Periods and Cosmic Galois group

Francis Brown
All Souls College, Oxford
IHES, Bures-Sur-Yvette

Premier Congrès de la SMF
7 Juin 2016
I. Particle physics
Collision of beam particles

Test the laws of physics by analysing particle tracks.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman *amplitude* is a complex probability assigned to G.
General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman *amplitude* is a complex probability assigned to G.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman *amplitude* is a complex probability assigned to G.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman *amplitude* is a complex probability assigned to G.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.

Feynman *amplitude* is a complex probability assigned to G.
General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman *amplitude* is a complex probability assigned to G.
Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction. Feynman *amplitude* is a complex probability assigned to G.
The blue line (background) requires calculating a huge number of Feynman amplitudes.
II. Graphs and Numbers
Let $G = (V_G, E_G)$ be a connected graph. The graph polynomial

$$
\Psi_G \in \mathbb{Z}[\alpha_e, e \in E(G)]
$$

is a sum over spanning trees T of G

$$
\Psi_G = \sum_{T \subset G} \prod_{e \notin T} \alpha_e
$$
Let $G = (V_G, E_G)$ be a connected graph. The graph polynomial

$$\Psi_G \in \mathbb{Z}[\alpha_e, e \in E(G)]$$

is a sum over spanning trees T of G

$$\Psi_G = \sum_{T \subset G} \prod_{e \notin T} \alpha_e$$

A tree $T \subset G$ is spanning if $V_T = V_G$.
Example

In general, Ψ_G is homogeneous of degree h_G (‘loop number’).

$$\deg \Psi_G = h_G = \#E(G)$$

Physically relevant graphs have vertices of degree ≤ 4. (‘G in ϕ_4’).

$\Psi_G = ?$
In general, Ψ_G is homogeneous of degree h_G ('loop number').

Physically relevant graphs have vertices of degree ≤ 4. ('G in φ_4').
In general, Ψ_G is homogeneous of degree h_G ("loop number").

Physically relevant graphs have vertices of degree ≤ 4. ("G in ϕ^4".)

$$\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4$$
In general, Ψ_G is homogeneous of degree h_G ('loop number').

$$
\deg \Psi_G = h_G = \#E(G)
$$

Physically relevant graphs have vertices of degree ≤ 4. ('G in ϕ_4').

$$
\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4
$$
Example

\[\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 \]
Example

\[\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3 \]
In general, Ψ_G is homogeneous of degree h_G (‘loop number’).

\[\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3 \]

\[\deg \Psi_G = h_G \quad N_G = \# E(G) \]
Example

\[\Psi_G = \alpha_3 \alpha_4 + \alpha_2 \alpha_4 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3 \]

In general, \(\Psi_G \) is homogeneous of degree \(h_G \) (‘loop number’).

\[\deg \Psi_G = h_G \quad N_G = \#E(G) \]

Physically relevant graphs have vertices of degree \(\leq 4 \). (‘\(G \) in \(\phi^4 \)’).
For convergence, assume

1. \(N_G = 2h_G \)
2. \(N_\gamma > 2h_\gamma \) for all \(\gamma \subseteq G \).
For convergence, assume

- $N_G = 2h_G$
- $N_\gamma > 2h_\gamma$ for all $\gamma \subsetneq G$.

The \textit{residue} is the convergent integral

$$I_G = \int_\sigma \frac{\Omega_G}{\Psi_G^2} \quad \in \quad \mathbb{R}$$
Feynman integrals

For convergence, assume

- $N_G = 2h_G$
- $N_\gamma > 2h_\gamma$ for all $\gamma \subseteq G$.

The residue is the convergent integral

$$I_G = \int_\sigma \frac{\Omega_G}{\Psi^2_G} \in \mathbb{R}$$

where

$$\Omega_G = \sum_{i=1}^{N_G} (-1)^i \alpha_i d\alpha_1 \wedge \ldots \wedge \hat{d}\alpha_i \wedge \ldots d\alpha_{N_G}$$
For convergence, assume

- $N_G = 2h_G$
- $N_\gamma > 2h_\gamma$ for all $\gamma \subsetneq G$.

