Periods and Cosmic Galois group

Francis Brown All Souls College, Oxford IHES, Bures-Sur-Yvette

Premier Congrès de la SMF 7 Juin 2016

I. Particle physics

Collision of beam particles

Test the laws of physics by analysing particle tracks.

General framework describing fundamental forces and particles.

The blue line (background) requires calculating a huge number of Feynman amplitudes.

II. Graphs and Numbers

Let $G = (V_G, E_G)$ be a connected graph. The graph polynomial

$$\Psi_{G} \in \mathbb{Z}[\alpha_{e}, e \in E(G)]$$

is a sum over spanning trees T of G

$$\Psi_{\mathcal{G}} = \sum_{\mathcal{T} \subset \mathcal{G}} \prod_{e \notin \mathcal{T}} \alpha_{e}$$

Let $G = (V_G, E_G)$ be a connected graph. The graph polynomial

$$\Psi_{G} \in \mathbb{Z}[\alpha_{e}, e \in E(G)]$$

is a sum over spanning trees T of G

$$\Psi_{\mathcal{G}} = \sum_{\mathcal{T} \subset \mathcal{G}} \prod_{e \notin \mathcal{T}} \alpha_{e}$$

A tree $T \subset G$ is spanning if $V_T = V_G$.

$$\Psi_G = ?$$

$$\Psi_G = \alpha_3 \alpha_4$$

$$\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4$$

$$\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4$$

$$\Psi_{G} = \alpha_{3}\alpha_{4} + \alpha_{2}\alpha_{4} + \alpha_{1}\alpha_{4} + \alpha_{2}\alpha_{3}$$

$$\Psi_{G} = \alpha_{3}\alpha_{4} + \alpha_{2}\alpha_{4} + \alpha_{1}\alpha_{4} + \alpha_{2}\alpha_{3} + \alpha_{1}\alpha_{3}$$

$$\Psi_{G} = \alpha_{3}\alpha_{4} + \alpha_{2}\alpha_{4} + \alpha_{1}\alpha_{4} + \alpha_{2}\alpha_{3} + \alpha_{1}\alpha_{3}$$

In general, Ψ_G is homogeneous of degree h_G ('loop number').

$$\deg \Psi_G = h_G \qquad \qquad N_G = \# E(G)$$

$$\Psi_{G} = \alpha_{3}\alpha_{4} + \alpha_{2}\alpha_{4} + \alpha_{1}\alpha_{4} + \alpha_{2}\alpha_{3} + \alpha_{1}\alpha_{3}$$

In general, Ψ_G is homogeneous of degree h_G ('loop number').

$$\deg \Psi_G = h_G \qquad \qquad N_G = \# E(G)$$

Physically relevant graphs have vertices of degree ≤ 4 . ('G in ϕ^{4} ').

For convergence, assume

- $N_G = 2h_G$
- $N_{\gamma} > 2h_{\gamma}$ for all $\gamma \subsetneq G$.

For convergence, assume

- $N_G = 2h_G$
- $N_{\gamma} > 2h_{\gamma}$ for all $\gamma \subsetneq G$.

The *residue* is the convergent integral

$$I_G = \int_{\sigma} \frac{\Omega_G}{\Psi_G^2} \quad \in \quad \mathbb{R}$$

For convergence, assume

- $N_G = 2h_G$
- $N_{\gamma} > 2h_{\gamma}$ for all $\gamma \subsetneq G$.

The *residue* is the convergent integral

$$I_G = \int_{\sigma} \frac{\Omega_G}{\Psi_G^2} \quad \in \quad \mathbb{R}$$

where

$$\Omega_{G} = \sum_{i=1}^{N_{G}} (-1)^{i} \alpha_{i} d\alpha_{1} \wedge \ldots \wedge \widehat{d\alpha_{i}} \wedge \ldots d\alpha_{N_{G}}$$

For convergence, assume

- $N_G = 2h_G$
- $N_{\gamma} > 2h_{\gamma}$ for all $\gamma \subsetneq G$.

