Periods, Galois theory and particle physics

Francis Brown
All Souls College, Oxford

Gergen Lectures,
21st-24th March 2016
Recap

Recall that we are interested in periods, which are integrals

\[I = \int_{\sigma} \omega \]

where \(\omega \) is a regular differential \(n \) form on some \(n \)-dimensional algebraic variety \(X \), \(\sigma \) is a smooth chain with boundary in \(Z(\mathbb{C}) \), where \(Z \subset X \), and everything is defined with rational coefficients.

The set of such integrals generates a ring \(P \), where

\[\mathbb{Q} \subset \overline{\mathbb{Q}} \subset P \subset \mathbb{C} \]

We studied numerous examples in \(P \), including multiple zeta values, and amplitudes in quantum field theory.

Today: the goal is to replace \(P \) with a ring of formally defined periods \(P^m \), and define a group \(G \) which acts upon it.
Recap

Recall that we are interested in periods, which are integrals

\[I = \int_{\sigma} \omega \]

where \(\omega \) is a regular differential \(n \) form on some \(n \)-dimensional algebraic variety \(X \), \(\sigma \) is a smooth chain with boundary in \(Z(\mathbb{C}) \), where \(Z \subset X \), and everything is defined with rational coefficients.

The set of such integrals generates a ring \(P \), where

\[\mathbb{Q} \subset \overline{\mathbb{Q}} \subset P \subset \mathbb{C} \]

We studied numerous examples in \(P \), including multiple zeta values, and amplitudes in quantum field theory.

Today: the goal is to replace \(P \) with a ring of formally defined periods \(P^m \), and define a group \(G \) which acts upon it.
Recall that we are interested in periods, which are integrals

\[I = \int_{\sigma} \omega \]

where \(\omega \) is a regular differential \(n \) form on some \(n \)-dimensional algebraic variety \(X \), \(\sigma \) is a smooth chain with boundary in \(Z(\mathbb{C}) \), where \(Z \subset X \), and everything is defined with rational coefficients.

The set of such integrals generates a ring \(P \), where

\[\mathbb{Q} \subset \overline{\mathbb{Q}} \subset P \subset \mathbb{C} \]

We studied numerous examples in \(P \), including multiple zeta values, and amplitudes in quantum field theory.

Today: the goal is to replace \(P \) with a ring of formally defined periods \(P^m \), and define a group \(G \) which acts upon it.
The Galois group $\text{Gal} (\overline{\mathbb{Q}}/\mathbb{Q})$ is the group of symmetries of algebraic numbers. It is the group of maps $\sigma : \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$ such that:

$$
\sigma (\lambda_1 \alpha + \lambda_2 \beta) = \lambda_1 \sigma (\alpha) + \lambda_2 \sigma (\beta),
$$

$$
\sigma (\alpha \beta) = \sigma (\alpha) \sigma (\beta),
$$

where $\alpha, \beta \in \overline{\mathbb{Q}}$, and $\lambda_1, \lambda_2 \in \mathbb{Q}$ (view $\overline{\mathbb{Q}} \subset \mathbb{C}$).

It permutes the roots of any polynomial: if $P \in \mathbb{Q}[x]$ and $\alpha \in \mathbb{C}$ such that $P(\alpha) = 0$ then $P(\sigma(\alpha)) = 0$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

The set of Galois conjugates $\{ \sigma (\alpha) : \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \}$ is finite.

A number $\alpha \in \overline{\mathbb{Q}}$ is rational if and only if it is fixed by the Galois group: $\sigma \alpha = \alpha$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Galois’ insight: replace the study of algebraic numbers with group theory. Extremely powerful. Main example: cyclotomy $x^n = 1$.
The Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ is the group of symmetries of algebraic numbers. It is the group of maps $\sigma : \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$ such that:

$$
\begin{align*}
\sigma(\lambda_1 \alpha + \lambda_2 \beta) &= \lambda_1 \sigma(\alpha) + \lambda_2 \sigma(\beta), \\
\sigma(\alpha \beta) &= \sigma(\alpha)\sigma(\beta),
\end{align*}
$$

where $\alpha, \beta \in \overline{\mathbb{Q}}$, and $\lambda_1, \lambda_2 \in \mathbb{Q}$ (view $\overline{\mathbb{Q}} \subset \mathbb{C}$).

It permutes the roots of any polynomial: if $P \in \mathbb{Q}[x]$ and $\alpha \in \mathbb{C}$ such that $P(\alpha) = 0$ then $P(\sigma(\alpha)) = 0$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

The set of Galois conjugates $\{\sigma(\alpha) : \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\}$ is finite.

A number $\alpha \in \overline{\mathbb{Q}}$ is rational if and only if it is fixed by the Galois group: $\sigma \alpha = \alpha$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Galois’ insight: replace the study of algebraic numbers with group theory. Extremely powerful. Main example: cyclotomy $x^n = 1$.

Classical Galois group
Classical Galois group

The Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ is the group of symmetries of algebraic numbers. It is the group of maps $\sigma : \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}$ such that:

$$\sigma(\lambda_1 \alpha + \lambda_2 \beta) = \lambda_1 \sigma(\alpha) + \lambda_2 \sigma(\beta),$$
$$\sigma(\alpha \beta) = \sigma(\alpha) \sigma(\beta),$$

where $\alpha, \beta \in \overline{\mathbb{Q}}$, and $\lambda_1, \lambda_2 \in \mathbb{Q}$ (view $\overline{\mathbb{Q}} \subset \mathbb{C}$).

It permutes the roots of any polynomial: if $P \in \mathbb{Q}[x]$ and $\alpha \in \mathbb{C}$ such that $P(\alpha) = 0$ then $P(\sigma(\alpha)) = 0$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

The set of Galois conjugates $\{\sigma(\alpha) : \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\}$ is finite.

A number $\alpha \in \overline{\mathbb{Q}}$ is rational if and only if it is fixed by the Galois group: $\sigma \alpha = \alpha$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Galois’ insight: replace the study of algebraic numbers with group theory. Extremely powerful. Main example: cyclotony $x^n = 1$.
Classical Galois group

The Galois group \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) is the group of symmetries of algebraic numbers. It is the group of maps \(\sigma : \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}} \) such that:

\[
\sigma(\lambda_1 \alpha + \lambda_2 \beta) = \lambda_1 \sigma(\alpha) + \lambda_2 \sigma(\beta),
\]

\[
\sigma(\alpha \beta) = \sigma(\alpha)\sigma(\beta),
\]

where \(\alpha, \beta \in \overline{\mathbb{Q}} \), and \(\lambda_1, \lambda_2 \in \mathbb{Q} \) (view \(\overline{\mathbb{Q}} \subset \mathbb{C} \)).

It permutes the roots of any polynomial: if \(P \in \mathbb{Q}[x] \) and \(\alpha \in \mathbb{C} \) such that \(P(\alpha) = 0 \) then \(P(\sigma(\alpha)) = 0 \) for all \(\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \).

The set of Galois conjugates \(\{ \sigma(\alpha) : \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \} \) is finite.

A number \(\alpha \in \overline{\mathbb{Q}} \) is rational if and only if it is fixed by the Galois group: \(\sigma \alpha = \alpha \) for all \(\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \).

Galois’ insight: replace the study of algebraic numbers with group theory. Extremely powerful. Main example: cyclotomy \(x^n = 1 \).
The Galois group $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ is the group of symmetries of algebraic numbers. It is the group of maps $\sigma : \bar{\mathbb{Q}} \to \bar{\mathbb{Q}}$ such that:

$$\sigma(\lambda_1 \alpha + \lambda_2 \beta) = \lambda_1 \sigma(\alpha) + \lambda_2 \sigma(\beta),$$
$$\sigma(\alpha \beta) = \sigma(\alpha)\sigma(\beta),$$

where $\alpha, \beta \in \bar{\mathbb{Q}}$, and $\lambda_1, \lambda_2 \in \mathbb{Q}$ (view $\bar{\mathbb{Q}} \subset \mathbb{C}$).

It permutes the roots of any polynomial: if $P \in \mathbb{Q}[x]$ and $\alpha \in \mathbb{C}$ such that $P(\alpha) = 0$ then $P(\sigma(\alpha)) = 0$ for all $\sigma \in \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$.

The set of Galois conjugates $\{\sigma(\alpha) : \sigma \in \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})\}$ is finite.

A number $\alpha \in \bar{\mathbb{Q}}$ is rational if and only if it is fixed by the Galois group: $\sigma \alpha = \alpha$ for all $\sigma \in \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$.

Galois’ insight: replace the study of algebraic numbers with group theory. Extremely powerful. Main example: cyclotomy $x^n = 1$.

Classical Galois group
The Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ is the group of symmetries of algebraic numbers. It is the group of maps $\sigma : \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$ such that:

\[
\sigma(\lambda_1 \alpha + \lambda_2 \beta) = \lambda_1 \sigma(\alpha) + \lambda_2 \sigma(\beta), \\
\sigma(\alpha \beta) = \sigma(\alpha)\sigma(\beta),
\]

where $\alpha, \beta \in \overline{\mathbb{Q}}$, and $\lambda_1, \lambda_2 \in \mathbb{Q}$ (view $\overline{\mathbb{Q}} \subset \mathbb{C}$).

It permutes the roots of any polynomial: if $P \in \mathbb{Q}[x]$ and $\alpha \in \mathbb{C}$ such that $P(\alpha) = 0$ then $P(\sigma(\alpha)) = 0$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

The set of Galois conjugates $\{\sigma(\alpha) : \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\}$ is finite.

A number $\alpha \in \overline{\mathbb{Q}}$ is rational if and only if it is fixed by the Galois group: $\sigma \alpha = \alpha$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Galois’ insight: replace the study of algebraic numbers with group theory. Extremely powerful. Main example: cyclotomy $x^n = 1$.
Since algebraic numbers are examples of periods, one can ask if there exists a Galois theory of periods?

We would like a group \(G_P \) which acts as automorphisms of \(P \): \[
\sigma(\lambda_1 p_1 + \lambda_2 p_2) = \lambda_1 \sigma(p_1) + \lambda_2 \sigma(p_2)
\]
\[
\sigma(p_1 p_2) = \sigma(p_1) \sigma(p_2)
\]
for all \(\lambda_1, \lambda_2 \in \mathbb{Q} \), and \(p_1, p_2 \in P \). Its restriction to \(\overline{\mathbb{Q}} \) should give back the classical Galois group. We would also like \[
p \in P \text{ is in } \mathbb{Q} \iff \sigma(p) = p \text{ for all } \sigma \in G_P
\]
If \(p \) has finitely many conjugates, then \(\prod_{\sigma} (X - \sigma(p)) \) is \(G_P \)-invariant and will be in \(\mathbb{Q}[X] \). So \(p \) is in fact algebraic.
Since algebraic numbers are examples of periods, one can ask if there exists a Galois theory of periods?

We would like a group G_P which acts as automorphisms of P:

$$
s(\lambda_1 p_1 + \lambda_2 p_2) = \lambda_1 s(p_1) + \lambda_2 s(p_2)
$$

$$
s(p_1 p_2) = s(p_1) s(p_2)
$$

for all $\lambda_1, \lambda_2 \in \mathbb{Q}$, and $p_1, p_2 \in P$. Its restriction to $\overline{\mathbb{Q}}$ should give back the classical Galois group. We would also like

$$
p \in P \text{ is in } \mathbb{Q} \iff s(p) = p \text{ for all } s \in G_P
$$

If p has finitely many conjugates, then $\prod_s (X - s(p))$ is G_P-invariant and will be in $\mathbb{Q}[X]$. So p is in fact algebraic.
A first attempt....

Since algebraic numbers are examples of periods, one can ask if there exists a Galois theory of periods?

We would like a group G_P which acts as automorphisms of P:

$$\sigma(\lambda_1 p_1 + \lambda_2 p_2) = \lambda_1 \sigma(p_1) + \lambda_2 \sigma(p_2)$$

$$\sigma(p_1 p_2) = \sigma(p_1)\sigma(p_2)$$

for all $\lambda_1, \lambda_2 \in \mathbb{Q}$, and $p_1, p_2 \in P$. Its restriction to $\overline{\mathbb{Q}}$ should give back the classical Galois group. We would also like

$$p \in P \text{ is in } \mathbb{Q} \iff \sigma(p) = p \text{ for all } \sigma \in G_P$$

If p has finitely many conjugates, then $\prod_\sigma (X - \sigma(p))$ is G_P-invariant and will be in $\mathbb{Q}[X]$. So p is in fact algebraic.
A first attempt....

Since algebraic numbers are examples of periods, one can ask if there exists a Galois theory of periods?

We would like a group G_P which acts as automorphisms of P:

$$
\sigma(\lambda_1 p_1 + \lambda_2 p_2) = \lambda_1 \sigma(p_1) + \lambda_2 \sigma(p_2)
$$

$$
\sigma(p_1 p_2) = \sigma(p_1)\sigma(p_2)
$$

for all $\lambda_1, \lambda_2 \in \mathbb{Q}$, and $p_1, p_2 \in P$. Its restriction to $\overline{\mathbb{Q}}$ should give back the classical Galois group. We would also like

$$
p \in P \text{ is in } \mathbb{Q} \iff \sigma(p) = p \text{ for all } \sigma \in G_P
$$

If p has finitely many conjugates, then $\prod_{\sigma}(X - \sigma(p))$ is G_P-invariant and will be in $\mathbb{Q}[X]$. So p is in fact algebraic.
A first attempt....

Since algebraic numbers are examples of periods, one can ask if there exists a Galois theory of periods?

We would like a group G_P which acts as automorphisms of P:

\[\sigma(\lambda_1 p_1 + \lambda_2 p_2) = \lambda_1 \sigma(p_1) + \lambda_2 \sigma(p_2) \]

\[\sigma(p_1 p_2) = \sigma(p_1) \sigma(p_2) \]

for all $\lambda_1, \lambda_2 \in \mathbb{Q}$, and $p_1, p_2 \in P$. Its restriction to $\overline{\mathbb{Q}}$ should give back the classical Galois group. We would also like

\[p \in P \text{ is in } \mathbb{Q} \iff \sigma(p) = p \text{ for all } \sigma \in G_P \]

If p has finitely many conjugates, then $\prod_\sigma (X - \sigma(p))$ is G_P-invariant and will be in $\mathbb{Q}[X]$. So p is in fact algebraic.
So given any non-algebraic period $p \in P$, we would have little hope of computing the action of G_P on it. For if we could show that its orbit under G_P is infinite, we would immediately deduce that p is transcendental. But we can’t even prove that $\zeta(5) \not\in \mathbb{Q}$!