The *residue* is the convergent integral

$$I_G = \int_\sigma \frac{\Omega_G}{\psi_G^2} \in \mathbb{R}$$

where

$$\Omega_G = \sum_{i=1}^{N_G} (-1)^i \alpha_i d\alpha_1 \wedge \ldots \wedge \hat{d}\alpha_i \wedge \ldots d\alpha_{N_G}$$

$$\sigma = \{(\alpha_1 : \ldots : \alpha_{N_G}) \in \mathbb{P}^{N_G-1}(\mathbb{R}) \text{ such that } \alpha_i \geq 0\}$$
We obtain a map

\[I : \{ \text{convergent graphs in } \phi^4 \} \rightarrow \mathbb{R} \]
Graphs and numbers

We obtain a map

\[I : \{ \text{convergent graphs in } \phi^4 \} \rightarrow \mathbb{R} \]

Example:

![Diagram](image)
We obtain a map

\[I : \{ \text{convergent graphs in } \phi^4 \} \longrightarrow \mathbb{R} \]

Example:

\[\Psi_G = \alpha_1 + \alpha_2 \]
We obtain a map

\[I : \{ \text{convergent graphs in } \phi^4 \} \rightarrow \mathbb{R} \]

Example:

\[\Psi_G = \alpha_1 + \alpha_2 \]

Compute the integral on the chart \(\alpha_2 = 1 \):

\[I_G = \int_\sigma \frac{\alpha_2 d\alpha_1 - \alpha_1 d\alpha_2}{(\alpha_1 + \alpha_2)^2} = \int_{\alpha_1 \geq 0} \frac{d\alpha_1}{(\alpha_1 + 1)^2} = 1 \]
The Zoo

\[I_G : \quad 6\zeta(3) \quad 20\zeta(5) \quad 36\zeta(3)^2 \quad N_{3,5} \]
The Zoo

$I_G : \quad 6\zeta(3) \quad 20\zeta(5) \quad 36\zeta(3)^2 \quad N_{3,5}$

$$N_{3,5} = \frac{27}{5}\zeta(5, 3) + \frac{45}{4}\zeta(5)\zeta(3) - \frac{261}{20}\zeta(8)$$
Multiple Zeta Values, defined for $n_1, \ldots, n_{r-1} \geq 1$, and $n_r \geq 2$:

$$\zeta(n_1, \ldots, n_r) = \sum_{1 \leq k_1 < k_2 < \ldots < k_r} \frac{1}{k_1^{n_1} \cdots k_r^{n_r}} \in \mathbb{R}$$
The numbers I_G are \mathbb{Q}-linear combinations of multiple zeta values.
Folklore conjecture 90’s

The numbers I_G are \mathbb{Q}-linear combinations of multiple zeta values.

Cartier’s dream:
Main problem

Folklore conjecture 90’s
The numbers I_G are \mathbb{Q}-linear combinations of multiple zeta values.

Cartier’s dream:

I_G \rightarrow MZV

$G_{MT(Z)}$
Main problem

Folklore conjecture 90’s

The numbers I_G are \mathbb{Q}-linear combinations of multiple zeta values.

Cartier’s dream:

G_{cos}

$G_{MT(Z)}$
Main problem

Folklore conjecture 90’s

The numbers I_G are \mathbb{Q}-linear combinations of multiple zeta values.

