Periods and Cosmic Galois group

Francis Brown
All Souls College, Oxford
IHES, Bures-Sur-Yvette

Premier Congrès de la SMF
7 Juin 2016

I. Particle physics

LHC

Collision of beam particles

Test the laws of physics by analysing particle tracks.

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.
Feynman amplitude is a complex probability assigned to G.

Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.
Feynman amplitude is a complex probability assigned to G.

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.
Feynman amplitude is a complex probability assigned to G.

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.
Feynman amplitude is a complex probability assigned to G.

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.
Feynman amplitude is a complex probability assigned to G.

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.
Feynman amplitude is a complex probability assigned to G.

Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.
Feynman amplitude is a complex probability assigned to G.

The blue line (background) requires calculating a huge number of Feynman amplitudes.
II. Graphs and Numbers

Graph polynomials (Kirchhoff 1847)

Let $G=\left(V_{G}, E_{G}\right)$ be a connected graph. The graph polynomial

$$
\Psi_{G} \in \mathbb{Z}\left[\alpha_{e}, e \in E(G)\right]
$$

is a sum over spanning trees T of G

$$
\Psi_{G}=\sum_{T \subset G} \prod_{e \notin T} \alpha_{e}
$$

Graph polynomials (Kirchhoff 1847)

Let $G=\left(V_{G}, E_{G}\right)$ be a connected graph. The graph polynomial

$$
\Psi_{G} \in \mathbb{Z}\left[\alpha_{e}, e \in E(G)\right]
$$

is a sum over spanning trees T of G

$$
\Psi_{G}=\sum_{T \subset G} \prod_{e \notin T} \alpha_{e}
$$

A tree $T \subset G$ is spanning if $V_{T}=V_{G}$.

Example

$\Psi_{G}=?$

Example

$$
\Psi_{G}=\alpha_{3} \alpha_{4}
$$

Example

$$
\Psi_{G}=\alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{4}
$$

Example

$$
\Psi_{G}=\alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{4}
$$

Example

$$
\Psi_{G}=\alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}
$$

Example

$$
\Psi_{G}=\alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{3}
$$

Example

$$
\Psi_{G}=\alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{3}
$$

In general, Ψ_{G} is homogeneous of degree h_{G} ('loop number').

$$
\operatorname{deg} \Psi_{G}=h_{G} \quad N_{G}=\# E(G)
$$

Example

$$
\Psi_{G}=\alpha_{3} \alpha_{4}+\alpha_{2} \alpha_{4}+\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{3}
$$

In general, Ψ_{G} is homogeneous of degree h_{G} ('loop number').

$$
\operatorname{deg} \Psi_{G}=h_{G} \quad N_{G}=\# E(G)
$$

Physically relevant graphs have vertices of degree ≤ 4. (' G in ϕ^{4} ').

Feynman integrals

For convergence, assume

- $N_{G}=2 h_{G}$
- $N_{\gamma}>2 h_{\gamma}$ for all $\gamma \subsetneq G$.

Feynman integrals

For convergence, assume

- $N_{G}=2 h_{G}$
- $N_{\gamma}>2 h_{\gamma}$ for all $\gamma \subsetneq G$.

The residue is the convergent integral

$$
I_{G}=\int_{\sigma} \frac{\Omega_{G}}{\Psi_{G}^{2}} \quad \in \quad \mathbb{R}
$$

Feynman integrals

For convergence, assume

- $N_{G}=2 h_{G}$
- $N_{\gamma}>2 h_{\gamma}$ for all $\gamma \subsetneq G$.

The residue is the convergent integral

$$
I_{G}=\int_{\sigma} \frac{\Omega_{G}}{\Psi_{G}^{2}} \quad \in \quad \mathbb{R}
$$

where

$$
\Omega_{G}=\sum_{i=1}^{N_{G}}(-1)^{i} \alpha_{i} d \alpha_{1} \wedge \ldots \wedge{\widehat{d \alpha_{i}}}_{i} \wedge \ldots d \alpha_{N_{G}}
$$

Feynman integrals

For convergence, assume

- $N_{G}=2 h_{G}$
- $N_{\gamma}>2 h_{\gamma}$ for all $\gamma \subsetneq G$.