This seems hopeless. However, there is a work-around:

1. Instead of considering a group acting on periods P, we can study the group which acts on their defining data (i.e., an integrand and a domain of integration). The latter can be replaced with finite linear algebra (cohomology).
2. We should expect the Galois group of most periods to be infinite. They will be algebraic subgroups of GL_n.

....at a Galois theory of periods?
So given any non-algebraic period \(p \in P \), we would have little hope of computing the action of \(G_P \) on it. For if we could show that its orbit under \(G_P \) is infinite, we would immediately deduce that \(p \) is transcendental. But we can’t even prove that \(\zeta(5) \notin \mathbb{Q} \)!

This seems hopeless. However, there is a work-around:

1. Instead of considering a group acting on periods \(P \), we can study the group which acts on their defining data (i.e., an integrand and a domain of integration). The latter can be replaced with finite linear algebra (cohomology).

2. We should expect the Galois group of most periods to be infinite. They will be algebraic subgroups of \(GL_n \).
So given any non-algebraic period $p \in P$, we would have little hope of computing the action of G_P on it. For if we could show that its orbit under G_P is infinite, we would immediately deduce that p is transcendental. But we can’t even prove that $\zeta(5) \notin \mathbb{Q}$!

This seems hopeless. However, there is a work-around:

1. Instead of considering a group acting on periods P, we can study the group which acts on their defining data (i.e., an integrand and a domain of integration). The latter can be replaced with finite linear algebra (cohomology).

2. We should expect the Galois group of most periods to be infinite. They will be algebraic subgroups of GL_n.
So given any non-algebraic period \(p \in P \), we would have little hope of computing the action of \(G_P \) on it. For if we could show that its orbit under \(G_P \) is infinite, we would immediately deduce that \(p \) is transcendental. But we can’t even prove that \(\zeta(5) \notin \mathbb{Q}! \)

This seems hopeless. However, there is a work-around:

1. Instead of considering a group acting on periods \(P \), we can study the group which acts on their defining data (i.e., an integrand and a domain of integration). The latter can be replaced with finite linear algebra (cohomology).

2. We should expect the Galois group of most periods to be infinite. They will be algebraic subgroups of \(GL_n \).
Let X be a smooth affine variety over \mathbb{Q}. For example, the locus
\[\{(x_1, \ldots, x_n) : f_i = 0, g_j \neq 0\} , \] where f_i, g_j are finite sets of polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$.

Its complex points $X(\mathbb{C})$ is a smooth manifold. The ordinary singular (Betti) homology $H_n(X(\mathbb{C}); \mathbb{Q})$ is defined by closed chains modulo boundaries. It is a finite-dimensional vector space over \mathbb{Q}.

Example. Let $X = \mathbb{P}^1 \setminus \{0, \infty\}$, the Riemann sphere punctured at two points. It satisfies $X(\mathbb{C}) = \mathbb{C}^\times$.

It is connected, so $H_0(X(\mathbb{C})) = \mathbb{Q}$, and homotopic to a circle, so $H_1(X(\mathbb{C}); \mathbb{Q}) = \mathbb{Q}[\gamma]$ has a single generator, the class of the loop γ.
Periods and cohomology

Let X be a smooth affine variety over \mathbb{Q}. For example, the locus \{(x_1, \ldots, x_n) : f_i = 0, g_j \neq 0\}, where f_i, g_j are finite sets of polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$.

Its complex points $X(\mathbb{C})$ is a smooth manifold. The ordinary singular (Betti) homology $H_n(X(\mathbb{C}); \mathbb{Q})$ is defined by closed chains modulo boundaries. It is a finite-dimensional vector space over \mathbb{Q}.

Example. Let $X = \mathbb{P}^1 \setminus \{0, \infty\}$, the Riemann sphere punctured at two points. It satisfies $X(\mathbb{C}) = \mathbb{C}^\times$.

It is connected, so $H_0(X(\mathbb{C})) = \mathbb{Q}$, and homotopic to a circle, so $H_1(X(\mathbb{C}); \mathbb{Q}) = \mathbb{Q}[\gamma]$ has a single generator, the class of the loop γ.
Let X be a smooth affine variety over \mathbb{Q}. For example, the locus
\[\{(x_1, \ldots, x_n) : f_i = 0, g_j \neq 0\},\]where f_i, g_j are finite sets of polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$.

Its complex points $X(\mathbb{C})$ is a smooth manifold. The ordinary singular (Betti) homology $H_n(X(\mathbb{C}); \mathbb{Q})$ is defined by closed chains modulo boundaries. It is a finite-dimensional vector space over \mathbb{Q}.

Example. Let $X = \mathbb{P}^1 \setminus \{0, \infty\}$, the Riemann sphere punctured at two points. It satisfies $X(\mathbb{C}) = \mathbb{C}^\times$.

\[
\begin{array}{c}
0 \\
\gamma
\end{array}
\]

It is connected, so $H_0(X(\mathbb{C})) = \mathbb{Q}$, and homotopic to a circle, so $H_1(X(\mathbb{C}); \mathbb{Q}) = \mathbb{Q}[\gamma]$ has a single generator, the class of the loop γ.
Let X be a smooth affine variety over \mathbb{Q}. For example, the locus
\[\{ (x_1, \ldots, x_n) : f_i = 0, g_j \neq 0 \} \]
where f_i, g_j are finite sets of polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$. Its complex points $X(\mathbb{C})$ is a smooth manifold. The ordinary singular (Betti) homology $H_n(X(\mathbb{C}); \mathbb{Q})$ is defined by closed chains modulo boundaries. It is a finite-dimensional vector space over \mathbb{Q}.

Example. Let $X = \mathbb{P}^1 \setminus \{0, \infty\}$, the Riemann sphere punctured at two points. It satisfies $X(\mathbb{C}) = \mathbb{C}^\times$.

It is connected, so $H_0(X(\mathbb{C})) = \mathbb{Q}$, and homotopic to a circle, so $H_1(X(\mathbb{C}); \mathbb{Q}) = \mathbb{Q}[\gamma]$ has a single generator, the class of the loop γ.
Let Ω^n_X denote the ring of global regular differential n-forms defined over \mathbb{Q}. The ordinary differential makes it into a complex

$$
0 \longrightarrow \mathcal{O}_X \xrightarrow{d} \Omega^1_X \xrightarrow{d} \Omega^2_X \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n_X \xrightarrow{d} 0
$$

The cohomology of this complex (closed forms modulo exact forms) defines the algebraic de Rham cohomology

$$H^i_{dR}(X; \mathbb{Q})$$

It is a finite-dimensional vector space over \mathbb{Q}.

Example. For $X = \mathbb{P}^1 \setminus \{0, \infty\}$ we have $n = 1$, $\mathcal{O}_X = \mathbb{Q}[x, x^{-1}]$ and $\Omega^1_X = \mathbb{Q}[x, x^{-1}]dx$. The complex is

$$
0 \longrightarrow \mathbb{Q}[x, x^{-1}] \xrightarrow{d} \mathbb{Q}[x, x^{-1}]dx \longrightarrow 0
$$

We have $H^0(X; \mathbb{Q}) = \mathbb{Q}$, and since dx/x has no primitive,

$$H^1_{dR}(X; \mathbb{Q}) = \mathbb{Q}\left[\frac{dx}{x}\right].$$
Let Ω^n_X denote the ring of global regular differential n-forms defined over \mathbb{Q}. The ordinary differential makes it into a complex

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{d} \Omega^1_X \xrightarrow{d} \Omega^2_X \xrightarrow{d} \ldots \xrightarrow{d} \Omega^n_X \longrightarrow 0$$

The cohomology of this complex (closed forms modulo exact forms) defines the algebraic de Rham cohomology $H^i_{dR}(X; \mathbb{Q})$.

It is a finite-dimensional vector space over \mathbb{Q}.

Example. For $X = \mathbb{P}^1 \setminus \{0, \infty\}$ we have $n = 1$, $\mathcal{O}_X = \mathbb{Q}[x, x^{-1}]$ and $\Omega^1_X = \mathbb{Q}[x, x^{-1}]dx$. The complex is

$$0 \longrightarrow \mathbb{Q}[x, x^{-1}] \xrightarrow{d} \mathbb{Q}[x, x^{-1}]dx \longrightarrow 0$$

We have $H^0(X; \mathbb{Q}) = \mathbb{Q}$, and since dx/x has no primitive,

$$H^1_{dR}(X; \mathbb{Q}) = \mathbb{Q} \left[\frac{dx}{x} \right].$$
Algebraic de Rham cohomology for affine X

Let Ω^n_X denote the ring of global regular differential n-forms defined over \mathbb{Q}. The ordinary differential makes it into a complex

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{d} \Omega^1_X \xrightarrow{d} \Omega^2_X \xrightarrow{d} \ldots \xrightarrow{d} \Omega^n_X \longrightarrow 0$$

The cohomology of this complex (closed forms modulo exact forms) defines the algebraic de Rham cohomology

$$H^i_{dR}(X; \mathbb{Q})$$

It is a finite-dimensional vector space over \mathbb{Q}.

Example. For $X = \mathbb{P}^1 \setminus \{0, \infty\}$ we have $n = 1$, $\mathcal{O}_X = \mathbb{Q}[x, x^{-1}]$ and $\Omega^1_X = \mathbb{Q}[x, x^{-1}]dx$. The complex is

$$0 \longrightarrow \mathbb{Q}[x, x^{-1}] \xrightarrow{d} \mathbb{Q}[x, x^{-1}]dx \longrightarrow 0$$

We have $H^0(X; \mathbb{Q}) = \mathbb{Q}$, and since dx/x has no primitive,

$$H^1_{dR}(X; \mathbb{Q}) = \mathbb{Q}\left[\frac{dx}{x}\right].$$
Let Ω^n_X denote the ring of global regular differential n-forms defined over \mathbb{Q}. The ordinary differential makes it into a complex

$$0 \rightarrow \mathcal{O}_X \xrightarrow{d} \Omega^1_X \xrightarrow{d} \Omega^2_X \xrightarrow{d} \ldots \xrightarrow{d} \Omega^n_X \rightarrow 0$$

The cohomology of this complex (closed forms modulo exact forms) defines the algebraic de Rham cohomology

$$H^i_{dR}(X; \mathbb{Q})$$

It is a finite-dimensional vector space over \mathbb{Q}.

Example. For $X = \mathbb{P}^1 \setminus \{0, \infty\}$ we have $n = 1$, $\mathcal{O}_X = \mathbb{Q}[x, x^{-1}]$ and $\Omega^1_X = \mathbb{Q}[x, x^{-1}]dx$. The complex is

$$0 \rightarrow \mathbb{Q}[x, x^{-1}] \xrightarrow{d} \mathbb{Q}[x, x^{-1}]dx \rightarrow 0$$

We have $H^0(X; \mathbb{Q}) = \mathbb{Q}$, and since dx/x has no primitive,

$$H^1_{dR}(X; \mathbb{Q}) = \mathbb{Q}\left[\frac{dx}{x}\right] .$$
Integration pairs homology (cycles) with differential forms.

\[H^dR_n(X(\mathbb{C})) \otimes_{\mathbb{Q}} H_n(X(\mathbb{C})) \longrightarrow \mathbb{C} \]

\[\omega \otimes \gamma \longmapsto \int_\gamma \omega \]

A better way to state this is via

Theorem (Grothendieck - de Rham comparison isomorphism)

There is a natural isomorphism

\[\text{comp} : H^dR_n(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \overset{\sim}{\longrightarrow} H^B_n(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \]

Betti cohomology \(H^B_n(X; \mathbb{Q}) \) is defined to be the dual of homology \(H_n(X(\mathbb{C}); \mathbb{Q})^\vee \). The map \(\text{comp} \) is \(\omega \mapsto (\gamma \mapsto \int_\gamma \omega) \).

In particular, de Rham and Betti cohomology have the same dimension.
Comparison isomorphism

Integration pairs homology (cycles) with differential forms.

\[H^n_{dR}(X(\mathbb{C})) \otimes_{\mathbb{Q}} H_n(X(\mathbb{C})) \rightarrow \mathbb{C} \]

\[\omega \otimes \gamma \mapsto \int_{\gamma} \omega \]

A better way to state this is via

Theorem (Grothendieck - de Rham comparison isomorphism)

There is a natural isomorphism

\[\text{comp} : H^n_{dR}(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \simrightarrow H^n_B(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \]

Betti cohomology \(H^n_B(X; \mathbb{Q}) \) is defined to be the dual of homology \(H_n(X(\mathbb{C}); \mathbb{Q})^\vee \). The map \(\text{comp} \) is \(\omega \mapsto (\gamma \mapsto \int_{\gamma} \omega) \).

In particular, de Rham and Betti cohomology have the same dimension.
Comparison isomorphism

Integration pairs homology (cycles) with differential forms.

\[H^n_{dR}(X(\mathbb{C})) \otimes_{\mathbb{Q}} H_n(X(\mathbb{C})) \rightarrow \mathbb{C} \]

\[\omega \otimes \gamma \mapsto \int_\gamma \omega \]

A better way to state this is via

Theorem (Grothendieck - de Rham comparison isomorphism)

There is a natural isomorphism

\[\text{comp} : H^n_{dR}(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \sim H^n_B(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \]

Betti cohomology \(H^n_B(X; \mathbb{Q}) \) is defined to be the dual of homology \(H_n(X(\mathbb{C}); \mathbb{Q})^\vee \). The map \(\text{comp} \) is \(\omega \mapsto (\gamma \mapsto \int_\gamma \omega) \).

In particular, de Rham and Betti cohomology have the same dimension.
Comparison isomorphism

Integration pairs homology (cycles) with differential forms.

\[
H^n_{dR}(X(\mathbb{C})) \otimes_{\mathbb{Q}} H_n(X(\mathbb{C})) \rightarrow \mathbb{C}
\]

\[
\omega \otimes \gamma \mapsto \int_{\gamma} \omega
\]

A better way to state this is via

Theorem (Grothendieck - de Rham comparison isomorphism)

There is a natural isomorphism

\[
\text{comp} : H^n_{dR}(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \sim H^n_B(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}
\]

Betti cohomology \(H^n_B(X; \mathbb{Q}) \) is defined to be the dual of homology \(H_n(X(\mathbb{C}); \mathbb{Q})^\vee \). The map \(\text{comp} \) is \(\omega \mapsto (\gamma \mapsto \int_{\gamma} \omega) \).

