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I. Particle physics
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LHC

3 / 41



Collision of beam particles

Test the laws of physics by analysing particle tracks.
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Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

?
Every Feynman graph G represents a possible particle interaction.

Feynman amplitude is a complex probability assigned to G .
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Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

∑

Feynman
graphs

G

Every Feynman graph G represents a possible particle interaction.

Feynman amplitude is a complex probability assigned to G .
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Higgs boson

The blue line (background) requires calculating a huge number of
Feynman amplitudes.
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II. Graphs and Numbers

7 / 41



Graph polynomials (Kirchhoff 1847)

Let G = (VG ,EG ) be a connected graph. The graph polynomial

ΨG ∈ Z[αe , e ∈ E (G )]

is a sum over spanning trees T of G

ΨG =
∑
T⊂G

∏
e /∈T

αe

A tree T ⊂ G is spanning if VT = VG .
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Example

ΨG = ?

α3α4 + α2α4 + α1α4 + α2α3 + α1α3

In general, ΨG is homogeneous of degree hG (‘loop number’).

deg ΨG = hG NG = #E (G )

Physically relevant graphs have vertices of degree ≤ 4. (‘G in φ4’).
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Feynman integrals

For convergence, assume

NG = 2hG

Nγ > 2hγ for all γ ( G .

The residue is the convergent integral

IG =

∫
σ

ΩG

Ψ2
G

∈ R

where

ΩG =

NG∑
i=1

(−1)iαidα1 ∧ . . . ∧ d̂αi ∧ . . . dαNG

σ = {(α1 : . . . : αNG
) ∈ PNG−1(R) such that αi ≥ 0}
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Graphs and numbers

We obtain a map

I : {convergent graphs in φ4} −→ R

Example:

ΨG = α1 + α2

Compute the integral on the chart α2 = 1:

IG =

∫
σ

α2dα1 − α1dα2

(α1 + α2)2
=

∫
α1≥0

dα1

(α1 + 1)2
= 1
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The Zoo

IG : 6ζ(3) 20ζ(5) 36ζ(3)2 N3,5

N3,5 = 27
5 ζ(5, 3) + 45

4 ζ(5)ζ(3)− 261
20 ζ(8)

Multiple Zeta Values, defined for n1, . . . , nr−1 ≥ 1, and nr ≥ 2:

ζ(n1, . . . , nr ) =
∑

1≤k1<k2<...<kr

1

kn1
1 . . . knr

r
∈ R
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Main problem

Folklore conjecture 90’s

The numbers IG are Q-linear combinations of multiple zeta values.

Cartier’s dream:

Cartier postulated the existence of a ‘cosmic Galois group’ (1998).

13 / 41



Main problem

Folklore conjecture 90’s

The numbers IG are Q-linear combinations of multiple zeta values.

Cartier’s dream:

Cartier postulated the existence of a ‘cosmic Galois group’ (1998).

13 / 41



Main problem

Folklore conjecture 90’s

The numbers IG are Q-linear combinations of multiple zeta values.

Cartier’s dream:

Cartier postulated the existence of a ‘cosmic Galois group’ (1998).

13 / 41



Main problem

Folklore conjecture 90’s

The numbers IG are Q-linear combinations of multiple zeta values.

Cartier’s dream:

Cartier postulated the existence of a ‘cosmic Galois group’ (1998).

13 / 41



Main problem

Folklore conjecture 90’s

The numbers IG are Q-linear combinations of multiple zeta values.

Cartier’s dream:

Cartier postulated the existence of a ‘cosmic Galois group’ (1998).

13 / 41



Properties I

1 Contraction-Deletion:

ΨG = αeΨG\e + ΨG//e

2 Partial factorisation:

ΨG = ΨγΨG/γ + Rγ,G

γ G/γ

1

2

3 4

ΨG = (α3 + α4)︸ ︷︷ ︸
Ψγ

(α1 + α2︸ ︷︷ ︸
ΨG/γ

) + α3α4︸ ︷︷ ︸
Rγ,G

Determines ΨG essentially uniquely.
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Properties II

The graph polynomial is a determinant

ΨG = det(LG )

where LG is the reduced graph Laplacian matrix.

Many identities between IG . For example:

IG1 IG2 = IG1:G2 .

and planar duals, completion (Fourier transform), . . .
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Counterexamples

ΨG of degree 8 in 16 variables, 3785 terms.

Theorem: (B., Schnetz 2012)

The zero locus of ΨG is modular of weight 3, level 7.
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IG should be algebraically independent from multiple zeta values!!