The *residue* is the convergent integral

$$I_G = \int_{\sigma} \frac{\Omega_G}{\Psi_G^2} \quad \in \quad \mathbb{R}$$

where

$$\Omega_{G} = \sum_{i=1}^{N_{G}} (-1)^{i} \alpha_{i} d\alpha_{1} \wedge \ldots \wedge \widehat{d\alpha}_{i} \wedge \ldots d\alpha_{N_{G}}$$

$$\sigma = \{ (\alpha_1 : \ldots : \alpha_{N_G}) \in \mathbb{P}^{N_G - 1}(\mathbb{R}) \text{ such that } \alpha_i \ge 0 \}$$

We obtain a map

 $I: \{ \text{convergent graphs in } \phi^4 \} \longrightarrow \mathbb{R}$

We obtain a map

$$I: \{ \text{convergent graphs in } \phi^4 \} \longrightarrow \mathbb{R}$$

We obtain a map

$$I: \{ \text{convergent graphs in } \phi^4 \} \longrightarrow \mathbb{R}$$

$$\Psi_{G} = \alpha_1 + \alpha_2$$

We obtain a map

$$I: \{ \text{convergent graphs in } \phi^4 \} \longrightarrow \mathbb{R}$$

Example:

$$\Psi_{G} = \alpha_1 + \alpha_2$$

Compute the integral on the chart $\alpha_2 = 1$:

$$I_{G} = \int_{\sigma} \frac{\alpha_{2} d\alpha_{1} - \alpha_{1} d\alpha_{2}}{(\alpha_{1} + \alpha_{2})^{2}} = \int_{\alpha_{1} \ge 0} \frac{d\alpha_{1}}{(\alpha_{1} + 1)^{2}} = 1$$

The Zoo

 $I_G: 6\zeta(3)$

 $20\zeta(5)$

 $36\zeta(3)^2$

N_{3,5}

The Zoo

 $I_G:$ $6\zeta(3)$ $20\zeta(5)$ $36\zeta(3)^2$ $N_{3,5}$

$$N_{3,5} = \frac{27}{5}\zeta(5,3) + \frac{45}{4}\zeta(5)\zeta(3) - \frac{261}{20}\zeta(8)$$

The Zoo

$$N_{3,5} = \frac{27}{5}\zeta(5,3) + \frac{45}{4}\zeta(5)\zeta(3) - \frac{261}{20}\zeta(8)$$

Multiple Zeta Values, defined for $n_1, \ldots, n_{r-1} \ge 1$, and $n_r \ge 2$:

$$\zeta(n_1,\ldots,n_r)=\sum_{1\leq k_1< k_2<\ldots< k_r}\frac{1}{k_1^{n_1}\ldots k_r^{n_r}} \in \mathbb{R}$$

Folklore conjecture 90's

The numbers I_G are \mathbb{Q} -linear combinations of multiple zeta values.

Folklore conjecture 90's

The numbers I_G are \mathbb{Q} -linear combinations of multiple zeta values.

Cartier's dream:

Folklore conjecture 90's

The numbers I_G are \mathbb{Q} -linear combinations of multiple zeta values.

Cartier's dream:

Folklore conjecture 90's

The numbers I_G are \mathbb{Q} -linear combinations of multiple zeta values.

Cartier's dream:

Folklore conjecture 90's

The numbers I_G are \mathbb{Q} -linear combinations of multiple zeta values.

Cartier's dream:

Cartier postulated the existence of a 'cosmic Galois group' (1998).

Contraction-Deletion:

$$\Psi_{\mathcal{G}} = \alpha_{\mathbf{e}} \Psi_{\mathcal{G} \setminus \mathbf{e}} + \Psi_{\mathcal{G} /\!\!/ \mathbf{e}}$$

O Contraction-Deletion:

$$\Psi_{\mathcal{G}} = \alpha_{\mathsf{e}} \Psi_{\mathcal{G} \setminus \mathsf{e}} + \Psi_{\mathcal{G} /\!\!/ \mathsf{e}}$$

2 Partial factorisation:

$$\Psi_{G} = \Psi_{\gamma} \Psi_{G/\gamma} + R_{\gamma,G}$$

Ontraction-Deletion:

$$\Psi_{\mathcal{G}} = \alpha_{\mathsf{e}} \Psi_{\mathcal{G} \setminus \mathsf{e}} + \Psi_{\mathcal{G} /\!\!/ \mathsf{e}}$$