In particular, de Rham and Betti cohomology have the same dimension.
Example: $2\pi i$

Return to our example $X = \mathbb{P}^1 \setminus \{0, \infty\}$. We calculated $H_1(X(\mathbb{C}); \mathbb{Q}) = \mathbb{Q}[\gamma]$, and $H^1_{dR}(X; \mathbb{Q}) = \mathbb{Q}[\frac{dx}{x}]$.

Cauchy’s theorem is equivalent to the statement

$$2\pi i = \int_\gamma \frac{dx}{x} \quad (1)$$

The comparison isomorphism is therefore given by

$$\text{comp} : \quad H^1_{dR}(X; \mathbb{Q}) \otimes_\mathbb{Q} \mathbb{C} \xrightarrow{\sim} H^1_B(X) \otimes_\mathbb{Q} \mathbb{C}$$

$$\left[\frac{dx}{x}\right] \otimes 1 \mapsto [\gamma]^\vee \otimes 2\pi i$$

The integral (1) is entirely encoded by the data:

$$\left[\frac{dx}{x}\right] \in H^1_{dR}(X; \mathbb{Q}) , \quad [\gamma] \in (H^1_B(X))^\vee$$

and the map comp which tells us how to do the integration.
Return to our example $X = \mathbb{P}^1 \setminus \{0, \infty\}$. We calculated $H_1(X(\mathbb{C}); \mathbb{Q}) = \mathbb{Q}[\gamma]$, and $H^1_{dR}(X; \mathbb{Q}) = \mathbb{Q}[\frac{dx}{x}]$.

Cauchy’s theorem is equivalent to the statement

$$2\pi i = \int_{\gamma} \frac{dx}{x} \quad (1)$$

The comparison isomorphism is therefore given by

$$\text{comp} : \quad H^1_{dR}(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \quad \sim \quad H^1_B(X) \otimes_{\mathbb{Q}} \mathbb{C}$$

$$\left[\frac{dx}{x} \right] \otimes 1 \quad \mapsto \quad [\gamma]^\vee \otimes 2\pi i$$

The integral (1) is entirely encoded by the data:

$$\left[\frac{dx}{x} \right] \in H^1_{dR}(X; \mathbb{Q}) , \quad [\gamma] \in (H^1_B(X))^\vee$$

and the map comp which tells us how to do the integration.
Return to our example $X = \mathbb{P}^1 \setminus \{0, \infty\}$. We calculated $H_1(X(\mathbb{C}); \mathbb{Q}) = \mathbb{Q}[\gamma]$, and $H_{dR}^1(X; \mathbb{Q}) = \mathbb{Q}[\frac{dx}{x}]$.

Cauchy’s theorem is equivalent to the statement

$$2\pi i = \int_{\gamma} \frac{dx}{x} \quad (1)$$

The comparison isomorphism is therefore given by

$$\text{comp} : \quad H_{dR}^1(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \quad \sim \quad H_B^1(X) \otimes_{\mathbb{Q}} \mathbb{C}$$

$$\left[\frac{dx}{x} \right] \otimes 1 \quad \mapsto \quad [\gamma]^\vee \otimes 2\pi i$$

The integral (1) is entirely encoded by the data:

$$\left[\frac{dx}{x} \right] \in H_{dR}^1(X; \mathbb{Q}) , \quad [\gamma] \in (H_B^1(X))^\vee$$

and the map comp which tells us how to do the integration.
Example: $2\pi i$

Return to our example $X = \mathbb{P}^1 \setminus \{0, \infty\}$. We calculated $H_1(X(\mathbb{C}); \mathbb{Q}) = \mathbb{Q}[\gamma]$, and $H^1_{dR}(X; \mathbb{Q}) = \mathbb{Q}[\frac{dx}{x}]$.

Cauchy’s theorem is equivalent to the statement

$$2\pi i = \int_{\gamma} \frac{dx}{x} \quad (1)$$

The comparison isomorphism is therefore given by

$$\text{comp} : \quad H^1_{dR}(X; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \xrightarrow{\sim} H^1_B(X) \otimes_{\mathbb{Q}} \mathbb{C}$$

$$\left[\frac{dx}{x} \right] \otimes 1 \mapsto [\gamma]^\vee \otimes 2\pi i$$

The integral (1) is entirely encoded by the data:

$$\left[\frac{dx}{x} \right] \in H^1_{dR}(X; \mathbb{Q}) , \quad [\gamma] \in (H^1_B(X))^\vee$$

and the map comp which tells us how to do the integration.
We can therefore replace the number $2\pi i$ with the data

$$(((H^1_{dR}(X; \mathbb{Q}), H^1_B(X), \text{comp}), \left[\frac{dx}{x}\right], [\gamma]))$$

where $X = \mathbb{P}^1 \setminus \{0, \infty\}$. We can recover the period $2\pi i$ via

$$2\pi i = \langle \text{comp}(\left[\frac{dx}{x}\right]), [\gamma] \rangle .$$

The geometry in the integral is represented by linear algebra data

$$(H^1_{dR}(X; \mathbb{Q}), H^1_B(X), \text{comp}).$$

It consists of

$$(V_{dR}, V_B, c)$$

where V_{dR}, and V_B are finite-dimensional \mathbb{Q}-vector spaces, and c is an isomorphism $c : V_{dR} \otimes \mathbb{C} \sim V_B \otimes \mathbb{C}$. This can be formalised.
‘Algebraic’ version of $2\pi i$

We can therefore replace the number $2\pi i$ with the data

$$(((H^1_{dR}(X; \mathbb{Q}), H^1_B(X), \text{comp}), [\frac{dx}{x}], [\gamma])$$

where $X = \mathbb{P}^1\backslash\{0, \infty\}$. We can recover the period $2\pi i$ via

$$2\pi i = \langle \text{comp}(\frac{dx}{x}), [\gamma] \rangle .$$

The geometry in the integral is represented by linear algebra data $(H^1_{dR}(X; \mathbb{Q}), H^1_B(X), \text{comp})$. It consists of

$$(V_{dR}, V_B, c)$$

where V_{dR} and V_B are finite-dimensional \mathbb{Q}-vector spaces, and c is an isomorphism $c : V_{dR} \otimes \mathbb{C} \sim V_B \otimes \mathbb{C}$. This can be formalised.
We can therefore replace the number $2\pi i$ with the data

$$(\left(H^1_{dR}(X; \mathbb{Q}), H^1_B(X), \text{comp}\right), \left[\frac{dx}{x}\right], [\gamma])$$

where $X = \mathbb{P}^1 \setminus \{0, \infty\}$. We can recover the period $2\pi i$ via

$$2\pi i = \langle \text{comp}(\left[\frac{dx}{x}\right]), [\gamma] \rangle .$$

The geometry in the integral is represented by linear algebra data $(H^1_{dR}(X; \mathbb{Q}), H^1_B(X), \text{comp})$. It consists of

$$(V_{dR}, V_B, c)$$

where V_{dR}, and V_B are finite-dimensional \mathbb{Q}-vector spaces, and c is an isomorphism $c : V_{dR} \otimes \mathbb{C} \sim V_B \otimes \mathbb{C}$. This can be formalised.
Consider the category of triples

\[\mathcal{I} : \text{Objects} \quad V = (V_{dR}, V_B, c) \]

with morphisms given by compatible linear maps. A matrix coefficient is an equivalence class

\[[V, \omega, \gamma] \quad \text{where} \quad \omega \in V_{dR}, \gamma \in V_B^\vee \]

modulo the relations

1. (Linearity) For \(\lambda_1, \lambda_2 \in \mathbb{Q} \),

\[[V, \lambda_1 \omega_1 + \lambda_2 \omega_2, \gamma] = \lambda_1[V, \omega_1, \gamma] + \lambda_2[V, \omega_2, \gamma] \]

and similarly for \(\gamma \).

2. (Functoriality) For all morphisms \(\phi : V \to V' \) in \(\mathcal{I} \),

\[[V, \omega, (\phi_B)^\vee(\gamma)] = [V', \phi_{dR}(\omega), \gamma] \]

These relations mirror (but are more flexible than) the relations between elementary periods discussed in the first lecture.
Matrix coefficients

Consider the category of triples

\[\mathcal{T} : \text{Objects} \quad V = (V_{dR}, V_B, c) \]

with morphisms given by compatible linear maps. A matrix coefficient is an equivalence class

\[[V, \omega, \gamma] \quad \text{where} \quad \omega \in V_{dR}, \gamma \in V_B^\vee \]

modulo the relations

1. (Linearity) For \(\lambda_1, \lambda_2 \in \mathbb{Q} \),

\[[V, \lambda_1 \omega_1 + \lambda_2 \omega_2, \gamma] = \lambda_1[V, \omega_1, \gamma] + \lambda_2[V, \omega_2, \gamma] \]

and similarly for \(\gamma \).

2. (Functoriality) For all morphisms \(\phi : V \to V' \) in \(\mathcal{T} \),

\[[V, \omega, (\phi_B)^\vee(\gamma)] = [V', \phi_{dR}(\omega), \gamma] \]

These relations mirror (but are more flexible than) the relations between elementary periods discussed in the first lecture.
Matrix coefficients

Consider the category of triples

\[\mathcal{T} : \quad \text{Objects} \quad V = (V_{dR}, V_B, c) \]

with morphisms given by compatible linear maps. A matrix coefficient is an equivalence class

\[[V, \omega, \gamma] \quad \text{where} \quad \omega \in V_{dR}, \gamma \in V_B^\vee \]

modulo the relations

1. (Linearity) For \(\lambda_1, \lambda_2 \in \mathbb{Q} \),

\[[V, \lambda_1 \omega_1 + \lambda_2 \omega_2, \gamma] = \lambda_1[V, \omega_1, \gamma] + \lambda_2[V, \omega_2, \gamma] \]

and similarly for \(\gamma \).

2. (Functoriality) For all morphisms \(\phi : V \to V' \) in \(\mathcal{T} \),

\[[V, \omega, (\phi_B)^\vee(\gamma)] = [V', \phi_{dR}(\omega), \gamma] \]

These relations mirror (but are more flexible than) the relations between elementary periods discussed in the first lecture.
Matrix coefficients

Consider the category of triples

\[\mathcal{T} : \text{Objects} \quad V = (V_{dR}, V_B, c) \]

with morphisms given by compatible linear maps. A matrix coefficient is an equivalence class

\[[V, \omega, \gamma] \text{ where } \omega \in V_{dR}, \gamma \in V_B^\vee \]

modulo the relations

1. (Linearity) For \(\lambda_1, \lambda_2 \in \mathbb{Q} \),

\[[V, \lambda_1 \omega_1 + \lambda_2 \omega_2, \gamma] = \lambda_1 [V, \omega_1, \gamma] + \lambda_2 [V, \omega_2, \gamma] \]

and similarly for \(\gamma \).

2. (Functoriality) For all morphisms \(\phi : V \to V' \) in \(\mathcal{T} \),

\[[V, \omega, (\phi_B)^\vee(\gamma)] = [V', \phi_{dR}(\omega), \gamma] \]

These relations mirror (but are more flexible than) the relations between elementary periods discussed in the first lecture.
Consider the category of triples

\[T : \text{Objects } V = (V_{dR}, V_B, c) \]

with morphisms given by compatible linear maps. A matrix coefficient is an equivalence class

\[[V, \omega, \gamma] \quad \text{where} \quad \omega \in V_{dR}, \gamma \in V_B^\vee \]

modulo the relations

1. (Linearity) For \(\lambda_1, \lambda_2 \in \mathbb{Q} \),

\[[V, \lambda_1 \omega_1 + \lambda_2 \omega_2, \gamma] = \lambda_1 [V, \omega_1, \gamma] + \lambda_2 [V, \omega_2, \gamma] \]

and similarly for \(\gamma \).

2. (Functoriality) For all morphisms \(\phi : V \to V' \) in \(T \),

\[[V, \omega, (\phi_B)^\vee(\gamma)] = [V', \phi_{dR}(\omega), \gamma] \]

These relations mirror (but are more flexible than) the relations between elementary periods discussed in the first lecture.
Motivic periods

Think of an equivalence class $[V, \omega, \gamma]$ as a ‘disembodied integral’ $\int_\gamma \omega$. Then the relations correspond to our usual intuition about manipulating integrals. There is a multiplication

$$[V_1, \omega_1, \gamma_1] \times [V_2, \omega_2, \gamma_2] = [V_1 \otimes V_2, \omega_1 \otimes \omega_2, \gamma_1 \otimes \gamma_2].$$

The set of matrix coefficients forms a ring of ‘\mathcal{T}-periods’ $\mathcal{P}_\mathcal{T}$. It is equipped with a period homomorphism

$$\text{per} : \mathcal{P}_\mathcal{T} \rightarrow \mathbb{C}$$

$$[V, \omega, \gamma] \mapsto \langle \text{comp} (\omega), \gamma \rangle$$

Warning: many \mathcal{T}-periods have nothing to do with periods in the sense of the first lecture. Only some of them actually come from period integrals. These are the ones where

$$(V_{dR}, V_B, c)$$

are the cohomology of an algebraic variety

We are only interested in the subring $\mathcal{P}^m \subset \mathcal{P}_\mathcal{T}$ that they span.
Think of an equivalence class \([V, \omega, \gamma]\) as a ‘disembodied integral’ \(\int_\gamma \omega\). Then the relations correspond to our usual intuition about manipulating integrals. There is a multiplication

\[
[V_1, \omega_1, \gamma_1] \times [V_2, \omega_2, \gamma_2] = [V_1 \otimes V_2, \omega_1 \otimes \omega_2, \gamma_1 \otimes \gamma_2].
\]

The set of matrix coefficients forms a ring of ‘\(\mathcal{T}\)-periods’ \(\mathcal{P}_\mathcal{T}\). It is equipped with a period homomorphism

\[
\text{per} : \mathcal{P}_\mathcal{T} \rightarrow \mathbb{C}
\]

\[
[V, \omega, \gamma] \mapsto \langle \text{comp}(\omega), \gamma \rangle
\]