The residue is the convergent integral

$$
I_{G}=\int_{\sigma} \frac{\Omega_{G}}{\Psi_{G}^{2}} \quad \in \quad \mathbb{R}
$$

where

$$
\begin{gathered}
\Omega_{G}=\sum_{i=1}^{N_{G}}(-1)^{i} \alpha_{i} d \alpha_{1} \wedge \ldots \wedge \widehat{d \alpha}_{i} \wedge \ldots d \alpha_{N_{G}} \\
\sigma=\left\{\left(\alpha_{1}: \ldots: \alpha_{N_{G}}\right) \in \mathbb{P}^{N_{G}-1}(\mathbb{R}) \text { such that } \alpha_{i} \geq 0\right\}
\end{gathered}
$$

Graphs and numbers

We obtain a map

$$
I:\left\{\text { convergent graphs in } \phi^{4}\right\} \longrightarrow \mathbb{R}
$$

Graphs and numbers

We obtain a map

$$
I:\left\{\text { convergent graphs in } \phi^{4}\right\} \longrightarrow \mathbb{R}
$$

Example:

Graphs and numbers

We obtain a map

$$
I:\left\{\text { convergent graphs in } \phi^{4}\right\} \longrightarrow \mathbb{R}
$$

Example:

$$
\Psi_{G}=\alpha_{1}+\alpha_{2}
$$

Graphs and numbers

We obtain a map

$$
I:\left\{\text { convergent graphs in } \phi^{4}\right\} \longrightarrow \mathbb{R}
$$

Example:

$$
\Psi_{G}=\alpha_{1}+\alpha_{2}
$$

Compute the integral on the chart $\alpha_{2}=1$:

$$
I_{G}=\int_{\sigma} \frac{\alpha_{2} d \alpha_{1}-\alpha_{1} d \alpha_{2}}{\left(\alpha_{1}+\alpha_{2}\right)^{2}}=\int_{\alpha_{1} \geq 0} \frac{d \alpha_{1}}{\left(\alpha_{1}+1\right)^{2}}=1
$$

The Zoo

$36 \zeta(3)^{2}$
$N_{3,5}$

The Zoo

$I_{G}: \quad 6 \zeta(3)$
$20 \zeta(5)$
$36 \zeta(3)^{2}$

$N_{3,5}$

$$
N_{3,5}=\frac{27}{5} \zeta(5,3)+\frac{45}{4} \zeta(5) \zeta(3)-\frac{261}{20} \zeta(8)
$$

$I_{G}: \quad 6 \zeta(3)$
$20 \zeta(5)$
$36 \zeta(3)^{2}$
$N_{3,5}$

$$
N_{3,5}=\frac{27}{5} \zeta(5,3)+\frac{45}{4} \zeta(5) \zeta(3)-\frac{261}{20} \zeta(8)
$$

Multiple Zeta Values, defined for $n_{1}, \ldots, n_{r-1} \geq 1$, and $n_{r} \geq 2$:

$$
\zeta\left(n_{1}, \ldots, n_{r}\right)=\sum_{1 \leq k_{1}<k_{2}<\ldots<k_{r}} \frac{1}{k_{1}^{n_{1}} \ldots k_{r}^{n_{r}}} \in \mathbb{R}
$$

Main problem

Folklore conjecture 90's
The numbers I_{G} are \mathbb{Q}-linear combinations of multiple zeta values.

Main problem

Folklore conjecture 90's
The numbers I_{G} are \mathbb{Q}-linear combinations of multiple zeta values.

Cartier's dream:

Main problem

Folklore conjecture 90's
The numbers I_{G} are \mathbb{Q}-linear combinations of multiple zeta values.

Cartier's dream:

Main problem

Folklore conjecture 90's
The numbers I_{G} are \mathbb{Q}-linear combinations of multiple zeta values.

Cartier's dream:

Main problem

Folklore conjecture 90's
The numbers I_{G} are \mathbb{Q}-linear combinations of multiple zeta values.

Cartier's dream:

Cartier postulated the existence of a 'cosmic Galois group' (1998).

Properties I

(1) Contraction-Deletion:

$$
\Psi_{G}=\alpha_{e} \Psi_{G \backslash e}+\Psi_{G / / e}
$$

Properties I

(1) Contraction-Deletion:

$$
\Psi_{G}=\alpha_{e} \Psi_{G \backslash e}+\Psi_{G / / e}
$$

(2) Partial factorisation:

$$
\Psi_{G}=\Psi_{\gamma} \Psi_{G / \gamma}+R_{\gamma, G}
$$

Properties I

(1) Contraction-Deletion:

$$
\Psi_{G}=\alpha_{e} \Psi_{G \backslash e}+\Psi_{G / / e}
$$

(2) Partial factorisation:

$$
\Psi_{G}=\Psi_{\gamma} \Psi_{G / \gamma}+R_{\gamma, G}
$$

Properties I

(1) Contraction-Deletion:

$$
\Psi_{G}=\alpha_{e} \Psi_{G \backslash e}+\Psi_{G / / e}
$$

(2) Partial factorisation:

$$
\Psi_{G}=\Psi_{\gamma} \Psi_{G / \gamma}+R_{\gamma, G}
$$

$$
\Psi_{G}=\underbrace{\left(\alpha_{3}+\alpha_{4}\right)}_{\Psi_{\gamma}}(\underbrace{\alpha_{1}+\alpha_{2}}_{\Psi_{G / \gamma}})+\underbrace{\alpha_{3} \alpha_{4}}_{R_{\gamma, G}}
$$