2 Partial factorisation:

$$\Psi_G = \Psi_{\gamma} \Psi_{G/\gamma} + R_{\gamma,G}$$

Ontraction-Deletion:

$$\Psi_{\mathcal{G}} = \alpha_{\mathsf{e}} \Psi_{\mathcal{G} \setminus \mathsf{e}} + \Psi_{\mathcal{G} /\!\!/ \mathsf{e}}$$

2 Partial factorisation:

$$\Psi_{G} = \Psi_{\gamma} \Psi_{G/\gamma} + R_{\gamma,G}$$

$$\Psi_{G} = \underbrace{(\alpha_{3} + \alpha_{4})}_{\Psi_{\gamma}} \underbrace{(\alpha_{1} + \alpha_{2})}_{\Psi_{G/\gamma}} + \underbrace{\alpha_{3}\alpha_{4}}_{R_{\gamma,G}}$$

Ontraction-Deletion:

$$\Psi_{\mathcal{G}} = \alpha_{\mathsf{e}} \Psi_{\mathcal{G} \setminus \mathsf{e}} + \Psi_{\mathcal{G} /\!\!/ \mathsf{e}}$$

2 Partial factorisation:

$$\Psi_{G} = \Psi_{\gamma} \Psi_{G/\gamma} + R_{\gamma,G}$$

$$\Psi_{G} = \underbrace{(\alpha_{3} + \alpha_{4})}_{\Psi_{\gamma}} \underbrace{(\alpha_{1} + \alpha_{2})}_{\Psi_{G/\gamma}} + \underbrace{\alpha_{3}\alpha_{4}}_{R_{\gamma,G}}$$

Determines Ψ_G essentially uniquely.

• The graph polynomial is a determinant

$$\Psi_G = \det(L_G)$$

where L_G is the reduced graph Laplacian matrix.

• The graph polynomial is a determinant

$$\Psi_G = \det(L_G)$$

where L_G is the reduced graph Laplacian matrix.

• Many identities between I_G . For example:

• The graph polynomial is a determinant

$$\Psi_G = \det(L_G)$$

where L_G is the reduced graph Laplacian matrix.

• Many identities between I_G . For example:

 $I_{G_1}I_{G_2} = I_{G_1:G_2}$.

and planar duals, completion (Fourier transform), ...

Counterexamples

Counterexamples

 Ψ_G of degree 8 in 16 variables, 3785 terms.

Theorem: (B., Schnetz 2012)

The zero locus of Ψ_G is modular of weight 3, level 7.

The folklore conjecture is likely to be false. The nature of the numbers I_G is unknown.

The folklore conjecture is likely to be false. The nature of the numbers I_G is unknown.

The folklore conjecture is likely to be false. The nature of the numbers I_G is unknown.

The folklore conjecture is likely to be false. The nature of the numbers I_G is unknown.

......However, the group actions may yet survive......

III. Periods

Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the form

$$I = \int_{\sigma} \frac{P}{Q} \, dx_1 \dots dx_n$$

Periods are complex numbers with real and imaginary parts of the form

$$I = \int_{\sigma} \frac{P}{Q} \, dx_1 \dots dx_n$$

$$\sqrt{2} = \int_{x^2 \le 2} \frac{dx}{2}$$

Periods are complex numbers with real and imaginary parts of the form

$$I = \int_{\sigma} \frac{P}{Q} \, dx_1 \dots dx_n$$

$$\sqrt{2} = \int_{x^2 \le 2} \frac{dx}{2}$$
$$\pi = \int_{x^2 + y^2 \le 1} dx dy$$

Periods are complex numbers with real and imaginary parts of the form

$$I = \int_{\sigma} \frac{P}{Q} \, dx_1 \dots dx_n$$

$$\sqrt{2} = \int_{x^2 \le 2} \frac{dx}{2}$$
$$\pi = \int_{x^2 + y^2 \le 1} dx dy$$
$$\log 2 = \int_{1 \le x \le 2} \frac{dx}{x}$$

Periods form a ring:

$$\mathbb{Q}\subseteq\overline{\mathbb{Q}}\subset P\subset\mathbb{C}$$

Periods form a ring:

$$\mathbb{Q} \subseteq \overline{\mathbb{Q}} \subset P \subset \mathbb{C}$$

Non-periods?