Cartier’s dream:

Cartier postulated the existence of a ‘cosmic Galois group’ (1998).
Contraction-Deletion:

\[\Psi_G = \alpha_e \Psi_{G \backslash e} + \Psi_{G / e} \]
1. **Contraction-Deletion:**

\[\Psi_G = \alpha_e \Psi_{G\setminus e} + \Psi_{G/e} \]

2. **Partial factorisation:**

\[\Psi_G = \Psi_\gamma \Psi_{G/\gamma} + R_{\gamma,G} \]
Properties I

1. **Contraction-Deletion:**

\[\Psi_G = \alpha_e \Psi_{G \setminus e} + \Psi_{G \parallel e} \]

2. **Partial factorisation:**

\[\Psi_G = \Psi_\gamma \Psi_{G/\gamma} + R_{\gamma,G} \]
Properties I

1. Contraction-Deletion:
\[\Psi_G = \alpha_e \Psi_{G\setminus e} + \Psi_{G\parallel e} \]

2. Partial factorisation:
\[\Psi_G = \Psi_\gamma \Psi_{G/\gamma} + R_{\gamma, G} \]

\[\Psi_G = (\alpha_3 + \alpha_4)(\alpha_1 + \alpha_2) + \alpha_3\alpha_4 \]

\[\Psi_\gamma \]

\[\Psi_{G/\gamma} \]

\[R_{\gamma, G} \]
1. **Contraction-Deletion:**

\[\Psi_G = \alpha_e \Psi_{G\setminus e} + \Psi_{G/\setminus e} \]

2. **Partial factorisation:**

\[\Psi_G = \Psi_\gamma \Psi_{G/\gamma} + R_{\gamma, G} \]

\[\Psi_G = (\alpha_3 + \alpha_4)(\alpha_1 + \alpha_2) + \alpha_3 \alpha_4 \]

Determines \(\Psi_G \) essentially uniquely.
The graph polynomial is a determinant

$$\psi_G = \det(L_G)$$

where L_G is the reduced graph Laplacian matrix.
The graph polynomial is a determinant

$$\Psi_G = \det(L_G)$$

where L_G is the reduced graph Laplacian matrix.

Many identities between I_G. For example:

$$I_{G_1} I_{G_2} = I_{G_1:G_2}.$$
The graph polynomial is a determinant

\[\Psi_G = \det(L_G) \]

where \(L_G \) is the reduced graph Laplacian matrix.

Many identities between \(I_G \). For example:

\[I_{G_1} I_{G_2} = I_{G_1:G_2}. \]

and planar duals, completion (Fourier transform), …
Counterexamples

Theorem: (B., Schnetz 2012)

The zero locus of Ψ_G is modular of weight 3, level 7.
\(\Psi_G\) of degree 8 in 16 variables, 3785 terms.

Theorem: (B., Schnetz 2012)

The zero locus of \(\Psi_G\) is modular of weight 3, level 7.
I_G should be algebraically independent from multiple zeta values!!
I_G should be algebraically independent from multiple zeta values!!

The folklore conjecture is likely to be false. The nature of the numbers I_G is unknown.
I_G should be algebraically independent from multiple zeta values!!

The folklore conjecture is likely to be false. The nature of the numbers I_G is unknown.
I_G should be algebraically independent from multiple zeta values!!

The folklore conjecture is likely to be false. The nature of the numbers I_G is unknown.
\(I_G \) should be algebraically independent from multiple zeta values!!

The folklore conjecture is likely to be false. The nature of the numbers \(I_G \) is unknown.

\[\text{However, the group actions may yet survive} \ldots \]
III. Periods
Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the form

\[I = \int_{\sigma} \frac{P}{Q} \, dx_1 \ldots dx_n \]

where \(P, Q, \in \mathbb{Q}[x_1, \ldots, x_n] \), and \(\sigma \) finite union of sets \(\{ f_1, \ldots, f_N \geq 0 \} \) with \(f_i \in \mathbb{Q}[x_1, \ldots, x_n] \).
Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the form

\[I = \int_{\sigma} \frac{P}{Q} \, dx_1 \ldots dx_n \]

where \(P, Q, \in \mathbb{Q}[x_1, \ldots, x_n] \), and \(\sigma \) finite union of sets \(\{ f_1, \ldots, f_N \geq 0 \} \) with \(f_i \in \mathbb{Q}[x_1, \ldots, x_n] \).