Warning: many \(\mathcal{T}\)-periods have nothing to do with periods in the sense of the first lecture. Only some of them actually come from period integrals. These are the ones where

\((V_{dR}, V_B, c)\) are the cohomology of an algebraic variety

We are only interested in the subring \(\mathcal{P}^m \subset \mathcal{P}_\mathcal{T}\) that they span.
Motivic periods

Think of an equivalence class \([V, \omega, \gamma]\) as a ‘disembodied integral’ \(\int_{\gamma} \omega\). Then the relations correspond to our usual intuition about manipulating integrals. There is a multiplication

\[
[V_1, \omega_1, \gamma_1] \times [V_2, \omega_2, \gamma_2] = [V_1 \otimes V_2, \omega_1 \otimes \omega_2, \gamma_1 \otimes \gamma_2].
\]

The set of matrix coefficients forms a ring of ‘\(\mathcal{T}\)-periods’ \(\mathcal{P}_\mathcal{T}\). It is equipped with a period homomorphism

\[
\text{per} : \mathcal{P}_\mathcal{T} \rightarrow \mathbb{C}
\]

\[
[V, \omega, \gamma] \mapsto \langle \text{comp} (\omega), \gamma \rangle
\]

Warning: many \(\mathcal{T}\)-periods have nothing to do with periods in the sense of the first lecture. Only some of them actually come from period integrals. These are the ones where

\[
(V_{dR}, V_B, c)
\]

are the cohomology of an algebraic variety

We are only interested in the subring \(\mathcal{P}_m \subset \mathcal{P}_\mathcal{T}\) that they span.
Think of an equivalence class $[V, \omega, \gamma]$ as a ‘disembodied integral’ $\int_\gamma \omega$. Then the relations correspond to our usual intuition about manipulating integrals. There is a multiplication

$$[V_1, \omega_1, \gamma_1] \times [V_2, \omega_2, \gamma_2] = [V_1 \otimes V_2, \omega_1 \otimes \omega_2, \gamma_1 \otimes \gamma_2].$$

The set of matrix coefficients forms a ring of ‘\mathcal{T}-periods’ $\mathcal{P}_\mathcal{T}$. It is equipped with a period homomorphism

$$\text{per} : \mathcal{P}_\mathcal{T} \longrightarrow \mathbb{C}$$

$$[V, \omega, \gamma] \mapsto \langle \text{comp} (\omega), \gamma \rangle$$

Warning: many \mathcal{T}-periods have nothing to do with periods in the sense of the first lecture. Only some of them actually come from period integrals. These are the ones where

$$(V_{dR}, V_B, c)$$

are the cohomology of an algebraic variety

We are only interested in the subring $\mathcal{P}^m \subset \mathcal{P}_\mathcal{T}$ that they span.
Think of an equivalence class \([V, \omega, \gamma]\) as a ‘disembodied integral’ \(\int_\gamma \omega\). Then the relations correspond to our usual intuition about manipulating integrals. There is a multiplication

\[[V_1, \omega_1, \gamma_1] \times [V_2, \omega_2, \gamma_2] = [V_1 \otimes V_2, \omega_1 \otimes \omega_2, \gamma_1 \otimes \gamma_2] . \]

The set of matrix coefficients forms a ring of ‘\(\mathcal{T}\)-periods’ \(\mathcal{P}_\mathcal{T}\). It is equipped with a period homomorphism

\[
\text{per} : \mathcal{P}_\mathcal{T} \longrightarrow \mathbb{C}
\]

\[
[V, \omega, \gamma] \mapsto \langle \text{comp}(\omega), \gamma \rangle
\]

Warning: many \(\mathcal{T}\)-periods have nothing to do with periods in the sense of the first lecture. Only some of them actually come from period integrals. These are the ones where

\[
(V_{dR}, V_B, c)
\]

are the cohomology of an algebraic variety

We are only interested in the subring \(\mathcal{P}^m \subset \mathcal{P}_\mathcal{T}\) that they span.
Think of an equivalence class $[V, \omega, \gamma]$ as a ‘disembodied integral’ $\int_\gamma \omega$. Then the relations correspond to our usual intuition about manipulating integrals. There is a multiplication

$$[V_1, \omega_1, \gamma_1] \times [V_2, \omega_2, \gamma_2] = [V_1 \otimes V_2, \omega_1 \otimes \omega_2, \gamma_1 \otimes \gamma_2].$$

The set of matrix coefficients forms a ring of ‘\mathcal{T}-periods’ $\mathcal{P}_\mathcal{T}$. It is equipped with a period homomorphism

$$\text{per} : \mathcal{P}_\mathcal{T} \longrightarrow \mathbb{C}$$

$$[V, \omega, \gamma] \mapsto \langle \text{comp} (\omega), \gamma \rangle$$

Warning: many \mathcal{T}-periods have nothing to do with periods in the sense of the first lecture. Only some of them actually come from period integrals. These are the ones where

$$(V_{dR}, V_B, c)$$

are the cohomology of an algebraic variety

We are only interested in the subring $\mathcal{P}^m \subset \mathcal{P}_\mathcal{T}$ that they span.
Galois theory of motivic periods

Tannaka theory naturally provides a Galois group \mathcal{G} acting on the ring $\mathcal{P}_\mathcal{T}$. It is an affine group scheme, for simplicity we shall only look at its rational points $\mathcal{G}(\mathbb{Q})$. This is just a group.

The group \mathcal{G} is the (Tannaka) group of linear symmetries of \mathcal{T}. It is the largest group which acts linearly on V_{dR} for all objects (V_{dR}, V_B, c) in \mathcal{T} in a compatible way. In particular, for every such object, we get a homomorphism

$$\mathcal{G}(\mathbb{Q}) \to GL(V_{dR})$$

which preserves subobjects and subquotients of $V = (V_{dR}, V_B, c)$.

The group \mathcal{G} acts on the ring of periods $\mathcal{P}_\mathcal{T}$ as follows:

$$g[V, \omega, \gamma] = [V, g\omega, \nu] \quad g \in \mathcal{G}(\mathbb{Q}).$$

It acts on integrals by changing the ‘differential’ form $\omega \in V_{dR}$. It is clear that \mathcal{G} will preserve the subspace of matrix coefficients which come from geometry, because V is unchanged in both sides.
Galois theory of motivic periods

Tannaka theory naturally provides a Galois group \mathcal{G} acting on the ring \mathcal{P}_T. It is an affine group scheme, for simplicity we shall only look at its rational points $\mathcal{G}(\mathbb{Q})$. This is just a group.

The group \mathcal{G} is the (Tannaka) group of linear symmetries of \mathcal{T}. It is the largest group which acts linearly on V_{dR} for all objects (V_{dR}, V_B, c) in \mathcal{T} in a compatible way. In particular, for every such object, we get a homomorphism

$$\mathcal{G}(\mathbb{Q}) \to GL(V_{dR})$$

which preserves subobjects and subquotients of $V = (V_{dR}, V_B, c)$.

The group \mathcal{G} acts on the ring of periods \mathcal{P}_T as follows:

$$g[V, \omega, \gamma] = [V, g\omega, \nu] \quad g \in \mathcal{G}(\mathbb{Q}).$$

It acts on integrals by changing the ‘differential’ form $\omega \in V_{dR}$. It is clear that \mathcal{G} will preserve the subspace of matrix coefficients which come from geometry, because V is unchanged in both sides.
Galois theory of motivic periods

Tannaka theory naturally provides a Galois group \mathcal{G} acting on the ring \mathcal{P}_T. It is an affine group scheme, for simplicity we shall only look at its rational points $\mathcal{G}(\mathbb{Q})$. This is just a group.

The group \mathcal{G} is the (Tannaka) group of linear symmetries of \mathcal{T}. It is the largest group which acts linearly on V_{dR} for all objects (V_{dR}, V_B, c) in \mathcal{T} in a compatible way.

In particular, for every such object, we get a homomorphism

$$\mathcal{G}(\mathbb{Q}) \to GL(V_{dR})$$

which preserves subobjects and subquotients of $V = (V_{dR}, V_B, c)$.

The group \mathcal{G} acts on the ring of periods \mathcal{P}_T as follows:

$$g[V, \omega, \gamma] = [V, g\omega, v] \quad g \in \mathcal{G}(\mathbb{Q}).$$

It acts on integrals by changing the ‘differential’ form $\omega \in V_{dR}$. It is clear that \mathcal{G} will preserve the subspace of matrix coefficients which come from geometry, because V is unchanged in both sides.
Tannaka theory naturally provides a Galois group \(\mathcal{G} \) acting on the ring \(\mathcal{P}_\mathcal{T} \). It is an affine group scheme, for simplicity we shall only look at its rational points \(\mathcal{G}(\mathbb{Q}) \). This is just a group.

The group \(\mathcal{G} \) is the (Tannaka) group of linear symmetries of \(\mathcal{T} \). It is the largest group which acts linearly on \(V_{dR} \) for all objects \((V_{dR}, V_B, c)\) in \(\mathcal{T} \) in a compatible way. In particular, for every such object, we get a homomorphism

\[
\mathcal{G}(\mathbb{Q}) \to GL(V_{dR})
\]

which preserves subobjects and subquotients of \(V = (V_{dR}, V_B, c) \).

The group \(\mathcal{G} \) acts on the ring of periods \(\mathcal{P}_\mathcal{T} \) as follows:

\[
g[V, \omega, \gamma] = [V, g\omega, \nu] \quad g \in \mathcal{G}(\mathbb{Q})
\]

It acts on integrals by changing the ‘differential’ form \(\omega \in V_{dR} \). It is clear that \(\mathcal{G} \) will preserve the subspace of matrix coefficients which come from geometry, because \(V \) is unchanged in both sides.
Tannaka theory naturally provides a Galois group G acting on the ring $\mathcal{P}_\mathcal{T}$. It is an affine group scheme, for simplicity we shall only look at its rational points $G(\mathbb{Q})$. This is just a group.

The group G is the (Tannaka) group of linear symmetries of \mathcal{T}. It is the largest group which acts linearly on V_{dR} for all objects (V_{dR}, V_B, c) in \mathcal{T} in a compatible way. In particular, for every such object, we get a homomorphism

$$G(\mathbb{Q}) \to \text{GL}(V_{dR})$$

which preserves subobjects and subquotients of $V = (V_{dR}, V_B, c)$.

The group G acts on the ring of periods $\mathcal{P}_\mathcal{T}$ as follows:

$$g[V, \omega, \gamma] = [V, g\omega, v] \quad g \in G(\mathbb{Q}).$$

It acts on integrals by changing the ‘differential’ form $\omega \in V_{dR}$. It is clear that G will preserve the subspace of matrix coefficients which come from geometry, because V is unchanged in both sides.
Galois theory of motivic periods

Tannaka theory naturally provides a Galois group G acting on the ring $\mathcal{P}_\mathcal{T}$. It is an affine group scheme, for simplicity we shall only look at its rational points $G(\mathbb{Q})$. This is just a group.

The group G is the (Tannaka) group of linear symmetries of \mathcal{T}. It is the largest group which acts linearly on V_{dR} for all objects (V_{dR}, V_B, c) in \mathcal{T} in a compatible way. In particular, for every such object, we get a homomorphism

$$G(\mathbb{Q}) \rightarrow GL(V_{dR})$$

which preserves subobjects and subquotients of $V = (V_{dR}, V_B, c)$.

The group G acts on the ring of periods $\mathcal{P}_\mathcal{T}$ as follows:

$$g[V, \omega, \gamma] = [V, g\omega, v] \quad g \in G(\mathbb{Q})$$

It acts on integrals by changing the ‘differential’ form $\omega \in V_{dR}$. It is clear that G will preserve the subspace of matrix coefficients which come from geometry, because V is unchanged in both sides.
Example: Galois action on $(2\pi i)^m$

Recall $X = \mathbb{P}^1 \setminus \{0, \infty\}$ and $2\pi i$ was replaced by the data:

$$[H^1(X), \left[\frac{dx}{x} \right], [\gamma]]$$

where $H^1(X) = (H^1(X)_{dR}, H^1_B(X), \text{comp}).$ The group G acts on the de Rham vector space

$$H^1(X)_{dR} = \mathbb{Q}[\frac{dx}{x}]$$

by linear automorphisms. Since it is one-dimensional and $GL_1 = \mathbb{Q}^\times,$ the group scales $\left[\frac{dx}{x} \right]$ by some rational multiple.

Galois action on $2\pi i$

The action of $G(\mathbb{Q})$ on $(2\pi i)^m$ is therefore given by

$$(2\pi i)^m \overset{g}{\mapsto} \lambda_g (2\pi i)^m$$

for some $\lambda_g \in \mathbb{Q}^\times.$ One can show that λ_g is non-trivial.
Example: Galois action on $(2\pi i)^m$

Recall $X = \mathbb{P}^1 \setminus \{0, \infty\}$ and $2\pi i$ was replaced by the data:

$$[H^1(X), [\frac{dx}{x}], [\gamma]]$$

where $H^1(X) = (H^1(X)_{dR}, H^1_B(X), \text{comp})$. The group G acts on the de Rham vector space

$$H^1(X)_{dR} = \mathbb{Q}[\frac{dx}{x}]$$

by linear automorphisms. Since it is one-dimensional and $GL_1 = \mathbb{Q}^\times$, the group scales $[\frac{dx}{x}]$ by some rational multiple.

Galois action on $2\pi i$

The action of $G(\mathbb{Q})$ on $(2\pi i)^m$ is therefore given by

$$(2\pi i)^m \xrightarrow{g} \lambda_g (2\pi i)^m$$

for some $\lambda_g \in \mathbb{Q}^\times$. One can show that λ_g is non-trivial.
Example: Galois action on \((2\pi i)^m\)

Recall \(X = \mathbb{P}^1 \setminus \{0, \infty\}\) and \(2\pi i\) was replaced by the data:

\[
[H^1(X), [\frac{dx}{x}], [\gamma]]
\]

where \(H^1(X) = (H^1(X)_{dR}, H^1_B(X), \text{comp})\). The group \(\mathcal{G}\) acts on the de Rham vector space

\[
H^1(X)_{dR} = \mathbb{Q}\left[\frac{dx}{x}\right]
\]

by linear automorphisms. Since it is one-dimensional and \(GL_1 = \mathbb{Q}^\times\), the group scales \(\left[\frac{dx}{x}\right]\) by some rational multiple.