$$e = \int_{x \le 1} e^x dx$$
$$\gamma = \int_0^\infty \frac{e^{-x}}{e^{-x} - 1} - \frac{e^{-x}}{x} dx ?$$

Relations

• Additivity in ω and σ :

$$\int_{\sigma} \omega_1 + \omega_2 = \int_{\sigma} \omega_1 + \int_{\sigma} \omega_2$$

• Additivity in ω and σ :

$$\int_{\sigma} \omega_1 + \omega_2 = \int_{\sigma} \omega_1 + \int_{\sigma} \omega_2$$

• Algebraic changes of variables

$$\int_{f_*\sigma} \omega = \int_{\sigma} f^* \omega$$

• Additivity in ω and σ :

$$\int_{\sigma} \omega_1 + \omega_2 = \int_{\sigma} \omega_1 + \int_{\sigma} \omega_2$$

• Algebraic changes of variables

$$\int_{f_*\sigma} \omega = \int_{\sigma} f^* \omega$$

• Stokes:

$$\int_{\sigma} d\omega = \int_{\partial \sigma} \omega$$

Algebraic numbers are periods.

Can one extend Galois theory to periods?

Grothendieck, Kontsevich-Zagier, André, ...

Algebraic numbers are periods.

Can one extend Galois theory to periods?

Grothendieck, Kontsevich-Zagier, André, ...

Want a pro-algebraic group ${\mathcal G}$

$$\mathcal{G} \times P \longrightarrow P$$

which acts linearly on periods.

Leibniz:

$$\zeta(2) = \int_{0 \le t_1 \le t_2 \le 1} \frac{dt_1}{1 - t_1} \frac{dt_2}{t_2}$$

Leibniz:

$$\zeta(2) = \int_{0 \le t_1 \le t_2 \le 1} \frac{dt_1}{1 - t_1} \frac{dt_2}{t_2}$$

Multiple Zeta Values:

Leibniz:

$$\zeta(2) = \int_{0 \le t_1 \le t_2 \le 1} \frac{dt_1}{1 - t_1} \frac{dt_2}{t_2}$$

Multiple Zeta Values:

$$\zeta(n_1,\ldots,n_r)=(-1)^r\int_{0\leq t_1\leq\cdots\leq t_n\leq 1}\frac{dt_1}{t_1-\epsilon_1}\cdots\frac{dt_n}{t_n-\epsilon_n}$$

where $(\epsilon_1, ..., \epsilon_n) = 10^{n_1-1} ... 10^{n_r-1}$.

Leibniz:

$$\zeta(2) = \int_{0 \le t_1 \le t_2 \le 1} \frac{dt_1}{1 - t_1} \frac{dt_2}{t_2}$$

Multiple Zeta Values:

$$\zeta(n_1,\ldots,n_r)=(-1)^r\int_{0\leq t_1\leq\cdots\leq t_n\leq 1}\frac{dt_1}{t_1-\epsilon_1}\cdots\frac{dt_n}{t_n-\epsilon_n}$$

where $(\epsilon_1, ..., \epsilon_n) = 10^{n_1-1} ... 10^{n_r-1}$.

MZV's form a subring of the ring of periods:

$$\mathbb{Q} \subset \mathcal{Z} \subset P$$
In weight 4: generators $\zeta(4)$, $\zeta(1,3)$, $\zeta(2,2)$, and $\zeta(1,1,2)$.

Relations:

$$\begin{split} \zeta(2)^2 &= 2\zeta(2,2) + \zeta(4) \\ \zeta(2)^2 &= 4\zeta(1,3) + 2\zeta(2,2) \\ \zeta(1,3) + \zeta(4) &= 2\zeta(1,3) + \zeta(2,2) \\ 2\zeta(1,1,2) + \zeta(2,2) + \zeta(1,4) &= 3\zeta(1,1,2) \end{split}$$

A Galois group of periods should respect these relations!

IV. Motivic Periods

(a Galois theory of periods for dummies)

Cohomology

X smooth affine over \mathbb{Q} .

• Algebraic de Rham cohomology:

 $H^n_{dR}(X; \mathbb{Q}) = \frac{\text{closed algebraic forms of degree n}}{\text{exact algebraic forms of degree n}}$

Cohomology

X smooth affine over \mathbb{Q} .