\[\sqrt{2} = \int_{x^2 \leq 2} \frac{dx}{2} \]
Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the form

\[I = \int_\sigma \frac{P}{Q} \, dx_1 \ldots dx_n \]

where \(P, Q, \in \mathbb{Q}[x_1, \ldots, x_n] \), and \(\sigma \) finite union of sets \(\{ f_1, \ldots, f_N \geq 0 \} \) with \(f_i \in \mathbb{Q}[x_1, \ldots, x_n] \).

\[\sqrt{2} = \int_{x^2 \leq 2} \frac{dx}{2} \]

\[\pi = \int_{x^2+y^2 \leq 1} dxdy \]
Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the form

\[l = \int_{\sigma} \frac{P}{Q} \, dx_1 \ldots dx_n \]

where \(P, Q, \in \mathbb{Q}[x_1, \ldots, x_n] \), and \(\sigma \) finite union of sets \(\{ f_1, \ldots, f_N \geq 0 \} \) with \(f_i \in \mathbb{Q}[x_1, \ldots, x_n] \).

\[\sqrt{2} = \int_{x^2 \leq 2} \frac{dx}{2} \]

\[\pi = \int_{x^2 + y^2 \leq 1} \, dx \, dy \]

\[\log 2 = \int_{1 \leq x \leq 2} \frac{dx}{x} \]
Periods form a ring:

\[\mathbb{Q} \subseteq \overline{\mathbb{Q}} \subseteq P \subseteq \mathbb{C} \]
Ring of periods

Periods form a ring:

\[\mathbb{Q} \subseteq \overline{\mathbb{Q}} \subseteq P \subseteq \mathbb{C} \]

Non-periods?

\[e = \int_{x \leq 1} e^x \, dx \]

\[\gamma = \int_{0}^{\infty} \frac{e^{-x}}{e^{-x} - 1} - \frac{e^{-x}}{x} \, dx \]
Additivity in ω and σ:

$$\int \sigma_1 \omega_1 + \omega_2 = \int \sigma_1 \omega_1 + \int \sigma_2 \omega_2$$

Algebraic changes of variables

$$\int f^* \sigma \omega = \int \sigma f^* \omega$$

Stokes:

$$\int \sigma d \omega = \int \partial \sigma \omega$$
Additivity in ω and σ:

$$\int_{\sigma} \omega_1 + \omega_2 = \int_{\sigma} \omega_1 + \int_{\sigma} \omega_2$$
• Additivity in ω and σ:

$$\int_\sigma \omega_1 + \omega_2 = \int_\sigma \omega_1 + \int_\sigma \omega_2$$

• Algebraic changes of variables

$$\int_{f*\sigma} \omega = \int_\sigma f^* \omega$$
• Additivity in ω and σ:

\[\int_{\sigma} (\omega_1 + \omega_2) = \int_{\sigma} \omega_1 + \int_{\sigma} \omega_2 \]

• Algebraic changes of variables

\[\int_{f^*\sigma} \omega = \int_{\sigma} f^*\omega \]

• Stokes:

\[\int_{\sigma} d\omega = \int_{\partial\sigma} \omega \]
Algebraic numbers are periods.

Can one extend Galois theory to periods?

Grothendieck, Kontsevich-Zagier, André, …
Algebraic numbers are periods.

Can one extend Galois theory to periods?

Grothendieck, Kontsevich-Zagier, André, . . .

Want a pro-algebraic group \mathcal{G}

$$\mathcal{G} \times P \longrightarrow P$$

which acts linearly on periods.
Example: MZV’s

\[\zeta(2) = \int_{0}^{1} \frac{1}{t_1} dt_1 - \int_{t_1}^{t_2} \frac{1}{t_2} dt_2 \]

Multiple Zeta Values:

\[\zeta(n_1, \ldots, n_r) = (-1)^r \int_{0}^{1} \cdots \int_{t_{n_1} \leq \cdots \leq t_n \leq 1} dt_1 \cdots dt_n \]

where \((\epsilon_1, \ldots, \epsilon_n) = 10^{n_1-1} \cdots 10^{n_r-1} \).