Properties I

(1) Contraction-Deletion:

$$
\Psi_{G}=\alpha_{e} \Psi_{G \backslash e}+\Psi_{G / / e}
$$

(2) Partial factorisation:

$$
\Psi_{G}=\Psi_{\gamma} \Psi_{G / \gamma}+R_{\gamma, G}
$$

$$
\Psi_{G}=\underbrace{\left(\alpha_{3}+\alpha_{4}\right)}_{\Psi_{\gamma}}(\underbrace{\alpha_{1}+\alpha_{2}}_{\Psi_{G / \gamma}})+\underbrace{\alpha_{3} \alpha_{4}}_{R_{\gamma, G}}
$$

Determines Ψ_{G} essentially uniquely.

Properties II

- The graph polynomial is a determinant

$$
\Psi_{G}=\operatorname{det}\left(L_{G}\right)
$$

where L_{G} is the reduced graph Laplacian matrix.

Properties II

- The graph polynomial is a determinant

$$
\Psi_{G}=\operatorname{det}\left(L_{G}\right)
$$

where L_{G} is the reduced graph Laplacian matrix.

- Many identities between I_{G}. For example:

- The graph polynomial is a determinant

$$
\Psi_{G}=\operatorname{det}\left(L_{G}\right)
$$

where L_{G} is the reduced graph Laplacian matrix.

- Many identities between I_{G}. For example:

and planar duals, completion (Fourier transform), ...

Counterexamples

Counterexamples

Ψ_{G} of degree 8 in 16 variables, 3785 terms.
Theorem: (B., Schnetz 2012)
The zero locus of Ψ_{G} is modular of weight 3 , level 7 .
I_{G} should be algebraically independent from multiple zeta values!!
I_{G} should be algebraically independent from multiple zeta values!!
The folklore conjecture is likely to be false. The nature of the numbers I_{G} is unknown.
I_{G} should be algebraically independent from multiple zeta values!!

The folklore conjecture is likely to be false. The nature of the numbers I_{G} is unknown.

I_{G} should be algebraically independent from multiple zeta values!!

The folklore conjecture is likely to be false. The nature of the numbers I_{G} is unknown.

I_{G} should be algebraically independent from multiple zeta values!!

The folklore conjecture is likely to be false. The nature of the numbers I_{G} is unknown.

However, the group actions may yet survive.........

III. Periods

Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the form

$$
I=\int_{\sigma} \frac{P}{Q} d x_{1} \ldots d x_{n}
$$

where $P, Q, \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, and σ finite union of sets $\left\{f_{1}, \ldots, f_{N} \geq 0\right\}$ with $f_{i} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the form

$$
I=\int_{\sigma} \frac{P}{Q} d x_{1} \ldots d x_{n}
$$

where $P, Q, \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, and σ finite union of sets $\left\{f_{1}, \ldots, f_{N} \geq 0\right\}$ with $f_{i} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

$$
\sqrt{2}=\int_{x^{2} \leq 2} \frac{d x}{2}
$$

Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the form

$$
I=\int_{\sigma} \frac{P}{Q} d x_{1} \ldots d x_{n}
$$

where $P, Q, \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, and σ finite union of sets $\left\{f_{1}, \ldots, f_{N} \geq 0\right\}$ with $f_{i} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

$$
\begin{gathered}
\sqrt{2}=\int_{x^{2} \leq 2} \frac{d x}{2} \\
\pi=\int_{x^{2}+y^{2} \leq 1} d x d y
\end{gathered}
$$

Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the form

$$
I=\int_{\sigma} \frac{P}{Q} d x_{1} \ldots d x_{n}
$$

where $P, Q, \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, and σ finite union of sets $\left\{f_{1}, \ldots, f_{N} \geq 0\right\}$ with $f_{i} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

$$
\begin{aligned}
& \sqrt{2}=\int_{x^{2} \leq 2} \frac{d x}{2} \\
& \pi=\int_{x^{2}+y^{2} \leq 1} d x d y \\
& \log 2=\int_{1 \leq x \leq 2} \frac{d x}{x}
\end{aligned}
$$

Ring of periods

Periods form a ring:

$$
\mathbb{Q} \subseteq \overline{\mathbb{Q}} \subset P \subset \mathbb{C}
$$

Ring of periods

Periods form a ring:

$$
\mathbb{Q} \subseteq \overline{\mathbb{Q}} \subset P \subset \mathbb{C}
$$

Non-periods?