• Algebraic de Rham cohomology:

 $H^n_{dR}(X; \mathbb{Q}) = \frac{\text{closed algebraic forms of degree n}}{\text{exact algebraic forms of degree n}}$

• Betti (singular) cohomology:

 $H^n_B(X) = H_n(X(\mathbb{C}))^{\vee}$

Cohomology

X smooth affine over \mathbb{Q} .

• Algebraic de Rham cohomology:

 $H^n_{dR}(X; \mathbb{Q}) = \frac{\text{closed algebraic forms of degree n}}{\text{exact algebraic forms of degree n}}$

• Betti (singular) cohomology:

$$H^n_B(X) = H_n(X(\mathbb{C}))^{\vee}$$

• Comparison theorem (de Rham, Grothendieck):

$$egin{array}{rcl} H^n_{dR}(X;\mathbb{Q})\otimes\mathbb{C}&\stackrel{\sim}{\longrightarrow}& H^n_B(X)\otimes\mathbb{C}\ &\omega&\mapsto&(\gamma\mapsto\int_\gamma\omega) \end{array}$$

$$X = \mathbb{P}^1 \setminus \{0, \infty\}. \ X(\mathbb{C}) = \mathbb{C}^{\times}.$$

 $X = \mathbb{P}^1 \setminus \{0, \infty\}. \ X(\mathbb{C}) = \mathbb{C}^{\times}.$

$$H^{1}_{dR}(X) = \mathbb{Q}\left[\frac{dx}{x}\right]$$
$$H_{1}(X(\mathbb{C})) = \mathbb{Q}[\gamma]$$

$$X = \mathbb{P}^1 \setminus \{0, \infty\}. \ X(\mathbb{C}) = \mathbb{C}^{\times}.$$

$$H^{1}_{dR}(X) = \mathbb{Q}\left[\frac{dx}{x}\right]$$
$$H_{1}(X(\mathbb{C})) = \mathbb{Q}[\gamma]$$

Period:

$$\int_{\gamma} \frac{dx}{x} = 2i\pi$$

$$X = \mathbb{P}^1 \setminus \{0, \infty\}. \ X(\mathbb{C}) = \mathbb{C}^{\times}.$$

$$H^{1}_{dR}(X) = \mathbb{Q}\left[\frac{dx}{x}\right]$$
$$H_{1}(X(\mathbb{C})) = \mathbb{Q}[\gamma]$$

Period:

$$\int_{\gamma} \frac{dx}{x} = 2i\pi$$

$$\begin{array}{rcl} H^1_{dR}(X)\otimes \mathbb{C} & \stackrel{\sim}{\longrightarrow} & H^1_B(X)\otimes \mathbb{C} \\ [\frac{dx}{x}] & \mapsto & 2i\pi \ [\gamma]^{\vee} \end{array}$$

• $P^{\mathfrak{m}}$ the \mathbb{Q} -vector space spanned by symbols

$$[H^n(X), \omega, \gamma]$$

modulo an (elementary) equivalence relation, where $H^n(X)$ is a triplet (H_B, H_{dR}, \int) , with $H_B, H_{dR} \in \text{Vec}_{\mathbb{Q}}, \int$ an isomorphism between their complexifications. • $P^{\mathfrak{m}}$ the \mathbb{Q} -vector space spanned by symbols

$$[H^n(X), \omega, \gamma]$$

modulo an (elementary) equivalence relation, where $H^n(X)$ is a triplet (H_B, H_{dR}, \int) , with $H_B, H_{dR} \in \text{Vec}_{\mathbb{Q}}$, \int an isomorphism between their complexifications.

2 Ring structure (Künneth)

$$[\mathbf{V}, \omega, \gamma] \otimes [\mathbf{W}, \omega', \gamma'] = [\mathbf{V} \otimes \mathbf{W}, \omega \otimes \omega', \gamma \otimes \gamma']$$

• Period homomorphism

$$\begin{array}{rcl} \mathrm{per}: \mathcal{P}^{\mathfrak{m}} & \longrightarrow & P\\ [H^n(X), \omega, \gamma] & \mapsto & \int_{\gamma} \omega \end{array}$$