MZV’s form a subring of the ring of periods: \(\mathbb{Q} \subset \mathbb{Z} \subset \mathbb{P} \).
Example: MZV’s

Leibniz:

$$\zeta(2) = \int_{0 \leq t_1 \leq t_2 \leq 1} \frac{dt_1}{1 - t_1} \frac{dt_2}{t_2}$$
Example: MZV’s

Leibniz:

\[\zeta(2) = \int_{0 \leq t_1 \leq t_2 \leq 1} \frac{dt_1}{1 - t_1} \frac{dt_2}{t_2} \]

Multiple Zeta Values:
Example: MZV’s

Leibniz:

\[\zeta(2) = \int_{0 \leq t_1 \leq t_2 \leq 1} \frac{dt_1}{1 - t_1} \frac{dt_2}{t_2} \]

Multiple Zeta Values:

\[\zeta(n_1, \ldots, n_r) = (-1)^r \int_{0 \leq t_1 \leq \ldots \leq t_n \leq 1} \frac{dt_1}{t_1 - \epsilon_1} \ldots \frac{dt_n}{t_n - \epsilon_n} \]

where \((\epsilon_1, \ldots, \epsilon_n) = 10^{n_1-1} \ldots 10^{n_r-1}\).
Example: MZV’s

Leibniz:

\[\zeta(2) = \int_{0 \leq t_1 \leq t_2 \leq 1} \frac{dt_1}{1-t_1} \frac{dt_2}{t_2} \]

Multiple Zeta Values:

\[\zeta(n_1, \ldots, n_r) = (-1)^r \int_{0 \leq t_1 \leq \ldots \leq t_n \leq 1} \frac{dt_1}{t_1 - \epsilon_1} \ldots \frac{dt_n}{t_n - \epsilon_n} \]

where \((\epsilon_1, \ldots, \epsilon_n) = 10^{n_1-1} \ldots 10^{n_r-1}\).

MZV’s form a subring of the ring of periods:

\[\mathbb{Q} \subset \mathbb{Z} \subset P \]
In weight 4: generators $\zeta(4)$, $\zeta(1, 3)$, $\zeta(2, 2)$, and $\zeta(1, 1, 2)$.

Relations:

\[
\begin{align*}
\zeta(2)^2 &= 2\zeta(2, 2) + \zeta(4) \\
\zeta(2)^2 &= 4\zeta(1, 3) + 2\zeta(2, 2) \\
\zeta(1, 3) + \zeta(4) &= 2\zeta(1, 3) + \zeta(2, 2) \\
2\zeta(1, 1, 2) + \zeta(2, 2) + \zeta(1, 4) &= 3\zeta(1, 1, 2)
\end{align*}
\]

A Galois group of periods should respect these relations!
IV. Motivic Periods

(a Galois theory of periods for dummies)
X smooth affine over \mathbb{Q}.

- Algebraic de Rham cohomology:

$$H^n_{dR}(X; \mathbb{Q}) = \frac{\text{closed algebraic forms of degree } n}{\text{exact algebraic forms of degree } n}$$
Cohomology

X smooth affine over \mathbb{Q}.

- Algebraic de Rham cohomology:

$$H^{n}_{dR}(X; \mathbb{Q}) = \frac{\text{closed algebraic forms of degree } n}{\text{exact algebraic forms of degree } n}$$

- Betti (singular) cohomology:

$$H^{n}_{B}(X) = H^{n}(X(\mathbb{C}))^\vee$$
X smooth affine over \(\mathbb{Q}\).