The folklore conjecture is likely to be false. The nature of the
numbers IG is unknown.

...........However, the group actions may yet survive.........
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III. Periods

18 / 41



Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the
form

I =

∫
σ

P

Q
dx1 . . . dxn

where P,Q,∈ Q[x1, . . . , xn], and σ finite union of sets
{f1, . . . , fN ≥ 0} with fi ∈ Q[x1, . . . , xn].

√
2 =

∫
x2≤2

dx

2

π =

∫
x2+y2≤1

dxdy

log 2 =

∫
1≤x≤2

dx

x
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Ring of periods

Periods form a ring:

Q ⊆ Q ⊂ P ⊂ C

Non-periods?

e =

∫
x≤1

ex dx

γ =

∫ ∞
0

e−x

e−x − 1
− e−x

x
dx ?
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Relations

Additivity in ω and σ:∫
σ
ω1 + ω2 =

∫
σ
ω1 +

∫
σ
ω2

Algebraic changes of variables∫
f∗σ

ω =

∫
σ

f ∗ω

Stokes: ∫
σ

dω =

∫
∂σ
ω
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Galois

Algebraic numbers are periods.

Can one extend Galois theory to periods?

Grothendieck, Kontsevich-Zagier, André, . . .

Want a pro-algebraic group G

G × P −→ P

which acts linearly on periods.
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Example: MZV’s

Leibniz:

ζ(2) =

∫
0≤t1≤t2≤1

dt1

1− t1

dt2

t2

Multiple Zeta Values:

ζ(n1, . . . , nr ) = (−1)r

∫
0≤t1≤···≤tn≤1

dt1

t1 − ε1
· · · dtn

tn − εn

where (ε1, . . . , εn) = 10n1−1 . . . 10nr−1.

MZV’s form a subring of the ring of periods:

Q ⊂ Z ⊂ P
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Relations

In weight 4: generators ζ(4), ζ(1, 3), ζ(2, 2), and ζ(1, 1, 2).

Relations:

ζ(2)2 = 2ζ(2, 2) + ζ(4)

ζ(2)2 = 4ζ(1, 3) + 2ζ(2, 2)

ζ(1, 3) + ζ(4) = 2ζ(1, 3) + ζ(2, 2)

2ζ(1, 1, 2) + ζ(2, 2) + ζ(1, 4) = 3ζ(1, 1, 2)

A Galois group of periods should respect these relations!
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IV. Motivic Periods
(a Galois theory of periods for dummies)
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Cohomology

X smooth affine over Q.

Algebraic de Rham cohomology:

Hn
dR(X ; Q) =

closed algebraic forms of degree n

exact algebraic forms of degree n

Betti (singular) cohomology:

Hn
B(X ) = Hn(X (C))∨

Comparison theorem (de Rham, Grothendieck):

Hn
dR(X ; Q)⊗ C ∼−→ Hn

B(X )⊗ C

ω 7→ (γ 7→
∫
γ
ω)
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Example: 2iπ

X = P1\{0,∞}. X (C) = C×.

γ

0

H1
dR(X ) = Q

[dx

x

]
H1(X (C)) = Q[γ]

Period: ∫
γ

dx

x
= 2iπ

H1
dR(X )⊗ C ∼−→ H1

B(X )⊗ C
[dx

x ] 7→ 2iπ [γ]∨
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A ring of ‘motivic’ periods

1 Pm the Q-vector space spanned by symbols

[Hn(X ), ω, γ]

modulo an (elementary) equivalence relation, where Hn(X ) is
a triplet (HB ,HdR ,

∫
), with HB ,HdR ∈ VecQ,

∫
an

isomorphism between their complexifications.

2 Ring structure (Künneth)

[V , ω, γ]⊗ [W , ω′, γ′] = [V ⊗W , ω ⊗ ω′, γ ⊗ γ′]
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Period homomorphism

per : Pm −→ P

[Hn(X ), ω, γ] 7→
∫
γ
ω

We gain the action of a pro-algebraic group

GdR × Pm −→ Pm

It acts linearly on Hn
dR(X ):

g [Hn(X ), ω, γ] = [Hn(X ), g ω, γ]
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A game

Given a period

I =

∫
γ
ω

Try to express I as a period of cohomology

ω ∈ Hn
dR(X ) , γ ∈ Hn(X (C)) .

Replace I by ‘its’ motivic version (NB choices!)