Galois action on \(2\pi i\)

The action of \(\mathcal{G}(\mathbb{Q})\) on \((2\pi i)^m\) is therefore given by

\[
(2\pi i)^m \mapsto \lambda_g (2\pi i)^m
\]

for some \(\lambda_g \in \mathbb{Q}^\times\). One can show that \(\lambda_g\) is non-trivial.
What’s going on?

We started out with a ring P of periods

$$\mathbb{Q} \subset P \subset \mathbb{C}$$

defined by elementary algebraic integrals

$$\int_\gamma \omega.$$

A naive attempt to study automorphisms of P doesn’t seem to work, and we run into difficult transcendence questions.

Instead, we replaced P with a new ring $P^m \subset P_T$ which tautologically carries an action by its group G of linear symmetries.

$$\mathbb{Q} \subset P^m \subset P_T$$

If we pay the small price of working not in P, but P^m, then we have indeed achieved the goal of constructing a Galois theory of periods.
What’s going on?

We started out with a ring P of periods

$$\mathbb{Q} \subset P \subset \mathbb{C}$$

defined by elementary algebraic integrals

$$\int_\gamma \omega .$$

A naive attempt to study automorphisms of P doesn’t seem to work, and we run into difficult transcendence questions. Instead, we replaced P with a new ring $P^m \subset P_\mathcal{T}$ which
tautologically carries an action by its group \mathcal{G} of linear symmetries.

$$\begin{array}{ccc}
\mathbb{Q} & \subset & P^m \\
\mathbb{Q} & \subset & P \\
\mathbb{Q} & \subset & \mathbb{C}
\end{array}$$

If we pay the small price of working not in P, but P^m, then we have indeed achieved the goal of constructing a Galois theory of periods.
What’s going on?

We started out with a ring P of periods

$$\mathbb{Q} \subset P \subset \mathbb{C}$$

defined by elementary algebraic integrals

$$\int_{\gamma} \omega .$$

A naive attempt to study automorphisms of P doesn’t seem to work, and we run into difficult transcendence questions. Instead, we replaced P with a new ring $\mathcal{P}^m \subset \mathcal{P}_T$ which tautologically carries an action by its group \mathcal{G} of linear symmetries.

$$\begin{array}{c c c c}
\mathbb{Q} & \subset & \mathcal{P}^m & \subset \mathcal{P}_T \\
\| & \downarrow & \downarrow & \\
\mathbb{Q} & \subset & P & \subset \mathbb{C}
\end{array}$$

If we pay the small price of working not in P, but \mathcal{P}^m, then we have indeed achieved the goal of constructing a Galois theory of periods.
What’s going on?

We started out with a ring P of periods

$$\mathbb{Q} \subset P \subset \mathbb{C}$$

defined by elementary algebraic integrals

$$\int_\gamma \omega .$$

A naive attempt to study automorphisms of P doesn’t seem to work, and we run into difficult transcendence questions. Instead, we replaced P with a new ring $\mathcal{P}^m \subset \mathcal{P}_\mathcal{T}$ which \textit{tautologically} carries an action by its group \mathcal{G} of linear symmetries.

$$\mathbb{Q} \subset \mathcal{P}^m \subset \mathcal{P}_\mathcal{T}$$

If we pay the small price of working not in P, but \mathcal{P}^m, then we have indeed achieved the goal of constructing a Galois theory of periods.
Some more examples: logarithm

What happened to Stokes’ formula? This can be captured by including relative cohomology. This is necessary when we consider integrals over chains which have non-trivial boundary.

If \(Z \subset X \) there is a notion of relative singular homology (chains with boundaries contained in \(Z(\mathbb{C}) \)). There is a long exact sequence

\[
\rightarrow H_i(Z(\mathbb{C})) \rightarrow H_i(X(\mathbb{C})) \rightarrow H_i(X(\mathbb{C}), Z(\mathbb{C})) \rightarrow
\]

Likewise, there is a notion of relative algebraic de Rham cohomology, consisting of closed forms whose restriction to \(Z \) vanishes. It sits in a long exact sequence

\[
\rightarrow H_{dR}^i(X, Z) \rightarrow H_{dR}^i(X) \rightarrow H_{dR}^i(Z) \rightarrow H_{dR}^{i+1}(X, Z) \rightarrow
\]
What happened to Stokes’ formula? This can be captured by including relative cohomology. This is necessary when we consider integrals over chains which have non-trivial boundary.

If \(Z \subset X \) there is a notion of relative singular homology (chains with boundaries contained in \(Z(\mathbb{C}) \)). There is a long exact sequence

\[
\rightarrow H_i(Z(\mathbb{C})) \rightarrow H_i(X(\mathbb{C})) \rightarrow H_i(X(\mathbb{C}), Z(\mathbb{C})) \rightarrow
\]

Likewise, there is a notion of relative algebraic de Rham cohomology, consisting of closed forms whose restriction to \(Z \) vanishes. It sits in a long exact sequence

\[
\rightarrow H^i_{dR}(X, Z) \rightarrow H^i_{dR}(X) \rightarrow H^i_{dR}(Z) \rightarrow H^{i+1}_{dR}(X, Z) \rightarrow
\]
What happened to Stokes’ formula? This can be captured by including relative cohomology. This is necessary when we consider integrals over chains which have non-trivial boundary.

If $Z \subset X$ there is a notion of relative singular homology (chains with boundaries contained in $Z(\mathbb{C})$). There is a long exact sequence

$$
\rightarrow H_i(Z(\mathbb{C})) \rightarrow H_i(X(\mathbb{C})) \rightarrow H_i(X(\mathbb{C}), Z(\mathbb{C})) \rightarrow
$$

Likewise, there is a notion of relative algebraic de Rham cohomology, consisting of closed forms whose restriction to Z vanishes. It sits in a long exact sequence

$$
\rightarrow H^i_{dR}(X, Z) \rightarrow H^i_{dR}(X) \rightarrow H^i_{dR}(Z) \rightarrow H^{i+1}_{dR}(X, Z) \rightarrow
$$
Some more examples: logarithm

What happened to Stokes’ formula? This can be captured by including relative cohomology. This is necessary when we consider integrals over chains which have non-trivial boundary.

If $Z \subset X$ there is a notion of relative singular homology (chains with boundaries contained in $Z(\mathbb{C})$). There is a long exact sequence

$$\rightarrow H_i(Z(\mathbb{C})) \rightarrow H_i(X(\mathbb{C})) \rightarrow H_i(X(\mathbb{C}), Z(\mathbb{C})) \rightarrow$$

Likewise, there is a notion of relative algebraic de Rham cohomology, consisting of closed forms whose restriction to Z vanishes. It sits in a long exact sequence

$$\rightarrow H_{dR}^i(X, Z) \rightarrow H_{dR}^i(X) \rightarrow H_{dR}^i(Z) \rightarrow H_{dR}^{i+1}(X, Z) \rightarrow$$
What happened to Stokes’ formula? This can be captured by including relative cohomology. This is necessary when we consider integrals over chains which have non-trivial boundary.

If \(Z \subset X \) there is a notion of relative singular homology (chains with boundaries contained in \(Z(\mathbb{C}) \)). There is a long exact sequence

\[
\rightarrow H_i(Z(\mathbb{C})) \rightarrow H_i(X(\mathbb{C})) \rightarrow H_i(X(\mathbb{C}), Z(\mathbb{C})) \rightarrow
\]

Likewise, there is a notion of relative algebraic de Rham cohomology, consisting of closed forms whose restriction to \(Z \) vanishes. It sits in a long exact sequence

\[
\rightarrow H^i_{dR}(X, Z) \rightarrow H^i_{dR}(X) \rightarrow H^i_{dR}(Z) \rightarrow H^{i+1}_{dR}(X, Z) \rightarrow
\]
Some more examples: logarithm

What happened to Stokes’ formula? This can be captured by including relative cohomology. This is necessary when we consider integrals over chains which have non-trivial boundary.

If $Z \subset X$ there is a notion of relative singular homology (chains with boundaries contained in $Z(\mathbb{C})$). There is a long exact sequence

$$\rightarrow H_i(Z(\mathbb{C})) \rightarrow H_i(X(\mathbb{C})) \rightarrow H_i(X(\mathbb{C}), Z(\mathbb{C})) \rightarrow$$

Likewise, there is a notion of relative algebraic de Rham cohomology, consisting of closed forms whose restriction to Z vanishes. It sits in a long exact sequence

$$\rightarrow H^i_{dR}(X, Z) \rightarrow H^i_{dR}(X) \rightarrow H^i_{dR}(Z) \rightarrow H^{i+1}_{dR}(X, Z) \rightarrow$$
Let $X = \mathbb{P}^1 \setminus \{0, \infty\}$ and $Z = \{1, 2\}$. Then $H_1(X(\mathbb{C}), Z(\mathbb{C}))$ is a two-dimensional vector space, generated by the class of γ_0 and the path γ_1 whose endpoints are contained in $Z(\mathbb{C})$.

\[
\begin{array}{c}
\begin{array}{c}
\circ \\
0
\end{array} \\
\gamma_0 \\
\gamma_1 \\
\bullet \\
1 \\
\bullet \\
2
\end{array}
\]

The de Rham cohomology $H^{1}_{dR}(X, Z)$ is also 2-dimensional, spanned by the classes of the forms $\omega_0 = \frac{dx}{x}$ and $\omega_1 = dx$.

A period matrix is obtained by pairing the forms with the cycles

\[
\left(\begin{array}{cc}
\int_{\gamma_1} dx & \int_{\gamma_1} \frac{dx}{x} \\
\int_{\gamma_0} dx & \int_{\gamma_0} \frac{dx}{x}
\end{array} \right) = \left(\begin{array}{cc}
1 & \log(2) \\
0 & 2\pi i
\end{array} \right)
\]

Define the motivic version of $\log(2)$ to be

$$\log^m(2) = [H^1(X, Z), \left[\frac{dx}{x}\right], [\gamma_1]]$$
Let $X = \mathbb{P}^1 \setminus \{0, \infty\}$ and $Z = \{1, 2\}$. Then $H_1(X(\mathbb{C}), Z(\mathbb{C}))$ is a two-dimensional vector space, generated by the class of γ_0 and the path γ_1 whose endpoints are contained in $Z(\mathbb{C})$.

The de Rham cohomology $H^1_{dR}(X, Z)$ is also 2-dimensional, spanned by the classes of the forms $\omega_0 = \frac{dx}{x}$ and $\omega_1 = dx$.

A *period matrix* is obtained by pairing the forms with the cycles

$$
\begin{pmatrix}
\int_{\gamma_1} dx & \int_{\gamma_1} \frac{dx}{x} \\
\int_{\gamma_0} dx & \int_{\gamma_0} \frac{dx}{x}
\end{pmatrix} =
\begin{pmatrix}
1 & \log(2) \\
0 & 2\pi i
\end{pmatrix}
$$

Define the motivic version of $\log(2)$ to be

$$
\log^m(2) = [H^1(X, Z), \left[\frac{dx}{x}\right], [\gamma_1]]
$$
Let $X = \mathbb{P}^1 \setminus \{0, \infty\}$ and $Z = \{1, 2\}$. Then $H_1(X(\mathbb{C}), Z(\mathbb{C}))$ is a two-dimensional vector space, generated by the class of γ_0 and the path γ_1 whose endpoints are contained in $Z(\mathbb{C})$.

The de Rham cohomology $H^1_{dR}(X, Z)$ is also 2-dimensional, spanned by the classes of the forms $\omega_0 = \frac{dx}{x}$ and $\omega_1 = dx$.

A period matrix is obtained by pairing the forms with the cycles

\[
\begin{pmatrix}
\int_{\gamma_1} dx & \int_{\gamma_1} \frac{dx}{x} \\
\int_{\gamma_0} dx & \int_{\gamma_0} \frac{dx}{x}
\end{pmatrix} = \begin{pmatrix}
1 & \log(2) \\
0 & 2\pi i
\end{pmatrix}
\]

Define the motivic version of $\log(2)$ to be

\[\log^m(2) = [H^1(X, Z), \left[\frac{dx}{x} \right], [\gamma_1]]\]
Motivic logarithm

Let $X = \mathbb{P}^1 \setminus \{0, \infty\}$ and $Z = \{1, 2\}$. Then $H_1(X(\mathbb{C}), Z(\mathbb{C}))$ is a two-dimensional vector space, generated by the class of γ_0 and the path γ_1 whose endpoints are contained in $Z(\mathbb{C})$.

The de Rham cohomology $H_1^{dR}(X, Z)$ is also 2-dimensional, spanned by the classes of the forms $\omega_0 = \frac{dx}{x}$ and $\omega_1 = dx$.