$$
\begin{gathered}
e=\int_{x \leq 1} e^{x} d x \\
\gamma=\int_{0}^{\infty} \frac{e^{-x}}{e^{-x}-1}-\frac{e^{-x}}{x} d x ?
\end{gathered}
$$

Relations

Relations

- Additivity in ω and σ :

$$
\int_{\sigma} \omega_{1}+\omega_{2}=\int_{\sigma} \omega_{1}+\int_{\sigma} \omega_{2}
$$

Relations

- Additivity in ω and σ :

$$
\int_{\sigma} \omega_{1}+\omega_{2}=\int_{\sigma} \omega_{1}+\int_{\sigma} \omega_{2}
$$

- Algebraic changes of variables

$$
\int_{f_{*} \sigma} \omega=\int_{\sigma} f^{*} \omega
$$

Relations

- Additivity in ω and σ :

$$
\int_{\sigma} \omega_{1}+\omega_{2}=\int_{\sigma} \omega_{1}+\int_{\sigma} \omega_{2}
$$

- Algebraic changes of variables

$$
\int_{f_{*} \sigma} \omega=\int_{\sigma} f^{*} \omega
$$

- Stokes:

$$
\int_{\sigma} d \omega=\int_{\partial \sigma} \omega
$$

Galois

Algebraic numbers are periods.
Can one extend Galois theory to periods?
Grothendieck, Kontsevich-Zagier, André, ...

Galois

Algebraic numbers are periods.
Can one extend Galois theory to periods?
Grothendieck, Kontsevich-Zagier, André, ...

Want a pro-algebraic group \mathcal{G}

$$
\mathcal{G} \times P \longrightarrow P
$$

which acts linearly on periods.

Example: MZV's

Leibniz:

$$
\zeta(2)=\int_{0 \leq t_{1} \leq t_{2} \leq 1} \frac{d t_{1}}{1-t_{1}} \frac{d t_{2}}{t_{2}}
$$

Example: MZV's

Leibniz:

$$
\zeta(2)=\int_{0 \leq t_{1} \leq t_{2} \leq 1} \frac{d t_{1}}{1-t_{1}} \frac{d t_{2}}{t_{2}}
$$

Multiple Zeta Values:

Example: MZV's

Leibniz:

$$
\zeta(2)=\int_{0 \leq t_{1} \leq t_{2} \leq 1} \frac{d t_{1}}{1-t_{1}} \frac{d t_{2}}{t_{2}}
$$

Multiple Zeta Values:

$$
\zeta\left(n_{1}, \ldots, n_{r}\right)=(-1)^{r} \int_{0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1} \frac{d t_{1}}{t_{1}-\epsilon_{1}} \cdots \frac{d t_{n}}{t_{n}-\epsilon_{n}}
$$

$$
\text { where }\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=10^{n_{1}-1} \ldots 10^{n_{r}-1}
$$

Example: MZV's

Leibniz:

$$
\zeta(2)=\int_{0 \leq t_{1} \leq t_{2} \leq 1} \frac{d t_{1}}{1-t_{1}} \frac{d t_{2}}{t_{2}}
$$

Multiple Zeta Values:

$$
\zeta\left(n_{1}, \ldots, n_{r}\right)=(-1)^{r} \int_{0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1} \frac{d t_{1}}{t_{1}-\epsilon_{1}} \cdots \frac{d t_{n}}{t_{n}-\epsilon_{n}}
$$

where $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=10^{n_{1}-1} \ldots 10^{n_{r}-1}$.
MZV's form a subring of the ring of periods:

$$
\mathbb{Q} \subset \mathcal{Z} \subset P
$$

Relations

In weight 4: generators $\zeta(4), \zeta(1,3), \zeta(2,2)$, and $\zeta(1,1,2)$.

Relations:

$$
\begin{aligned}
\zeta(2)^{2} & =2 \zeta(2,2)+\zeta(4) \\
\zeta(2)^{2} & =4 \zeta(1,3)+2 \zeta(2,2) \\
\zeta(1,3)+\zeta(4) & =2 \zeta(1,3)+\zeta(2,2) \\
2 \zeta(1,1,2)+\zeta(2,2)+\zeta(1,4) & =3 \zeta(1,1,2)
\end{aligned}
$$

A Galois group of periods should respect these relations!

IV. Motivic Periods

(a Galois theory of periods for dummies)

Cohomology

X smooth affine over \mathbb{Q}.

- Algebraic de Rham cohomology:

$$
H_{d R}^{n}(X ; \mathbb{Q})=\frac{\text { closed algebraic forms of degree } \mathrm{n}}{\text { exact algebraic forms of degree } \mathrm{n}}
$$

Cohomology

X smooth affine over \mathbb{Q}.