- **Algebraic de Rham cohomology:**
 \[
 H^n_{dR}(X; \mathbb{Q}) = \frac{\text{closed algebraic forms of degree } n}{\text{exact algebraic forms of degree } n}
 \]

- **Betti (singular) cohomology:**
 \[
 H^n_B(X) = H_n(X(\mathbb{C}))^\vee
 \]

- **Comparison theorem (de Rham, Grothendieck):**
 \[
 H^n_{dR}(X; \mathbb{Q}) \otimes \mathbb{C} \xrightarrow{\sim} H^n_B(X) \otimes \mathbb{C}
 \]
 \[
 \omega \mapsto (\gamma \mapsto \int_\gamma \omega)
 \]
Example: $2i\pi$

\[X = \mathbb{P}^1 \setminus \{0, \infty\}. \quad X(\mathbb{C}) = \mathbb{C}^\times. \]

\[X(\mathbb{C}) = \mathbb{C}^\times. \]
Example: $2i\pi$

$$X = \mathbb{P}^1 \setminus \{0, \infty\}. \quad X(\mathbb{C}) = \mathbb{C}^\times.$$

$$\gamma$$

$$H^1_{dR}(X) = \mathbb{Q}\left[\frac{dx}{x}\right]$$

$$H_1(X(\mathbb{C})) = \mathbb{Q}[\gamma]$$
Example: $2i\pi$

$X = \mathbb{P}^1 \setminus \{0, \infty\}$. $X(\mathbb{C}) = \mathbb{C}^\times$.

Period:

$$
\int_\gamma \frac{dx}{x} = 2i\pi
$$
Example: $2i\pi$

$X = \mathbb{P}^1 \setminus \{0, \infty\}$. $X(\mathbb{C}) = \mathbb{C}^\times$.

$H^1_{dR}(X) = \mathbb{Q}\left[\frac{dx}{x}\right]$

$H_1(X(\mathbb{C})) = \mathbb{Q}[\gamma]$

Period:

$$\int_{\gamma} \frac{dx}{x} = 2i\pi$$

$H^1_{dR}(X) \otimes \mathbb{C} \sim \to H^1_B(X) \otimes \mathbb{C}$

$[\frac{dx}{x}] \mapsto 2i\pi \ [\gamma]^\vee$
A ring of ‘motivic’ periods

P^m the \mathbb{Q}-vector space spanned by symbols

$[H^n(X), \omega, \gamma]$ modulo an (elementary) equivalence relation, where $H^n(X)$ is a triplet (H_B, H_{dR}, \int), with $H_B, H_{dR} \in \text{Vec}_\mathbb{Q}$, \int an isomorphism between their complexifications.
A ring of ‘motivic’ periods

1. P^m the \mathbb{Q}-vector space spanned by symbols

$$[H^n(X), \omega, \gamma]$$

modulo an (elementary) equivalence relation, where $H^n(X)$ is a triplet (H_B, H_{dR}, \int), with $H_B, H_{dR} \in \text{Vec}_\mathbb{Q}$, \int an isomorphism between their complexifications.

2. Ring structure (Künneth)

$$[V, \omega, \gamma] \otimes [W, \omega', \gamma'] = [V \otimes W, \omega \otimes \omega', \gamma \otimes \gamma']$$
Period homomorphism

\[\text{per} : \mathcal{P}^m \rightarrow P \]

\[[H^n(X), \omega, \gamma] \mapsto \int_\gamma \omega \]
Period homomorphism

\[
\text{per} : \mathcal{P}^m \longrightarrow \mathcal{P}
\]

\[
[H^n(X), \omega, \gamma] \mapsto \int_\gamma \omega
\]

We gain the action of a pro-algebraic group

\[
\mathcal{G}^{dR} \times \mathcal{P}^m \longrightarrow \mathcal{P}^m
\]

It acts linearly on \(H^n_{dR}(X) \):

\[
g[H^n(X), \omega, \gamma] = [H^n(X), g \omega, \gamma]
\]
Given a period

$$I = \int_\gamma \omega$$

Try to express I as a period of cohomology

$$\omega \in H^n_{dR}(X), \quad \gamma \in H_n(X(\mathbb{C})).$$
Given a period

\[I = \int_\gamma \omega \]

Try to express \(I \) as a period of cohomology

\[\omega \in H^n_{dR}(X), \quad \gamma \in H_n(X(\mathbb{C})) \]