A period matrix is obtained by pairing the forms with the cycles

\[
\begin{pmatrix}
\int_{\gamma_1} dx & \int_{\gamma_1} \frac{dx}{x} \\
\int_{\gamma_0} dx & \int_{\gamma_0} \frac{dx}{x}
\end{pmatrix} = \begin{pmatrix} 1 & \log(2) \\ 0 & 2\pi i \end{pmatrix}
\]

Define the motivic version of $\log(2)$ to be

\[\log_m(2) = [H^1(X, Z), \left[\frac{dx}{x} \right], [\gamma_1]]\]
Motivic logarithm

The group $\mathcal{G}(\mathbb{Q})$ acts on $H^1_{dR}(\mathbb{P}^1\setminus\{0, \infty\}, \{1, 2\})$. We have the following short exact sequence in the category \mathcal{T}:

$$0 \to \tilde{H}^0_\bullet(\{1, 2\}) \to H^1_\bullet(\mathbb{P}^1\setminus\{0, \infty\}, \{1, 2\}) \to H^1_\bullet(\mathbb{P}^1\setminus\{0, \infty\}) \to 0$$

The group action must respect it. We already established how $\mathcal{G}(\mathbb{Q})$ acts on the right-hand factor. It acts trivially on the left-hand factor. Therefore it fixes $[dx]$ and sends

$$\left[\frac{dx}{x} \right] \mapsto \lambda_g \left[\frac{dx}{x} \right] + \nu_g [dx]$$

for some $\nu_g \in \mathbb{Q}$. So $\mathcal{G}(\mathbb{Q})$ acts on the ‘motivic’ version of the period matrix by multiplication on the right:

$$\begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \mapsto \begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \begin{pmatrix} 1 & \nu_g \\ 0 & \lambda_g \end{pmatrix}$$

and $\log^m(2) \mapsto \lambda_g \log^m(2) + \nu_g$
Motivic logarithm

The group $G(\mathbb{Q})$ acts on $H^1_{dR}(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, 2\})$. We have the following short exact sequence in the category \mathcal{T}:

$$0 \to \tilde{H}^0(\{1, 2\}) \to H^1(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, 2\}) \to H^1(\mathbb{P}^1 \setminus \{0, \infty\}) \to 0$$

The group action must respect it. We already established how $G(\mathbb{Q})$ acts on the right-hand factor. It acts trivially on the left-hand factor. Therefore it fixes $[dx]$ and sends

$$\left[\frac{dx}{x} \right] \mapsto \lambda_g \left[\frac{dx}{x} \right] + \nu_g [dx]$$

for some $\nu_g \in \mathbb{Q}$. So $G(\mathbb{Q})$ acts on the ‘motivic’ version of the period matrix by multiplication on the right:

$$\begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \mapsto \begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \begin{pmatrix} 1 & \nu_g \\ 0 & \lambda_g \end{pmatrix}$$

and $\log^m(2) \mapsto \lambda_g \log^m(2) + \nu_g$
The group $G(\mathbb{Q})$ acts on $H^1_{dR}(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, 2\})$. We have the following short exact sequence in the category \mathcal{T}:

$$0 \to \tilde{H}^0(\{1, 2\}) \to H^1(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, 2\}) \to H^1(\mathbb{P}^1 \setminus \{0, \infty\}) \to 0$$

The group action must respect it. We already established how $G(\mathbb{Q})$ acts on the right-hand factor. It acts trivially on the left-hand factor. Therefore it fixes $[dx]$ and sends

$$\begin{bmatrix} \frac{dx}{x} \end{bmatrix} \mapsto \lambda_g \begin{bmatrix} \frac{dx}{x} \end{bmatrix} + \nu_g [dx]$$

for some $\nu_g \in \mathbb{Q}$. So $G(\mathbb{Q})$ acts on the ‘motivic’ version of the period matrix by multiplication on the right:

$$\begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \mapsto \begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \begin{pmatrix} 1 & \nu_g \\ 0 & \lambda_g \end{pmatrix}$$

and $\log^m(2) \mapsto \lambda_g \log^m(2) + \nu_g$.
Motivic logarithm

The group $G(\mathbb{Q})$ acts on $H^1_{dR}(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, 2\})$. We have the following short exact sequence in the category \mathcal{T}:

$$0 \to \tilde{H}^0(\{1, 2\}) \to H^1(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, 2\}) \to H^1_{dR}(\mathbb{P}^1 \setminus \{0, \infty\}) \to 0$$

The group action must respect it. We already established how $G(\mathbb{Q})$ acts on the right-hand factor. It acts trivially on the left-hand factor. Therefore it fixes $[dx]$ and sends

$$
\begin{bmatrix}
\frac{dx}{x} \\
\frac{d\tilde{x}}{\tilde{x}}
\end{bmatrix} \mapsto \lambda_g \begin{bmatrix}
\frac{dx}{x} \\
\frac{d\tilde{x}}{\tilde{x}}
\end{bmatrix} + \nu_g [dx]
$$

for some $\nu_g \in \mathbb{Q}$. So $G(\mathbb{Q})$ acts on the ‘motivic’ version of the period matrix by multiplication on the right:

$$
\begin{pmatrix}
1 & \log^m(2) \\
0 & (2\pi i)^m
\end{pmatrix} \mapsto \begin{pmatrix}
1 & \log^m(2) \\
0 & (2\pi i)^m
\end{pmatrix} \begin{pmatrix}
1 & \nu_g \\
0 & \lambda_g
\end{pmatrix}
$$

and $\log^m(2) \mapsto \lambda_g \log^m(2) + \nu_g$.
The group $G(\mathbb{Q})$ acts on $H^1_{dR}(\mathbb{P}^1\setminus\{0, \infty\}, \{1, 2\})$. We have the following short exact sequence in the category \mathcal{T}:

$$0 \to \tilde{H}^0(\{1, 2\}) \to H^1_{dR}(\mathbb{P}^1\setminus\{0, \infty\}, \{1, 2\}) \to H^1_{dR}(\mathbb{P}^1\setminus\{0, \infty\}) \to 0$$

The group action must respect it. We already established how $G(\mathbb{Q})$ acts on the right-hand factor. It acts trivially on the left-hand factor. Therefore it fixes $[dx]$ and sends

$$\begin{bmatrix} dx \\ x \end{bmatrix} \mapsto \lambda_g \begin{bmatrix} dx \\ x \end{bmatrix} + \nu_g [dx]$$

for some $\nu_g \in \mathbb{Q}$. So $G(\mathbb{Q})$ acts on the ‘motivic’ version of the period matrix by multiplication on the right:

$$\begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \mapsto \begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \begin{pmatrix} 1 & \nu_g \\ 0 & \lambda_g \end{pmatrix}$$

and $\log^m(2) \mapsto \lambda_g \log^m(2) + \nu_g$.
Motivic logarithm

The group $G(\mathbb{Q})$ acts on $H^1_{dR}(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, 2\})$. We have the following short exact sequence in the category \mathcal{T}:

$$0 \to \tilde{H}^0(\{1, 2\}) \to H^1_{dR}(\mathbb{P}^1 \setminus \{0, \infty\}, \{1, 2\}) \to H^1_{dR}(\mathbb{P}^1 \setminus \{0, \infty\}) \to 0$$

The group action must respect it. We already established how $G(\mathbb{Q})$ acts on the right-hand factor. It acts trivially on the left-hand factor. Therefore it fixes $[dx]$ and sends

$$\left[\frac{dx}{x}\right] \mapsto \lambda_g \left[\frac{dx}{x}\right] + \nu_g [dx]$$

for some $\nu_g \in \mathbb{Q}$. So $G(\mathbb{Q})$ acts on the ‘motivic’ version of the period matrix by multiplication on the right:

$$\begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \mapsto \begin{pmatrix} 1 & \log^m(2) \\ 0 & (2\pi i)^m \end{pmatrix} \begin{pmatrix} 1 & \nu_g \\ 0 & \lambda_g \end{pmatrix}$$

and $\log^m(2) \mapsto \lambda_g \log^m(2) + \nu_g$.
Motivic periods

The programme:

1. Take an interesting family of period integrals I.

2. Express them as a pairing between de Rham and Betti cohomology of algebraic varieties.

3. Define the corresponding motivic periods I^m and compute the action of the Galois group G on them.

Note that the motivic period depends on the choice of integral representation. Conjecturally, it should not depend.

Proving that two motivic periods I^{m_1} and I^{m_2} are equal is a stronger statement than proving that the numbers I_1 and I_2 are equal. But it is much easier than proving equality in the Kontsevich-Zagier sense (using standard relations).

The second step (cohomological interpretation) is often non-trivial.
Motivic periods

The programme:

1. Take an interesting family of period integrals \(I \).
2. Express them as a pairing between de Rham and Betti cohomology of algebraic varieties.
3. Define the corresponding motivic periods \(I^m \) and compute the action of the Galois group \(G \) on them.

Note that the motivic period depends on the choice of integral representation. Conjecturally, it should not depend.

Proving that two motivic periods \(I^m_1 \) and \(I^m_2 \) are equal is a stronger statement than proving that the numbers \(I_1 \) and \(I_2 \) are equal. But it is much easier than proving equality in the Kontsevich-Zagier sense (using standard relations).

The second step (cohomological interpretation) is often non-trivial.
Motivic periods

The programme:

1. Take an interesting family of period integrals I.
2. Express them as a pairing between de Rham and Betti cohomology of algebraic varieties.
3. Define the corresponding motivic periods I^m and compute the action of the Galois group G on them.

Note that the motivic period depends on the choice of integral representation. Conjecturally, it should not depend.

Proving that two motivic periods I^m_1 and I^m_2 are equal is a stronger statement than proving that the numbers I_1 and I_2 are equal. But it is much easier than proving equality in the Kontsevich-Zagier sense (using standard relations).

The second step (cohomological interpretation) is often non-trivial.
Motivic periods

The programme:

1. Take an interesting family of period integrals I.

2. Express them as a pairing between de Rham and Betti cohomology of algebraic varieties.

3. Define the corresponding motivic periods I^m and compute the action of the Galois group G on them.

Note that the motivic period depends on the choice of integral representation. Conjecturally, it should not depend.

Proving that two motivic periods I_1^m and I_2^m are equal is a stronger statement than proving that the numbers I_1 and I_2 are equal. But it is much easier than proving equality in the Kontsevich-Zagier sense (using standard relations).

The second step (cohomological interpretation) is often non-trivial.
Motivic periods

The programme:

1. Take an interesting family of period integrals I.
2. Express them as a pairing between de Rham and Betti cohomology of algebraic varieties.
3. Define the corresponding motivic periods I^m and compute the action of the Galois group G on them.

Note that the motivic period depends on the choice of integral representation. Conjecturally, it should not depend.

Proving that two motivic periods I^m_1 and I^m_2 are equal is a stronger statement than proving that the numbers I_1 and I_2 are equal. But it is much easier than proving equality in the Kontsevich-Zagier sense (using standard relations).

The second step (cohomological interpretation) is often non-trivial.
Motivic periods

The programme:

1. Take an interesting family of period integrals \(I \).
2. Express them as a pairing between de Rham and Betti cohomology of algebraic varieties.
3. Define the corresponding motivic periods \(I^m \) and compute the action of the Galois group \(G \) on them.

Note that the motivic period depends on the choice of integral representation. Conjecturally, it should not depend.

Proving that two motivic periods \(I^m_1 \) and \(I^m_2 \) are equal is a stronger statement than proving that the numbers \(I_1 \) and \(I_2 \) are equal. But it is much easier than proving equality in the Kontsevich-Zagier sense (using standard relations).

The second step (cohomological interpretation) is often non-trivial.
Motivic periods

The programme:

1. Take an interesting family of period integrals I.
2. Express them as a pairing between de Rham and Betti cohomology of algebraic varieties.
3. Define the corresponding motivic periods I^m and compute the action of the Galois group \mathcal{G} on them.

Note that the motivic period depends on the choice of integral representation. Conjecturally, it should not depend.

Proving that two motivic periods I^m_1 and I^m_2 are equal is a stronger statement than proving that the numbers I_1 and I_2 are equal. But it is much easier than proving equality in the Kontsevich-Zagier sense (using standard relations).

The second step (cohomological interpretation) is often non-trivial.
The programme has been completely carried out for MZV’s.

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

\[\zeta^m(n_1, \ldots, n_r) \in \mathcal{P}^m \]

for all \(n_1, \ldots, n_r \geq 1, n_r \geq 2 \), whose periods are \(\zeta(n_1, \ldots, n_r) \). They satisfy the regularised double shuffle equations (shuffle, stuffle products, and regularisation relation).

The *motivic* relations between MZV’s are those satisfied by the \(\zeta^m \). We don’t know if there are more motivic relations than the regularised double shuffle equations.

The group \(G \) acts on the ring \(\mathcal{E}^m \) generated by the \(\zeta^m \).

We get a group \(G^{MZV} \) acting on \(\mathcal{E}^m \). What does it look like?
The programme has been completely carried out for MZV’s.

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

$$\zeta^m(n_1, \ldots, n_r) \in \mathcal{P}^m$$

for all $n_1, \ldots, n_r \geq 1$, $n_r \geq 2$, whose periods are $\zeta(n_1, \ldots, n_r)$. They satisfy the regularised double shuffle equations (shuffle, stuffle products, and regularisation relation).

The *motivic* relations between MZV’s are those satisfied by the ζ^m. We don’t know if there are more motivic relations than the regularised double shuffle equations.

The group \mathcal{G} acts on the ring \mathcal{Z}^m generated by the ζ^m.

We get a group \mathcal{G}^{MZV} acting on \mathcal{Z}^m. What does it look like?
Multiple zeta values

The programme has been completely carried out for MZV’s.

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

\[\zeta^m(n_1, \ldots, n_r) \in \mathcal{P}^m \]

for all \(n_1, \ldots, n_r \geq 1, \ n_r \geq 2 \), whose periods are \(\zeta(n_1, \ldots, n_r) \). They satisfy the regularised double shuffle equations (shuffle, stuffle products, and regularisation relation).

The *motivic* relations between MZV’s are those satisfied by the \(\zeta^m \). We don’t know if there are more motivic relations than the regularised double shuffle equations.

The group \(\mathcal{G} \) acts on the ring \(\mathcal{E}^m \) generated by the \(\zeta^m \).

We get a group \(\mathcal{G}^{MZV} \) acting on \(\mathcal{E}^m \). What does it look like?
The programme has been completely carried out for MZV’s.

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

\[\zeta^m(n_1, \ldots, n_r) \in \mathcal{P}^m \]

for all \(n_1, \ldots, n_r \geq 1, \ n_r \geq 2 \), whose periods are \(\zeta(n_1, \ldots, n_r) \). They satisfy the regularised double shuffle equations (shuffle, stuffle products, and regularisation relation).

The *motivic* relations between MZV’s are those satisfied by the \(\zeta^m \). We don’t know if there are more motivic relations than the regularised double shuffle equations.

The group \(\mathcal{G} \) acts on the ring \(\mathcal{E}^m \) generated by the \(\zeta^m \).

We get a group \(\mathcal{G}^{MZV} \) acting on \(\mathcal{E}^m \). What does it look like?
Multiple zeta values

The programme has been completely carried out for MZV’s.

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

\[\zeta^m(n_1, \ldots, n_r) \in \mathcal{P}^m \]

for all \(n_1, \ldots, n_r \geq 1, \ n_r \geq 2 \), whose periods are \(\zeta(n_1, \ldots, n_r) \).

They satisfy the regularised double shuffle equations (shuffle, stuffle products, and regularisation relation).

The *motivic* relations between MZV’s are those satisfied by the \(\zeta^m \).
We don’t know if there are more motivic relations than the regularised double shuffle equations.

The group \(G \) acts on the ring \(\mathcal{Z}^m \) generated by the \(\zeta^m \).