- Algebraic de Rham cohomology:

$$
H_{d R}^{n}(X ; \mathbb{Q})=\frac{\text { closed algebraic forms of degree } \mathrm{n}}{\text { exact algebraic forms of degree } \mathrm{n}}
$$

- Betti (singular) cohomology:

$$
H_{B}^{n}(X)=H_{n}(X(\mathbb{C}))^{\vee}
$$

Cohomology

X smooth affine over \mathbb{Q}.

- Algebraic de Rham cohomology:

$$
H_{d R}^{n}(X ; \mathbb{Q})=\frac{\text { closed algebraic forms of degree } \mathrm{n}}{\text { exact algebraic forms of degree } \mathrm{n}}
$$

- Betti (singular) cohomology:

$$
H_{B}^{n}(X)=H_{n}(X(\mathbb{C}))^{\vee}
$$

- Comparison theorem (de Rham, Grothendieck):

$$
\begin{aligned}
H_{d R}^{n}(X ; \mathbb{Q}) \otimes \mathbb{C} & \xrightarrow{\sim} H_{B}^{n}(X) \otimes \mathbb{C} \\
\omega & \mapsto\left(\gamma \mapsto \int_{\gamma} \omega\right)
\end{aligned}
$$

Example: $2 i \pi$

$$
X=\mathbb{P}^{1} \backslash\{0, \infty\} . X(\mathbb{C})=\mathbb{C}^{\times} .
$$

Example: $2 i \pi$

$$
X=\mathbb{P}^{1} \backslash\{0, \infty\} . X(\mathbb{C})=\mathbb{C}^{\times} .
$$

$$
\begin{aligned}
H_{d R}^{1}(X) & =0\left[\frac{d X}{X}\right] \\
H_{1}(X(C)) & =0[Y]
\end{aligned}
$$

Example: $2 i \pi$

$$
X=\mathbb{P}^{1} \backslash\{0, \infty\} . X(\mathbb{C})=\mathbb{C}^{\times} .
$$

$$
\begin{aligned}
& 0 \\
& H_{d R}^{1}(X)=\mathbb{Q}\left[\frac{d x}{x}\right] \\
& H_{1}(X(\mathbb{C}))=\mathbb{Q}[\gamma]
\end{aligned}
$$

Period:

$$
\int_{\gamma} \frac{d x}{x}=2 i \pi
$$

Example: $2 i \pi$

$$
X=\mathbb{P}^{1} \backslash\{0, \infty\} . X(\mathbb{C})=\mathbb{C}^{\times} .
$$

$$
\begin{aligned}
H^{1} d R(X) & =0\left[\frac{d X}{X}\right] \\
H_{1}(X(C)) & =0[\Upsilon]
\end{aligned}
$$

Period:

$$
\int_{\gamma} \frac{d x}{x}=2 i \pi
$$

$$
\begin{aligned}
H_{d R}^{1}(X) \otimes \mathbb{C} & \xrightarrow{\sim} H_{B}^{1}(X) \otimes \mathbb{C} \\
{\left[\frac{d x}{x}\right] } & \mapsto 2 i \pi[\gamma]^{\vee}
\end{aligned}
$$

A ring of 'motivic' periods

(1) $P^{\mathfrak{m}}$ the \mathbb{Q}-vector space spanned by symbols

$$
\left[H^{n}(X), \omega, \gamma\right]
$$

modulo an (elementary) equivalence relation, where $H^{n}(X)$ is a triplet $\left(H_{B}, H_{d R}, \int\right)$, with $H_{B}, H_{d R} \in \mathrm{Vec}_{\mathbb{Q}}, \int$ an isomorphism between their complexifications.

A ring of 'motivic' periods

(1) $P^{\mathfrak{m}}$ the \mathbb{Q}-vector space spanned by symbols

$$
\left[H^{n}(X), \omega, \gamma\right]
$$

modulo an (elementary) equivalence relation, where $H^{n}(X)$ is a triplet $\left(H_{B}, H_{d R}, \int\right)$, with $H_{B}, H_{d R} \in \mathrm{Vec}_{\mathbb{Q}}, \int$ an isomorphism between their complexifications.
(2) Ring structure (Künneth)

$$
[V, \omega, \gamma] \otimes\left[W, \omega^{\prime}, \gamma^{\prime}\right]=\left[V \otimes W, \omega \otimes \omega^{\prime}, \gamma \otimes \gamma^{\prime}\right]
$$

- Period homomorphism

$$
\begin{aligned}
\text { per : } \mathcal{P}^{\mathfrak{m}} & \longrightarrow P \\
{\left[H^{n}(X), \omega, \gamma\right] } & \mapsto
\end{aligned} \int_{\gamma} \omega
$$

