</td>
<td>$(2i\pi)^n$</td>
<td>(p, p)</td>
<td>Mixed Tate over \mathbb{Z}</td>
<td>$\zeta(n)$, $n \geq 2$</td>
</tr>
<tr>
<td>M_f</td>
<td>$L(f, n)$</td>
<td>$(k, 0)$</td>
<td>Mixed Modular</td>
<td>$L(f, n)$, $n \geq \text{wt}(f)$</td>
</tr>
<tr>
<td>$0 < n < \text{wt}(f)$</td>
<td>$\oplus (0, k)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How do we construct realisations of motives of mixed modular type? What are their period integrals?
Which numbers and functions for quantum field theory?

- Grothendieck, Deligne, Ihara, Drinfeld, . . .
- $\mathbb{P}^1 \cap \{0, 1, 1\}$
- Iterated integrals
- Multiple zeta values
- Polylogarithms

Generate all amplitudes up to a certain number of loops, and infinite families of amplitudes in $\mathbb{N} = 4$ SYM, \mathbb{Q} C D, \mathbb{Q} E D, . . .

Modular examples beyond this regime (e.g. also with masses)

What are the geometric objects which describe QFT in general?
Which numbers and functions for quantum field theory?

The numbers and functions generated by a single space:

\[\mathbb{P}^1 \setminus \{0, 1, \infty\} \]

\[\begin{array}{c}
\infty \\
0 \\
1 \\
\end{array} \]

Iterated integrals
Multiple zeta values
Polylogarithms
generate all amplitudes up to a certain number of loops, and infinite families of amplitudes in \(\mathbb{N} = 4 \) SYM, \(4, Q C D, Q E D, \ldots \)

Modular examples beyond this regime (e.g. also with masses)

What are the geometric objects which describe QFT in general?

Grothendieck, Deligne, Ihara, Drinfeld, \ldots
Which numbers and functions for quantum field theory?

The numbers and functions generated by a single space:

\[\mathbb{P}^1 \setminus \{0, 1, \infty\} \]

\[\infty \]

\[0 \]

\[1 \]

Iterated integrals

Grothendieck, Deligne, Ihara, Drinfeld, …
Which numbers and functions for quantum field theory?

The numbers and functions generated by a single space:

\[\mathbb{P}^1 \setminus \{0, 1, \infty\} \]

Iterated integrals

Multiple zeta values

Polylogarithms

Grothendieck, Deligne, Ihara, Drinfeld, …
Which numbers and functions for quantum field theory?

The numbers and functions generated by a single space:

\[\mathbb{P}^1 \setminus \{0, 1, \infty\} \]

Iterated integrals

Grothendieck, Deligne, Ihara, Drinfeld, …

Multiple zeta values

Polylogarithms

generate all amplitudes up to a certain number of loops, and infinite families of amplitudes in \(N = 4 \) SYM, \(\phi^4 \), QCD, QED, …
Which numbers and functions for quantum field theory?

The numbers and functions generated by a single space:

\[\mathbb{P}^1 \setminus \{0, 1, \infty\} \]

Iterated integrals

Multiple zeta values

Polylogarithms

generate all amplitudes up to a certain number of loops, and
infinite families of amplitudes in \(N = 4 \) SYM, \(\phi^4 \), QCD, QED, \ldots

Modular examples beyond this regime (e.g. also with masses)
Which numbers and functions for quantum field theory?

The numbers and functions generated by a single space:

\[\mathbb{P}^1 \setminus \{0, 1, \infty\} \]

Iterated integrals

- Multiple zeta values
- Polylogarithms

generate all amplitudes up to a certain number of loops, and infinite families of amplitudes in \(N = 4 \) SYM, \(\phi^4 \), QCD, QED, \ldots

Modular examples beyond this regime (e.g. also with masses)

What are the geometric objects which describe QFT in general?