We get a group \(G^{MZV} \) acting on \(\mathcal{Z}^m \). What does it look like?
Multiple zeta values

The programme has been completely carried out for MZV’s.

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

\[
\zeta^m(n_1, \ldots, n_r) \in \mathcal{P}^m
\]

for all \(n_1, \ldots, n_r \geq 1, n_r \geq 2 \), whose periods are \(\zeta(n_1, \ldots, n_r) \).

They satisfy the regularised double shuffle equations (shuffle, stuffle products, and regularisation relation).

The *motivic* relations between MZV’s are those satisfied by the \(\zeta^m \).

We don’t know if there are more motivic relations than the regularised double shuffle equations.

The group \(\mathcal{G} \) acts on the ring \(\mathcal{Z}^m \) generated by the \(\zeta^m \).

We get a group \(\mathcal{G}^{MZV} \) acting on \(\mathcal{Z}^m \). What does it look like?
The even motivic zeta values satisfy a version of Euler’s identity

\[\zeta^m(2n) = -\frac{B_{2n}}{2} \frac{((2\pi i)^m)^{2n}}{(2n)!} . \]

Independently, we can prove that \(G \) acts via

\[\zeta^m(2n) \mapsto \lambda_g^{2n} \zeta^m(2n) . \]

The period matrix for an odd zeta value resembles \(\log(2) \):

\[
\begin{pmatrix}
1 & \zeta(2n + 1) \\
0 & (2\pi i)^{2n+1}
\end{pmatrix}
\]

So \(G \) acts on odd zeta values via

\[\zeta^m(2n + 1) \mapsto \lambda_g^{2n+1} \zeta^m(2n + 1) + s_g^{(2n+1)} \]

This explains why we expect the odd zeta values to be algebraically independent.
Multiple zeta values

The even motivic zeta values satisfy a version of Euler’s identity

\[
\zeta^m(2n) = -\frac{B_{2n}}{2} \frac{((2\pi i)^m)^{2n}}{(2n)!}.
\]

Independently, we can prove that \(G \) acts via

\[
\zeta^m(2n) \mapsto \lambda_g^{2n} \zeta^m(2n).
\]

The period matrix for an odd zeta value resembles \(\log(2) \):

\[
\begin{pmatrix}
1 & \zeta(2n+1) \\
0 & (2\pi i)^{2n+1}
\end{pmatrix}
\]

So \(G \) acts on odd zeta values via

\[
\zeta^m(2n+1) \mapsto \lambda_g^{2n+1} \zeta^m(2n + 1) + s_g^{(2n+1)}
\]

This explains why we expect the odd zeta values to be algebraically independent.
The even motivic zeta values satisfy a version of Euler’s identity

\[\zeta^m(2n) = -\frac{B_{2n}}{2} \frac{((2\pi i)^m)^{2n}}{(2n)!}. \]

Independently, we can prove that \(\mathcal{G} \) acts via

\[\zeta^m(2n) \mapsto \lambda^2 \zeta^m(2n). \]

The period matrix for an odd zeta value resembles \(\log(2) \):

\[
\begin{pmatrix}
1 & \zeta(2n+1) \\
0 & (2\pi i)^{2n+1}
\end{pmatrix}
\]

So \(\mathcal{G} \) acts on odd zeta values via

\[\zeta^m(2n + 1) \mapsto \lambda^{2n+1} \zeta^m(2n + 1) + s^{2n+1}_g \]

This explains why we expect the odd zeta values to be algebraically independent.
The even motivic zeta values satisfy a version of Euler’s identity

\[\zeta^m(2n) = -\frac{B_{2n} \, ((2\pi i)^m)^{2n}}{2 \cdot (2n)!}. \]

Independently, we can prove that \(G \) acts via

\[\zeta^m(2n) \mapsto \lambda^2_{g} \zeta^m(2n). \]

The period matrix for an odd zeta value resembles \(\log(2) \):

\[
\begin{pmatrix}
1 & \zeta(2n + 1) \\
0 & (2\pi i)^{2n+1}
\end{pmatrix}
\]

So \(G \) acts on odd zeta values via

\[\zeta^m(2n + 1) \mapsto \lambda^{2n+1}_{g} \zeta^m(2n + 1) + s_{g}^{(2n+1)} \]

This explains why we expect the odd zeta values to be algebraically independent.
Multiple zeta values

The even motivic zeta values satisfy a version of Euler’s identity

\[\zeta^m(2n) = -\frac{B_{2n} ((2\pi i)^m)^{2n}}{2} \cdot \frac{1}{(2n)!}. \]

Independently, we can prove that \(G \) acts via

\[\zeta^m(2n) \mapsto \lambda_g^{2n} \zeta^m(2n). \]

The period matrix for an odd zeta value resembles \(\log(2) \):

\[
\begin{pmatrix}
1 & \zeta(2n + 1) \\
0 & (2\pi i)^{2n+1}
\end{pmatrix}
\]

So \(G \) acts on odd zeta values via

\[\zeta^m(2n + 1) \mapsto \lambda_g^{2n+1} \zeta^m(2n + 1) + s_g^{(2n+1)} \]

This explains why we expect the odd zeta values to be algebraically independent.
Choose an element of G which transforms the odd zeta value

$$\zeta^m(2n + 1) \mapsto \zeta^m(2n + 1) + 1$$

and fixes all the other ones. Denote its logarithm by σ_{2n+1}. We obtain elements corresponding to each odd zeta value:

$$\sigma_3, \sigma_5, \sigma_7, \ldots$$

These act on the space of motivic MZV’s:

$$\sigma_{2n+1} : \mathcal{Z}^m \rightarrow \mathcal{Z}^m$$

$$\zeta^m(2p + 1) \mapsto \delta_{n,p}.$$

They act as derivations: $\sigma(\xi_1 \xi_2) = \sigma(\xi_1) \xi_2 + \xi_1 \sigma(\xi_2)$ and act trivially on $(2\pi i)^m$.

Think of σ_{2n+1} as ‘differentiation with respect to $\zeta(2n + 1)$’.
Infinitesimal Galois action

Choose an element of G which transforms the odd zeta value

$$\zeta^m(2n + 1) \mapsto \zeta^m(2n + 1) + 1$$

and fixes all the other ones. Denote its logarithm by σ_{2n+1}. We obtain elements corresponding to each odd zeta value:

$$\sigma_3, \sigma_5, \sigma_7, \ldots$$

These act on the space of motivic MZV’s:

$$\sigma_{2n+1} : \mathcal{Z}^m \rightarrow \mathcal{Z}^m$$

$$\zeta^m(2\rho + 1) \mapsto \delta_{n,\rho}.$$

They act as derivations: $\sigma(\xi_1 \xi_2) = \sigma(\xi_1) \xi_2 + \xi_1 \sigma(\xi_2)$ and act trivially on $(2\pi i)^m$.

Think of σ_{2n+1} as ‘differentiation with respect to $\zeta(2n + 1)$’.
Choose an element of \(G \) which transforms the odd zeta value

\[
\zeta^m(2n + 1) \mapsto \zeta^m(2n + 1) + 1
\]

and fixes all the other ones. Denote its logarithm by \(\sigma_{2n+1} \). We obtain elements corresponding to each odd zeta value:

\[
\sigma_3, \sigma_5, \sigma_7, \ldots
\]

These act on the space of motivic MZV’s:

\[
\sigma_{2n+1} : Z^m \rightarrow Z^m
\]

\[
\zeta^m(2p + 1) \mapsto \delta_{n,p}.
\]

They act as derivations: \(\sigma(\xi_1\xi_2) = \sigma(\chi_1)\xi_2 + \xi_1\sigma(\xi_2) \) and act trivially on \((2\pi i)^m\).

Think of \(\sigma_{2n+1} \) as ‘differentiation with respect to \(\zeta(2n + 1) \)’.

Choose an element of \mathcal{G} which transforms the odd zeta value

$$\zeta^m(2n + 1) \mapsto \zeta^m(2n + 1) + 1$$

and fixes all the other ones. Denote its logarithm by σ_{2n+1}. We obtain elements corresponding to each odd zeta value:

$$\sigma_3, \sigma_5, \sigma_7, \ldots$$

These act on the space of motivic MZV’s:

$$\sigma_{2n+1} : \mathcal{Z}^m \rightarrow \mathcal{Z}^m$$

$$\zeta^m(2p + 1) \mapsto \delta_{n,p}.$$

They act as derivations: $\sigma(\xi_1 \xi_2) = \sigma(x_1)\xi_2 + \xi_1 \sigma(\xi_2)$ and act trivially on $(2\pi i)^m$.

Think of σ_{2n+1} as ‘differentiation with respect to $\zeta(2n + 1)$’.
Choose an element of G which transforms the odd zeta value

$$\zeta^m(2n + 1) \mapsto \zeta^m(2n + 1) + 1$$

and fixes all the other ones. Denote its logarithm by σ_{2n+1}. We obtain elements corresponding to each odd zeta value:

$$\sigma_3, \sigma_5, \sigma_7, \ldots$$

These act on the space of motivic MZV’s:

$$\sigma_{2n+1} : \mathcal{Z}^m \rightarrow \mathcal{Z}^m$$

$$\zeta^m(2p + 1) \mapsto \delta_{n,p}.$$

They act as derivations: $\sigma(\xi_1\xi_2) = \sigma(x_1)\xi_2 + \xi_1\sigma(\xi_2)$ and act trivially on $(2\pi i)^m$.

Think of σ_{2n+1} as ‘differentiation with respect to $\zeta(2n + 1)$’.
A model

Consider the graded \(\mathbb{Q} \)-vector space \(M \) spanned by words in letters

\[
f_3, f_5, f_7, \ldots
\]

where \(f_{2n+1} \) is in weight \(2n + 1 \). Consider the polynomial ring \(M[f_2] \) where \(f_2 \) has weight 2. It is an algebra for the shuffle product.

<table>
<thead>
<tr>
<th>Weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>(\emptyset)</td>
<td>(f_2)</td>
<td>(f_3)</td>
<td>(f_2^2)</td>
<td>(f_5)</td>
<td>(f_3^2 f_2)</td>
<td>(f_7)</td>
<td>(f_2^4 f_3 f_2 f_5)</td>
</tr>
<tr>
<td>dim</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Look familiar from lecture 1? Define an action

\[
\sigma_{2n+1} f_i \cdots f_i f_2^k = (\sigma_{2n+1} f_i) f_i \cdots f_i f_2^k
\]

where \(\sigma_{2n+1}(f_{2m+1}) = \delta_{m,n} \) and \(\sigma_{2n+1} f_2^k = 0 \).
Consider the graded \mathbb{Q}-vector space M spanned by words in letters f_3, f_5, f_7, \ldots

where f_{2n+1} is in weight $2n + 1$. Consider the polynomial ring $M[f_2]$ where f_2 has weight 2. It is an algebra for the shuffle product.

<table>
<thead>
<tr>
<th>Weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>\emptyset</td>
<td>f_2</td>
<td>f_3</td>
<td>f_2^2</td>
<td>f_5</td>
<td>f_3^3</td>
<td>f_7</td>
<td>f_2^4</td>
</tr>
<tr>
<td>dim</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Look familiar from lecture 1? Define an action

$$\sigma_{2n+1} f_{i_1} \cdots f_{i_r} f_2^k = (\sigma_{2n+1} f_{i_1}) f_{i_2} \cdots f_{i_r} f_2^k$$

where $\sigma_{2n+1}(f_{2m+1}) = \delta_{m,n}$ and $\sigma_{2n+1} f_2^k = 0$.
Consider the graded \mathbb{Q}-vector space M spanned by words in letters f_3, f_5, f_7, \ldots

where f_{2n+1} is in weight $2n + 1$. Consider the polynomial ring $M[f_2]$ where f_2 has weight 2. It is an algebra for the shuffle product.

<table>
<thead>
<tr>
<th>Weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>\emptyset</td>
<td>f_2</td>
<td>f_3</td>
<td>f_2^2</td>
<td>f_5</td>
<td>$f_3 f_2$</td>
<td>f_3^3</td>
<td>f_2^4</td>
</tr>
<tr>
<td>dim</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Look familiar from lecture 1? Define an action

$$\sigma_{2n+1} f_{i_1} \cdots f_{i_r} f_2^k = (\sigma_{2n+1} f_{i_1}) f_{i_2} \cdots f_{i_r} f_2^k$$

where $\sigma_{2n+1}(f_{2m+1}) = \delta_{m,n}$ and $\sigma_{2n+1} f_2^k = 0$.
Consider the graded \mathbb{Q}-vector space M spanned by words in letters f_3, f_5, f_7, \ldots

where f_{2n+1} is in weight $2n + 1$. Consider the polynomial ring $M[f_2]$ where f_2 has weight 2. It is an algebra for the shuffle product.

<table>
<thead>
<tr>
<th>Weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>\emptyset</td>
<td>f_2</td>
<td>f_3</td>
<td>f^2_2</td>
<td>f_5</td>
<td>f^3_2</td>
<td>f_7</td>
<td>f^4_2</td>
</tr>
<tr>
<td>dim</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Look familiar from lecture 1? Define an action

$$\sigma_{2n+1} f_{i_1} \cdots f_{i_r} f^k_2 = (\sigma_{2n+1} f_{i_1}) f_{i_2} \cdots f_{i_r} f^k_2$$

where $\sigma_{2n+1}(f_{2m+1}) = \delta_{m,n}$ and $\sigma_{2n+1} f^k_2 = 0$.
A model

Consider the graded \mathbb{Q}-vector space M spanned by words in letters f_3, f_5, f_7, \ldots

where f_{2n+1} is in weight $2n+1$. Consider the polynomial ring $M[f_2]$ where f_2 has weight 2. It is an algebra for the shuffle product.