- Period homomorphism

$$
\begin{array}{rll}
\text { per : } \mathcal{P}^{\mathfrak{m}} & \longrightarrow P \\
{\left[H^{n}(X), \omega, \gamma\right]} & \mapsto & \int_{\gamma} \omega
\end{array}
$$

- We gain the action of a pro-algebraic group

$$
\mathcal{G}^{d R} \times \mathcal{P}^{\mathfrak{m}} \longrightarrow \mathcal{P}^{\mathfrak{m}}
$$

It acts linearly on $H_{d R}^{n}(X)$:

$$
g\left[H^{n}(X), \omega, \gamma\right]=\left[H^{n}(X), g \omega, \gamma\right]
$$

A game

Given a period

$$
I=\int_{\gamma} \omega
$$

Try to express I as a period of cohomology

$$
\omega \in H_{d R}^{n}(X) \quad, \quad \gamma \in H_{n}(X(\mathbb{C}))
$$

A game

Given a period

$$
I=\int_{\gamma} \omega
$$

Try to express I as a period of cohomology

$$
\omega \in H_{d R}^{n}(X) \quad, \quad \gamma \in H_{n}(X(\mathbb{C}))
$$

Replace I by 'its' motivic version (NB choices!)

$$
I^{\mathfrak{m}}=\left[H^{n}(X), \omega, \gamma\right] \in \mathcal{P}^{\mathfrak{m}}
$$

A game

Given a period

$$
I=\int_{\gamma} \omega
$$

Try to express I as a period of cohomology

$$
\omega \in H_{d R}^{n}(X) \quad, \quad \gamma \in H_{n}(X(\mathbb{C}))
$$

Replace I by 'its' motivic version (NB choices!)

$$
I^{\mathfrak{m}}=\left[H^{n}(X), \omega, \gamma\right] \in \mathcal{P}^{\mathfrak{m}}
$$

The action of the group $\mathcal{G}^{d R}$ on $I^{\mathfrak{m}}$ generates a representation of a quotient of $\mathcal{G}^{d R}$. We can use group theory to define invariants, or to discover new relations.

Example: $2 i \pi$

$$
X=\mathbb{P}^{1} \backslash\{0, \infty\} .
$$

$(2 i \pi)^{m}:=\left[H^{1}(X),\left[\frac{d x}{x}\right],[\gamma]\right]$

Example: $2 i \pi$

$$
X=\mathbb{P}^{1} \backslash\{0, \infty\} .
$$

$$
(2 i \pi)^{\mathrm{m}}:=\left[H^{1}(X),\left[\frac{d x}{x}\right],[\gamma]\right]
$$

$$
g \in \mathcal{G}^{d R}:
$$

$$
g(2 i \pi)^{\mathfrak{m}}=\lambda_{g}(2 i \pi)^{m}
$$

Example: $2 i \pi$

$$
X=\mathbb{P}^{1} \backslash\{0, \infty\} .
$$

$$
(2 i \pi)^{\mathrm{m}}:=\left[H^{1}(X),\left[\frac{d x}{x}\right],[\gamma]\right]
$$

$$
g \in \mathcal{G}^{d R}:
$$

$$
g(2 i \pi)^{\mathfrak{m}}=\lambda_{g}(2 i \pi)^{m}
$$

It spans a one-dimensional representation

$$
\begin{array}{rll}
\mathcal{G}^{d R} & \longrightarrow & G L_{1} \\
g & \mapsto & \lambda_{g}
\end{array}
$$

So $(2 i \pi)^{m}$ is a motivic period of rank 1 .

Example 2: logarithms

$$
\log ^{m}(2) \stackrel{g}{\mapsto} \lambda_{g} \log ^{m}(2)+\nu_{g}
$$

Equivalently

$$
\left(\begin{array}{cc}
1 & \log ^{\mathfrak{m}}(2) \\
0 & (2 \pi i)^{\mathfrak{m}}
\end{array}\right) \mapsto\left(\begin{array}{cc}
1 & \log ^{\mathfrak{m}}(2) \\
0 & (2 \pi i)^{\mathfrak{m}}
\end{array}\right)\left(\begin{array}{cc}
1 & \nu_{g} \\
0 & \lambda_{g}
\end{array}\right)
$$

Example 2: logarithms

$$
\log ^{\mathfrak{m}}(2) \stackrel{g}{\mapsto} \lambda_{g} \log ^{\mathfrak{m}}(2)+\nu_{g}
$$

Equivalently

$$
\left(\begin{array}{cc}
1 & \log ^{\mathfrak{m}}(2) \\
0 & (2 \pi i)^{\mathfrak{m}}
\end{array}\right) \mapsto\left(\begin{array}{cc}
1 & \log ^{\mathfrak{m}}(2) \\
0 & (2 \pi i)^{\mathfrak{m}}
\end{array}\right)\left(\begin{array}{cc}
1 & \nu_{g} \\
0 & \lambda_{g}
\end{array}\right)
$$

Hence a two-dimensional representation

$$
\begin{aligned}
\mathcal{G}^{d R} & \longrightarrow G L_{2} \\
g & \mapsto\left(\begin{array}{ll}
1 & \nu_{g} \\
0 & \lambda_{g}
\end{array}\right)
\end{aligned}
$$

So $\log ^{\mathfrak{m}}(2)$ is of rank 2 .