Im = [Hn(X ), ω, γ] ∈ Pm

The action of the group GdR on Im generates a representation of a
quotient of GdR . We can use group theory to define invariants, or
to discover new relations.
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Example: 2iπ

X = P1\{0,∞}.

(2iπ)m := [H1(X ), [dx
x ], [γ]]

g ∈ GdR : g(2iπ)m = λg (2iπ)m

It spans a one-dimensional representation

GdR −→ GL1

g 7→ λg

So (2iπ)m is a motivic period of rank 1.
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Example 2: logarithms

logm(2)
g7→ λg logm(2) + νg

Equivalently(
1 logm(2)
0 (2πi)m

)
7→
(

1 logm(2)
0 (2πi)m

)(
1 νg

0 λg

)

Hence a two-dimensional representation

GdR −→ GL2

g 7→
(

1 νg

0 λg

)
So logm(2) is of rank 2.
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Example 3: Algebraic numbers

Let α ∈ C algebraic. There exists canonical αm, whence

Q ⊂ Pm

GdR acts on Q via a pro-algebraic quotient AQ:

AQ(C) ∼= Gal(Q/Q) .

The rank of αm is the dimension of the vector space spanned by
the conjugates of α.
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Period conjecture

Weak variant of Grothendieck’s period conjecture.

per : Pm −→ C is injective

Means that Im does not depend on choices, and the action of GdR

on Pm can be transported onto the ring of periods itself.

Via group and Hodge theory, we can define many new invariants:

...,rank, unipotency degree, weight, Hodge numbers, degree,.....

34 / 41



Period conjecture

Weak variant of Grothendieck’s period conjecture.

per : Pm −→ C is injective

Means that Im does not depend on choices, and the action of GdR

on Pm can be transported onto the ring of periods itself.

Via group and Hodge theory, we can define many new invariants:

...,rank, unipotency degree, weight, Hodge numbers, degree,.....

34 / 41



Period conjecture

Weak variant of Grothendieck’s period conjecture.

per : Pm −→ C is injective

Means that Im does not depend on choices, and the action of GdR

on Pm can be transported onto the ring of periods itself.

Via group and Hodge theory, we can define many new invariants:

...,rank, unipotency degree, weight, Hodge numbers, degree,.....

34 / 41



Unip. degree Examples

0 Pure periods: π, elliptic integrals, . . .

(classical)

1 Periods of simple extensions: log 2, ζ(2n + 1), . . .

(values of L-functions)

≥ 2 Multiple periods: MZV’s, Feynman amplitudes, . . .

(unknown)

—– Unexplored territory —–
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V. Applications and questions
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Multiple Zeta Values

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

ζm(n1, . . . , nr ) ∈ Pm

for all n1, . . . , nr ≥ 1, nr ≥ 2, whose periods are ζ(n1, . . . , nr ).
They satisfy the ‘standard’ relations. The ring Zm generated by
the ζm is stable under the group GdR .

Not known if they satisfy more relations.

Think of Zm as a Galois extension of Q with group

GMZV ×Zm → Zm
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Theorem (B. 2012)

GMZV = UMZV o Gm

where UMZV pro-unipotent. Its graded Lie algebra is free on
generators in degrees -3,-5,-7, . . .

σ3, σ5, σ7, . . . .

Hence GMZV = GMT (Z).

The σ2n+1 act via

σ2n+1 ζ
m(2m + 1) = δn,m

Think of σ3 as ‘differentiation with respect to ζm(3)’, etc
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Cosmic Galois group

Theorem (B. 2014, using Bloch-Esnault-Kreimer 2005)

There exist canonical ‘motivic’ Feynman amplitudes

Im
G ∈ Pm

for any convergent G , whose period is IG .

Not all expected relations are known.

Many new invariants to amplitudes (weights, rank, etc).

Define a cosmic Galois group

Gcos := GdR/K

where K is the subgroup acting trivially on all Im
G .
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Conjecture of Panzer and Schnetz

Extraordinary Conjecture

The vector space generated by the Im
G , for G convergent in φ4, is

stable under the action of Gcos .

Verified in every known example ∼ 250 cases.

Very strong constraint on the possible amplitudes. Enables one to
constrain IG ‘in advance’ from smaller graphs.

Related to partial factorisation property of graph polynomials.
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Conclusion

‘Motivic’ version of Cartier’s dream:

6= ZmIm
G

QFT P1\{0, 1,∞}

“Motivic operad” “Motivic π1”

The two pictures look very similar, but are subtly different.

Q: What is the mathematical and geometric framework to describe
amplitudes in quantum field theories?
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