<table>
<thead>
<tr>
<th>Weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>\emptyset</td>
<td>f_2</td>
<td>f_3</td>
<td>f_2^2</td>
<td>f_5</td>
<td>f_2^3</td>
<td>f_7</td>
<td>f_2^4</td>
</tr>
<tr>
<td>dim</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Look familiar from lecture 1? Define an action

$$\sigma_{2n+1} f_{i_1} \cdots f_i f_2^k = (\sigma_{2n+1} f_{i_1}) f_{i_2} \cdots f_i f_2^k$$

where $\sigma_{2n+1}(f_{2m+1}) = \delta_{m,n}$ and $\sigma_{2n+1} f_2^k = 0$.
Theorem (B. 2012)

There is an isomorphism of algebras

\[\phi : \mathcal{Z}^m \xrightarrow{\sim} M[f_2] \]

(2)

which commutes with the action of \(\sigma_{2n+1} \) on both sides. It satisfies

\[\phi(\zeta^m(2n+1)) = f_{2n+1} \quad \text{and} \quad \phi(\zeta^m(2)) = f_2 \]

In fact, there is a canonical such isomorphism!

This theorem completely elucidates the structure of motivic multiple zeta values. If \(d_k \) is the dimension of \(M[f_2] \) in weight \(k \), it is a nice exercise to check that for all \(k \),

\[d_k = d_{k-2} + d_{k-3} \]
Structure theorem

Theorem (B. 2012)

There is an isomorphism of algebras

\[\phi : \mathbb{Z}^m \xrightarrow{\sim} M[f_2] \] (2)

which commutes with the action of \(\sigma_{2n+1} \) on both sides. It satisfies

\[\phi(\zeta^m(2n + 1)) = f_{2n+1} \quad \text{and} \quad \phi(\zeta^m(2)) = f_2 \]

In fact, there is a canonical such isomorphism!

This theorem completely elucidates the structure of motivic multiple zeta values. If \(d_k \) is the dimension of \(M[f_2] \) in weight \(k \), it is a nice exercise to check that for all \(k \),

\[d_k = d_{k-2} + d_{k-3} \]
Examples

The f-alphabet representation of an MZV reduces the problem of relations to linear algebra.

For example, in weight 5 we have a 2-dimensional vector space:

$$
\phi(\zeta_m^{m}(2,3)) = \frac{-11}{2} f_5 + 3 f_3 f_2 \\
\phi(\zeta_m^{m}(3,2)) = \frac{9}{2} f_5 - 2 f_3 f_2
$$

The map ϕ automatically respects all algebraic relations between motivic MZV’s. For example, the stuffle relation

$$
\zeta_m^{m}(3)\zeta_m^{m}(2) = \zeta_m^{m}(5) + \zeta_m^{m}(2,3) + \zeta_m^{m}(3,2)
$$

is respected by ϕ and trivially checked in the model $M[f_2]$.

There is a semi-numerical algorithm to compute the map ϕ.

The f-alphabet representation of an MZV reduces the problem of relations to linear algebra.

For example, in weight 5 we have a 2-dimensional vector space:

\[
\phi(\zeta_m(2, 3)) = -\frac{11}{2}f_5 + 3f_3f_2
\]

\[
\phi(\zeta_m(3, 2)) = \frac{9}{2}f_5 - 2f_3f_2
\]

The map ϕ automatically respects all algebraic relations between motivic MZV's. For example, the stuffle relation

\[
\zeta_m(3)\zeta_m(2) = \zeta_m(5) + \zeta_m(2, 3) + \zeta_m(3, 2)
\]

is respected by ϕ and trivially checked in the model $M[f_2]$.

There is a semi-numerical algorithm to compute the map ϕ.

Examples
The f-alphabet representation of an MZV reduces the problem of relations to linear algebra.

For example, in weight 5 we have a 2-dimensional vector space:

\[
\phi(\zeta^m(2, 3)) = -\frac{11}{2} f_5 + 3f_3 f_2 \\
\phi(\zeta^m(3, 2)) = \frac{9}{2} f_5 - 2f_3 f_2
\]

The map ϕ automatically respects all algebraic relations between motivic MZV’s. For example, the stuffle relation

\[
\zeta^m(3)\zeta^m(2) = \zeta^m(5) + \zeta^m(2, 3) + \zeta^m(3, 2)
\]

is respected by ϕ and trivially checked in the model $M[f_2]$.

There is a semi-numerical algorithm to compute the map ϕ.
The f-alphabet representation of an MZV reduces the problem of relations to linear algebra.

For example, in weight 5 we have a 2-dimensional vector space:

\[
\phi(\zeta^m(2, 3)) = \frac{-11}{2} f_5 + 3f_3 f_2 \\
\phi(\zeta^m(3, 2)) = \frac{9}{2} f_5 - 2f_3 f_2
\]

The map ϕ automatically respects all algebraic relations between motivic MZV’s. For example, the stuffle relation

\[
\zeta^m(3)\zeta^m(2) = \zeta^m(5) + \zeta^m(2, 3) + \zeta^m(3, 2)
\]

is respected by ϕ and trivially checked in the model $M[f_2]$.

There is a semi-numerical algorithm to compute the map ϕ.
Galois theory of MZV’s

The point is that the Galois point of view of MZV’s enables us to cut through the complicated relations (which are not yet understood fully) and see the structure lying underneath. Indeed, we do not know what all the relations between motivic MZV’s are!

The full theorem

The Galois group of motivic multiple zeta values is the semi-direct product of the multiplicative group \mathbb{G}_m with a pro-algebraic group U whose graded Lie algebra is free on generators

$$\sigma_3, \sigma_5, \sigma_7, \ldots \ .$$

The elements $\zeta^m(n_1, \ldots, n_r)$ for $n_i \in \{2, 3\}$ form a basis of \mathcal{Z}^m.

The ring of multiple zeta values is the first prototypical example of a Galois theory of periods. It ‘grows out of’ the single zeta values.
Galois theory of MZV’s

The point is that the Galois point of view of MZV’s enables us to cut through the complicated relations (which are not yet understood fully) and see the structure lying underneath. Indeed, we do not know what all the relations between motivic MZV’s are!

The full theorem

The Galois group of motivic multiple zeta values is the semi-direct product of the multiplicative group \mathbb{G}_m with a pro-algebraic group U whose graded Lie algebra is free on generators $\sigma_3, \sigma_5, \sigma_7, \ldots$.

The elements $\zeta^m(n_1, \ldots, n_r)$ for $n_i \in \{2, 3\}$ form a basis of \mathcal{Z}^m.

The ring of multiple zeta values is the first prototypical example of a Galois theory of periods. It ‘grows out of’ the single zeta values.
The point is that the Galois point of view of MZV’s enables us to cut through the complicated relations (which are not yet understood fully) and see the structure lying underneath. Indeed, we do not know what all the relations between motivic MZV’s are!

The full theorem

The Galois group of motivic multiple zeta values is the semi-direct product of the multiplicative group \mathbb{G}_m with a pro-algebraic group U whose graded Lie algebra is free on generators $\sigma_3, \sigma_5, \sigma_7, \ldots$.

The elements $\zeta^m(n_1, \ldots, n_r)$ for $n_i \in \{2, 3\}$ form a basis of \mathcal{Z}^m.

The ring of multiple zeta values is the first prototypical example of a Galois theory of periods. It ‘grows out of’ the single zeta values.
Conjectures

We expect that a relation holds between MZV’s if and only if it holds between their motivic versions.

Transcendence Conjecture

The period homomorphism is injective, hence an isomorphism:

\[
\text{per} : \mathbb{Z}^m \xrightarrow{\sim} \mathbb{Z}
\]

This implies the main transcendence conjecture for MZV’s, and would mean that the action of \(G^{MZV} \) is transported to numbers.

Algebraic Conjecture

The ring of motivic multiple zeta values is isomorphic to the ring generated by symbols \(\mathcal{Z}(n_1, \ldots, n_r) \) where \(n_1, \ldots, n_r \geq 1 \) and \(n_r \geq 2 \), modulo the regularised double shuffle equations.

This would imply that the motivic relations are exactly the regularised double shuffle equations.
Conjectures

We expect that a relation holds between MZV’s if and only if it holds between their motivic versions.

Transcendence Conjecture

The period homomorphism is injective, hence an isomorphism:

$$\text{per} : \mathbb{Z}^m \xrightarrow{\sim} \mathbb{Z}$$

This implies the main transcendence conjecture for MZV’s, and would mean that the action of G^{MZV} is transported to numbers.

Algebraic Conjecture

The ring of motivic multiple zeta values is isomorphic to the ring generated by symbols $\mathbb{Z}(n_1, \ldots, n_r)$ where $n_1, \ldots, n_r \geq 1$ and $n_r \geq 2$, modulo the regularised double shuffle equations.

This would imply that the motivic relations are exactly the regularised double shuffle equations.
Conjectures

We expect that a relation holds between MZV’s if and only if it holds between their motivic versions.

Transcendence Conjecture

The period homomorphism is injective, hence an isomorphism:

\[\text{per} : \mathbb{Z}^m \overset{\sim}{\longrightarrow} \mathbb{Z} \]

This implies the main transcendence conjecture for MZV’s, and would mean that the action of \(G^{MZV} \) is transported to numbers.

Algebraic Conjecture

The ring of motivic multiple zeta values is isomorphic to the ring generated by symbols \(Z(n_1, \ldots, n_r) \) where \(n_1, \ldots, n_r \geq 1 \) and \(n_r \geq 2 \), modulo the regularised double shuffle equations.

This would imply that the motivic relations are exactly the regularised double shuffle equations.
We expect that a relation holds between MZV’s if and only if it holds between their motivic versions.

Transcendence Conjecture

The period homomorphism is injective, hence an isomorphism:

\[
\text{per} : \mathbb{Z}^m \xrightarrow{\sim} \mathbb{Z}
\]

This implies the main transcendence conjecture for MZV’s, and would mean that the action of \(G^{MZV}\) is transported to numbers.

Algebraic Conjecture

The ring of motivic multiple zeta values is isomorphic to the ring generated by symbols \(Z(n_1, \ldots, n_r)\) where \(n_1, \ldots, n_r \geq 1\) and \(n_r \geq 2\), modulo the regularised double shuffle equations.

This would imply that the motivic relations are exactly the regularised double shuffle equations.
We expect that a relation holds between MZV’s if and only if it holds between their motivic versions.

Transcendence Conjecture

The period homomorphism is injective, hence an isomorphism:

\[\text{per} : \mathbb{Z}^m \xrightarrow{\sim} \mathbb{Z} \]

This implies the main transcendence conjecture for MZV’s, and would mean that the action of \(G^{\text{MZV}} \) is transported to numbers.

Algebraic Conjecture

The ring of motivic multiple zeta values is isomorphic to the ring generated by symbols \(Z(n_1, \ldots, n_r) \) where \(n_1, \ldots, n_r \geq 1 \) and \(n_r \geq 2 \), modulo the regularised double shuffle equations.

This would imply that the motivic relations are exactly the regularised double shuffle equations.
1. Choose a natural integral representation for a period I, and interpret it as a pairing between cohomology theories.

2. Define its ‘motivic version’ I^m: it is an equivalence class of the defining data.

3. For free, we get a group which acts on such objects, and respects all the relations between them. Most of the time, we do not need to know these relations.

4. We can use this group action to define invariants. For MZV’s this took the form of an assignment:

 \[\text{Motivic MZV} \longrightarrow \text{a word in } f_{2i+1}, f_2 \]

 where f_n corresponds to $\zeta(n)$. It automatically respects the relations, and hey-presto, the simple structure underlying the ring of MZV’s naturally emerges.

Next time: apply to general periods, and to amplitudes in physics.
Choose a natural integral representation for a period I, and interpret it as a pairing between cohomology theories.

Define its ‘motivic version’ I^m: it is an equivalence class of the defining data.

For free, we get a group which acts on such objects, and respects all the relations between them. Most of the time, we do not need to know these relations.

We can use this group action to define invariants. For MZV’s this took the form of an assignment:

$$\text{Motivic MZV} \rightarrow \text{a word in } f_{2i+1}, f_2$$

where f_n corresponds to $\zeta(n)$. It automatically respects the relations, and hey-presto, the simple structure underlying the ring of MZV’s naturally emerges.

Next time: apply to general periods, and to amplitudes in physics.
Choose a natural integral representation for a period I, and interpret it as a pairing between cohomology theories.

Define its ‘motivic version’ I^m: it is an equivalence class of the defining data.

For free, we get a group which acts on such objects, and respects all the relations between them. Most of the time, we do not need to know these relations.

We can use this group action to define invariants. For MZV’s this took the form of an assignment:

$$\text{Motivic MZV} \rightarrow \text{a word in } f_{2i+1}, f_2$$

where f_n corresponds to $\zeta(n)$. It automatically respects the relations, and hey-presto, the simple structure underlying the ring of MZV’s naturally emerges.

Next time: apply to general periods, and to amplitudes in physics.
Choose a natural integral representation for a period I, and interpret it as a pairing between cohomology theories.

Define its ‘motivic version’ I^m: it is an equivalence class of the defining data.

For free, we get a group which acts on such objects, and respects all the relations between them. Most of the time, we do not need to know these relations.

We can use this group action to define invariants. For MZV’s this took the form of an assignment:

$$\text{Motivic MZV} \rightarrow \text{a word in } f_{2i+1}, f_2$$

where f_n corresponds to $\zeta(n)$. It automatically respects the relations, and hey-presto, the simple structure underlying the ring of MZV’s naturally emerges.

Next time: apply to general periods, and to amplitudes in physics.
Choose a natural integral representation for a period I, and interpret it as a pairing between cohomology theories.

Define its ‘motivic version’ I^m: it is an equivalence class of the defining data.

For free, we get a group which acts on such objects, and respects all the relations between them. Most of the time, we do not need to know these relations.

We can use this group action to define invariants. For MZV’s this took the form of an assignment:

$$\text{Motivic MZV} \rightarrow \text{a word in } f_{2i+1}, f_2$$

where f_n corresponds to $\zeta(n)$. It automatically respects the relations, and hey-presto, the simple structure underlying the ring of MZV’s naturally emerges.

Next time: apply to general periods, and to amplitudes in physics.
Choose a natural integral representation for a period I, and interpret it as a pairing between cohomology theories.

Define its ‘motivic version’ I^m: it is an equivalence class of the defining data.

For free, we get a group which acts on such objects, and respects all the relations between them. Most of the time, we do not need to know these relations.

We can use this group action to define invariants. For MZV’s this took the form of an assignment:

$$\text{Motivic MZV} \longrightarrow \text{a word in } f_{2i+1}, f_2$$

where f_n corresponds to $\zeta(n)$. It automatically respects the relations, and hey-presto, the simple structure underlying the ring of MZV’s naturally emerges.

Next time: apply to general periods, and to amplitudes in physics.