Example 3: Algebraic numbers

Let $\alpha \in \mathbb{C}$ algebraic. There exists canonical $\alpha^{\mathfrak{m}}$, whence

$$
\overline{\mathbb{Q}} \subset \mathcal{P}^{\mathfrak{m}}
$$

$\mathcal{G}^{d R}$ acts on $\overline{\mathbb{Q}}$ via a pro-algebraic quotient $\mathcal{A}_{\overline{\mathbb{Q}}}$:

$$
\mathcal{A}_{\overline{\mathbb{Q}}}(\mathbb{C}) \cong \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})
$$

Example 3: Algebraic numbers

Let $\alpha \in \mathbb{C}$ algebraic. There exists canonical $\alpha^{\mathfrak{m}}$, whence

$$
\overline{\mathbb{Q}} \subset \mathcal{P}^{\mathfrak{m}}
$$

$\mathcal{G}^{d R}$ acts on $\overline{\mathbb{Q}}$ via a pro-algebraic quotient $\mathcal{A}_{\overline{\mathbb{Q}}}$:

$$
\mathcal{A}_{\overline{\mathbb{Q}}}(\mathbb{C}) \cong \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})
$$

The rank of $\alpha^{\mathfrak{m}}$ is the dimension of the vector space spanned by the conjugates of α.

Period conjecture

Weak variant of Grothendieck's period conjecture.

$$
\text { per : } \mathcal{P}^{\mathfrak{m}} \longrightarrow \mathbb{C} \quad \text { is injective }
$$

Period conjecture

Weak variant of Grothendieck's period conjecture.

$$
\text { per : } \mathcal{P}^{\mathfrak{m}} \longrightarrow \mathbb{C} \quad \text { is injective }
$$

Means that $I^{\mathfrak{m}}$ does not depend on choices, and the action of $\mathcal{G}^{d R}$ on $\mathcal{P}^{\mathfrak{m}}$ can be transported onto the ring of periods itself.

Weak variant of Grothendieck's period conjecture.

$$
\text { per : } \mathcal{P}^{\mathfrak{m}} \longrightarrow \mathbb{C} \quad \text { is injective }
$$

Means that $I^{\mathfrak{m}}$ does not depend on choices, and the action of $\mathcal{G}^{d R}$ on $\mathcal{P}^{\mathfrak{m}}$ can be transported onto the ring of periods itself.

Via group and Hodge theory, we can define many new invariants:
...,rank, unipotency degree, weight, Hodge numbers, degree,.....

Unip. degree	Examples
0	Pure periods: $\quad \pi$, elliptic integrals, ... (classical)
1	Periods of simple extensions: $\log 2, \zeta(2 n+1), \ldots$ (values of L-functions)
≥ 2	Multiple periods: MZV's, Feynman amplitudes, ... (unknown) - Unexplored territory -

V. Applications and questions

Multiple Zeta Values

Multiple Zeta Values

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

$$
\zeta^{\mathfrak{m}}\left(n_{1}, \ldots, n_{r}\right) \in \mathcal{P}^{\mathfrak{m}}
$$

for all $n_{1}, \ldots, n_{r} \geq 1, n_{r} \geq 2$, whose periods are $\zeta\left(n_{1}, \ldots, n_{r}\right)$. They satisfy the 'standard' relations. The ring $\mathcal{Z}^{\mathfrak{m}}$ generated by the $\zeta^{\mathfrak{m}}$ is stable under the group $\mathcal{G}^{d R}$.

Multiple Zeta Values

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

$$
\zeta^{\mathfrak{m}}\left(n_{1}, \ldots, n_{r}\right) \in \mathcal{P}^{\mathfrak{m}}
$$

for all $n_{1}, \ldots, n_{r} \geq 1, n_{r} \geq 2$, whose periods are $\zeta\left(n_{1}, \ldots, n_{r}\right)$. They satisfy the 'standard' relations. The ring $\mathcal{Z}^{\mathfrak{m}}$ generated by the $\zeta^{\mathfrak{m}}$ is stable under the group $\mathcal{G}^{d R}$.

Not known if they satisfy more relations.