• Period homomorphism

$$\mathrm{per}: \mathcal{P}^{\mathfrak{m}} \longrightarrow P$$

 $[H^n(X), \omega, \gamma] \mapsto \int_{\gamma} \omega$

• We gain the action of a pro-algebraic group

$$\mathcal{G}^{dR} imes \mathcal{P}^{\mathfrak{m}} \longrightarrow \mathcal{P}^{\mathfrak{m}}$$

It acts linearly on $H^n_{dR}(X)$:

$$g[H^n(X), \omega, \gamma] = [H^n(X), g\omega, \gamma]$$

A game

Given a period

$$I=\int_{\gamma}\omega$$

Try to express I as a period of cohomology

$$\omega \in H^n_{dR}(X)$$
, $\gamma \in H_n(X(\mathbb{C}))$.

A game

Given a period

$$I=\int_{\gamma}\omega$$

Try to express I as a period of cohomology

$$\omega \in H^n_{dR}(X)$$
 , $\gamma \in H_n(X(\mathbb{C}))$.

Replace I by 'its' motivic version (NB choices!)

$$I^{\mathfrak{m}} = [H^{n}(X), \omega, \gamma] \in \mathcal{P}^{\mathfrak{m}}$$

A game

Given a period

$$I = \int_{\gamma} \omega$$

Try to express I as a period of cohomology

$$\omega \in H^n_{dR}(X)$$
 , $\gamma \in H_n(X(\mathbb{C}))$.

Replace *I* by 'its' motivic version (NB choices!)

$$I^{\mathfrak{m}} = [H^{n}(X), \omega, \gamma] \in \mathcal{P}^{\mathfrak{m}}$$

The action of the group \mathcal{G}^{dR} on $I^{\mathfrak{m}}$ generates a representation of a quotient of \mathcal{G}^{dR} . We can use group theory to define invariants, or to discover new relations.

$$X = \mathbb{P}^1 \setminus \{0, \infty\}.$$

$$(2i\pi)^{\mathfrak{m}} := [H^1(X), [\frac{dx}{x}], [\gamma]]$$

$$X = \mathbb{P}^1 \setminus \{0, \infty\}.$$

$$(2i\pi)^{\mathfrak{m}} := [H^1(X), [\frac{dx}{x}], [\gamma]]$$

$$g\in \mathcal{G}^{dR}: \qquad \qquad g(2i\pi)^{\mathfrak{m}}=\lambda_g(2i\pi)^{\mathfrak{m}}$$

$$X=\mathbb{P}^1\backslash\{0,\infty\}.$$

$$(2i\pi)^{\mathfrak{m}} := [H^1(X), [\frac{dx}{x}], [\gamma]]$$

$$g\in \mathcal{G}^{dR}$$
 : $g(2i\pi)^{\mathfrak{m}}=\lambda_g(2i\pi)^{\mathfrak{m}}$

It spans a one-dimensional representation

$$egin{array}{ccc} \mathcal{G}^{dR} & \longrightarrow & GL_1 \ g & \mapsto & \lambda_g \end{array}$$

So $(2i\pi)^{\mathfrak{m}}$ is a motivic period of rank 1.

Example 2: logarithms

$$\log^{\mathfrak{m}}(2) \stackrel{g}{\mapsto} \lambda_{g} \log^{\mathfrak{m}}(2) + \nu_{g}$$

 $\mathsf{Equivalently}$

$$\begin{pmatrix} 1 & \log^{\mathfrak{m}}(2) \\ 0 & (2\pi i)^{\mathfrak{m}} \end{pmatrix} \mapsto \begin{pmatrix} 1 & \log^{\mathfrak{m}}(2) \\ 0 & (2\pi i)^{\mathfrak{m}} \end{pmatrix} \begin{pmatrix} 1 & \nu_{g} \\ 0 & \lambda_{g} \end{pmatrix}$$

Example 2: logarithms

$$\log^{\mathfrak{m}}(2) \stackrel{g}{\mapsto} \lambda_{g} \log^{\mathfrak{m}}(2) + \nu_{g}$$

Equivalently

$$\begin{pmatrix} 1 & \log^{\mathfrak{m}}(2) \\ 0 & (2\pi i)^{\mathfrak{m}} \end{pmatrix} \mapsto \begin{pmatrix} 1 & \log^{\mathfrak{m}}(2) \\ 0 & (2\pi i)^{\mathfrak{m}} \end{pmatrix} \begin{pmatrix} 1 & \nu_{g} \\ 0 & \lambda_{g} \end{pmatrix}$$

Hence a two-dimensional representation

$$\begin{array}{cccc} \mathcal{G}^{dR} & \longrightarrow & GL_2 \\ g & \mapsto & \begin{pmatrix} 1 & \nu_g \\ 0 & \lambda_g \end{pmatrix} \end{array}$$

So $\log^{m}(2)$ is of rank 2.