Multiple Zeta Values

Theorem (B. 2012)

There exist motivic versions of multiple zeta values

$$
\zeta^{\mathfrak{m}}\left(n_{1}, \ldots, n_{r}\right) \in \mathcal{P}^{\mathfrak{m}}
$$

for all $n_{1}, \ldots, n_{r} \geq 1, n_{r} \geq 2$, whose periods are $\zeta\left(n_{1}, \ldots, n_{r}\right)$. They satisfy the 'standard' relations. The ring $\mathcal{Z}^{\mathfrak{m}}$ generated by the $\zeta^{\mathfrak{m}}$ is stable under the group $\mathcal{G}^{d R}$.

Not known if they satisfy more relations.

Think of $\mathcal{Z}^{\mathfrak{m}}$ as a Galois extension of \mathbb{Q} with group

$$
\mathcal{G}^{M Z V} \times \mathcal{Z}^{\mathfrak{m}} \rightarrow \mathcal{Z}^{\mathfrak{m}}
$$

Theorem (B. 2012)

$$
\mathcal{G}^{M Z V}=U^{M Z V} \rtimes \mathbb{G}_{m}
$$

where $U^{M Z V}$ pro-unipotent. Its graded Lie algebra is free on generators in degrees $-3,-5,-7, \ldots$

$$
\sigma_{3}, \sigma_{5}, \sigma_{7}, \ldots
$$

Hence $\mathcal{G}^{M Z V}=G_{M T(Z)}$.

Theorem (B. 2012)

$$
\mathcal{G}^{M Z V}=U^{M Z V} \rtimes \mathbb{G}_{m}
$$

where $U^{M Z V}$ pro-unipotent. Its graded Lie algebra is free on generators in degrees $-3,-5,-7, \ldots$

$$
\sigma_{3}, \sigma_{5}, \sigma_{7}, \ldots
$$

Hence $\mathcal{G}^{M Z V}=G_{M T(Z)}$.
The $\sigma_{2 n+1}$ act via

$$
\sigma_{2 n+1} \zeta^{\mathfrak{m}}(2 m+1)=\delta_{n, m}
$$

Think of σ_{3} as 'differentiation with respect to $\zeta^{\mathfrak{m}}(3)$ ', etc

Cosmic Galois group

Cosmic Galois group

Theorem (B. 2014, using Bloch-Esnault-Kreimer 2005)
There exist canonical 'motivic' Feynman amplitudes

$$
I_{G}^{\mathfrak{m}} \in \mathcal{P}^{\mathfrak{m}}
$$

for any convergent G, whose period is I_{G}.
Not all expected relations are known.

Many new invariants to amplitudes (weights, rank, etc).

Cosmic Galois group

Theorem (B. 2014, using Bloch-Esnault-Kreimer 2005)
There exist canonical 'motivic' Feynman amplitudes

$$
I_{G}^{\mathfrak{m}} \in \mathcal{P}^{\mathfrak{m}}
$$

for any convergent G, whose period is I_{G}.
Not all expected relations are known.

Many new invariants to amplitudes (weights, rank, etc).
Define a cosmic Galois group

$$
\mathcal{G}_{c o s}:=\mathcal{G}^{d R} / K
$$

where K is the subgroup acting trivially on all $I_{G}^{\mathfrak{m}}$.

Conjecture of Panzer and Schnetz

Extraordinary Conjecture

The vector space generated by the $I_{G}^{\mathfrak{m}}$, for G convergent in ϕ^{4}, is stable under the action of $\mathcal{G}_{\text {cos }}$.

Verified in every known example ~ 250 cases.

Conjecture of Panzer and Schnetz

Extraordinary Conjecture

The vector space generated by the $I_{G}^{\mathfrak{m}}$, for G convergent in ϕ^{4}, is stable under the action of $\mathcal{G}_{\text {cos }}$.

Verified in every known example ~ 250 cases.
Very strong constraint on the possible amplitudes. Enables one to constrain I_{G} 'in advance' from smaller graphs.

Conjecture of Panzer and Schnetz

Extraordinary Conjecture

The vector space generated by the $I_{G}^{\mathfrak{m}}$, for G convergent in ϕ^{4}, is stable under the action of $\mathcal{G}_{\text {cos }}$.

Verified in every known example ~ 250 cases.
Very strong constraint on the possible amplitudes. Enables one to constrain I_{G} 'in advance' from smaller graphs.

Related to partial factorisation property of graph polynomials.

Conclusion

'Motivic' version of Cartier's dream:

QFT
"Motivic operad"

$\mathbb{P}^{1} \backslash\{0,1, \infty\}$
"Motivic π_{1} "

The two pictures look very similar, but are subtly different.

Q: What is the mathematical and geometric framework to describe amplitudes in quantum field theories?