Let $\alpha \in \mathbb{C}$ algebraic. There exists canonical $\alpha^{\mathfrak{m}}$, whence

$$\overline{\mathbb{Q}} \subset \mathcal{P}^{\mathfrak{m}}$$

$$\mathcal{G}^{dR} \text{ acts on } \overline{\mathbb{Q}} \text{ via a pro-algebraic quotient } \mathcal{A}_{\overline{\mathbb{Q}}}:$$

$$\mathcal{A}_{\overline{\mathbb{Q}}}(\mathbb{C}) \cong \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) .$$

Let $\alpha \in \mathbb{C}$ algebraic. There exists canonical $\alpha^{\mathfrak{m}}$, whence

$$\label{eq:Garger} \begin{array}{ll} \overline{\mathbb{Q}} & \subset & \mathcal{P}^{\mathfrak{m}} \\ \\ \mathcal{G}^{dR} \text{ acts on } \overline{\mathbb{Q}} \text{ via a pro-algebraic quotient } \mathcal{A}_{\overline{\mathbb{Q}}} \text{:} \\ \\ \\ \mathcal{A}_{\overline{\mathbb{Q}}}(\mathbb{C}) \cong \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \ . \end{array}$$

The *rank* of $\alpha^{\mathfrak{m}}$ is the dimension of the vector space spanned by the conjugates of α .

Weak variant of Grothendieck's period conjecture.

$$\operatorname{per}: \ \mathcal{P}^{\mathfrak{m}} \longrightarrow \mathbb{C} \qquad \qquad \text{is injective}$$

Weak variant of Grothendieck's period conjecture.

$$\mathrm{per}:\ \mathcal{P}^{\mathfrak{m}}\longrightarrow \mathbb{C} \hspace{1cm} \text{is injective}$$

Means that $I^{\mathfrak{m}}$ does not depend on choices, and the action of \mathcal{G}^{dR} on $\mathcal{P}^{\mathfrak{m}}$ can be transported onto the ring of periods itself.

Weak variant of Grothendieck's period conjecture.

$$\mathrm{per}: \ \mathcal{P}^{\mathfrak{m}} \longrightarrow \mathbb{C} \qquad \qquad \mathsf{is injective}$$

Means that $I^{\mathfrak{m}}$ does not depend on choices, and the action of \mathcal{G}^{dR} on $\mathcal{P}^{\mathfrak{m}}$ can be transported onto the ring of periods itself.

Via group and Hodge theory, we can define many new invariants: ...,rank, unipotency degree, weight, Hodge numbers, degree,.....

Unip. degree	Examples
0	Pure periods: π , elliptic integrals,
	(classical)
1	Periods of simple extensions: $\log 2, \zeta(2n+1), \ldots$
	(values of <i>L</i> -functions)
≥ 2	Multiple periods: MZV's, Feynman amplitudes,
	(unknown)
	— Unexplored territory —

V. Applications and questions

Multiple Zeta Values

There exist motivic versions of multiple zeta values

 $\zeta^{\mathfrak{m}}(n_1,\ldots,n_r)\in\mathcal{P}^{\mathfrak{m}}$

for all $n_1, \ldots, n_r \ge 1$, $n_r \ge 2$, whose periods are $\zeta(n_1, \ldots, n_r)$. They satisfy the 'standard' relations. The ring $\mathcal{Z}^{\mathfrak{m}}$ generated by the $\zeta^{\mathfrak{m}}$ is stable under the group \mathcal{G}^{dR} .

There exist motivic versions of multiple zeta values

 $\zeta^{\mathfrak{m}}(n_1,\ldots,n_r)\in\mathcal{P}^{\mathfrak{m}}$

for all $n_1, \ldots, n_r \ge 1$, $n_r \ge 2$, whose periods are $\zeta(n_1, \ldots, n_r)$. They satisfy the 'standard' relations. The ring $\mathcal{Z}^{\mathfrak{m}}$ generated by the $\zeta^{\mathfrak{m}}$ is stable under the group \mathcal{G}^{dR} .

Not known if they satisfy more relations.

There exist motivic versions of multiple zeta values

 $\zeta^{\mathfrak{m}}(n_1,\ldots,n_r)\in\mathcal{P}^{\mathfrak{m}}$

for all $n_1, \ldots, n_r \ge 1$, $n_r \ge 2$, whose periods are $\zeta(n_1, \ldots, n_r)$. They satisfy the 'standard' relations. The ring \mathcal{Z}^m generated by the ζ^m is stable under the group \mathcal{G}^{dR} .

Not known if they satisfy more relations.

Think of $\mathcal{Z}^{\mathfrak{m}}$ as a Galois extension of \mathbb{Q} with group

$$\mathcal{G}^{MZV} \times \mathcal{Z}^{\mathfrak{m}} \to \mathcal{Z}^{\mathfrak{m}}$$

38 / 41

$$\mathcal{G}^{MZV} = U^{MZV} \rtimes \mathbb{G}_m$$

where U^{MZV} pro-unipotent. Its graded Lie algebra is free on generators in degrees -3,-5,-7, ...

 $\sigma_3, \sigma_5, \sigma_7, \ldots$.

Hence $\mathcal{G}^{MZV} = \mathcal{G}_{MT(Z)}$.

$$\mathcal{G}^{MZV} = U^{MZV} \rtimes \mathbb{G}_m$$

where U^{MZV} pro-unipotent. Its graded Lie algebra is free on generators in degrees -3,-5,-7, ...

 $\sigma_3, \sigma_5, \sigma_7, \ldots$

Hence $\mathcal{G}^{MZV} = \mathcal{G}_{MT(Z)}$.

The σ_{2n+1} act via

$$\sigma_{2n+1}\,\zeta^{\mathfrak{m}}(2m+1)=\delta_{n,m}$$

Think of σ_3 as 'differentiation with respect to $\zeta^{\mathfrak{m}}(3)$ ', etc

Cosmic Galois group
Theorem (B. 2014, using Bloch-Esnault-Kreimer 2005)

There exist canonical 'motivic' Feynman amplitudes

 $I_G^{\mathfrak{m}} \in \mathcal{P}^{\mathfrak{m}}$

for any convergent G, whose period is I_G .

Not all expected relations are known.

Many new invariants to amplitudes (weights, rank, etc).

Theorem (B. 2014, using Bloch-Esnault-Kreimer 2005)

There exist canonical 'motivic' Feynman amplitudes

 $I_G^{\mathfrak{m}} \in \mathcal{P}^{\mathfrak{m}}$

for any convergent G, whose period is I_G .

Not all expected relations are known.

Many new invariants to amplitudes (weights, rank, etc).

Define a cosmic Galois group

$$\mathcal{G}_{cos} := \mathcal{G}^{dR} / K$$

where K is the subgroup acting trivially on all $I_G^{\mathfrak{m}}$.

Extraordinary Conjecture

The vector space generated by the $I_G^{\mathfrak{m}}$, for G convergent in ϕ^4 , is stable under the action of \mathcal{G}_{cos} .

Verified in every known example \sim 250 cases.

Extraordinary Conjecture

The vector space generated by the $I_G^{\mathfrak{m}}$, for G convergent in ϕ^4 , is stable under the action of \mathcal{G}_{cos} .

Verified in every known example \sim 250 cases.

Very strong constraint on the possible amplitudes. Enables one to constrain I_G 'in advance' from smaller graphs.

Extraordinary Conjecture

The vector space generated by the $I_G^{\mathfrak{m}}$, for G convergent in ϕ^4 , is stable under the action of \mathcal{G}_{cos} .

Verified in every known example \sim 250 cases.

Very strong constraint on the possible amplitudes. Enables one to constrain I_G 'in advance' from smaller graphs.

Related to partial factorisation property of graph polynomials.

Conclusion

'Motivic' version of Cartier's dream:

The two pictures look very similar, but are subtly different.

Q: What is the mathematical and geometric framework to describe amplitudes in quantum field theories?