Replace \(I \) by ‘its’ motivic version (NB choices!)

\[I^m = [H^n(X), \omega, \gamma] \in \mathcal{P}^m \]
Given a period

\[I = \int_\gamma \omega \]

Try to express \(I \) as a period of cohomology

\[\omega \in H^n_{dR}(X), \quad \gamma \in H_n(X(\mathbb{C})) . \]

Replace \(I \) by ‘its’ motivic version (NB choices!)

\[I^m = [H^n(X), \omega, \gamma] \in P^m \]

The action of the group \(G^{dR} \) on \(I^m \) generates a representation of a quotient of \(G^{dR} \). We can use group theory to define invariants, or to discover new relations.
Example: $2i\pi$

\[X = \mathbb{P}^1 \backslash \{ 0, \infty \}. \]

\[(2i\pi)^m := [H^1(X), [\frac{dx}{x}], [\gamma]] \]
Example: $2i\pi$

\[X = \mathbb{P}^1 \setminus \{0, \infty\}. \]

\[
(2i\pi)^m := [H^1(X), \left[\frac{dx}{x} \right], [\gamma]]
\]

\[
g \in G^{dR} : \quad g(2i\pi)^m = \lambda_g (2i\pi)^m
\]
Example: $2i\pi$

$X = \mathbb{P}^1 \backslash \{0, \infty\}$.

$$(2i\pi)^m := [H^1(X), [\frac{dx}{x}], [\gamma]]$$

$g \in G^{dR} : g(2i\pi)^m = \lambda_g (2i\pi)^m$

It spans a one-dimensional representation

$$G^{dR} \longrightarrow GL_1$$

$g \mapsto \lambda_g$

So $(2i\pi)^m$ is a motivic period of rank 1.
Example 2: logarithms

\[
\log^m(2) \xrightarrow{\mathbf{g}} \lambda_g \log^m(2) + \nu_g
\]

Equivalently

\[
\begin{pmatrix}
1 & \log^m(2) \\
0 & (2\pi i)^m
\end{pmatrix} \xrightarrow{\mathbf{g}} \begin{pmatrix}
1 & \log^m(2) \\
0 & (2\pi i)^m
\end{pmatrix} \begin{pmatrix}
1 & \nu_g \\
0 & \lambda_g
\end{pmatrix}
\]
Example 2: logarithms

\[\log^m(2) \xrightarrow{g} \lambda_g \log^m(2) + \nu_g \]

Equivalently

\[
\begin{pmatrix}
1 & \log^m(2) \\
0 & (2\pi i)^m
\end{pmatrix}
\xrightarrow{g}
\begin{pmatrix}
1 & \log^m(2) \\
0 & (2\pi i)^m
\end{pmatrix}
\begin{pmatrix}
1 & \nu_g \\
0 & \lambda_g
\end{pmatrix}
\]

Hence a two-dimensional representation

\[\mathcal{G}^{dR} \longrightarrow GL_2 \]

\[g \quad \mapsto \quad \begin{pmatrix}
1 & \nu_g \\
0 & \lambda_g
\end{pmatrix} \]

So \(\log^m(2) \) is of rank 2.
Example 3: Algebraic numbers

Let $\alpha \in \mathbb{C}$ algebraic. There exists canonical α^m, whence

$$
\overline{\mathbb{Q}} \subset \mathcal{P}^m
$$

\mathcal{G}^{dR} acts on $\overline{\mathbb{Q}}$ via a pro-algebraic quotient $\mathcal{A}_{\overline{\mathbb{Q}}}$:

$$
\mathcal{A}_{\overline{\mathbb{Q}}} (\mathbb{C}) \cong \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) .
$$
Example 3: Algebraic numbers

Let $\alpha \in \mathbb{C}$ algebraic. There exists canonical α^m, whence

$$\overline{\mathbb{Q}} \subset \mathcal{P}^m$$

G^{dR} acts on $\overline{\mathbb{Q}}$ via a pro-algebraic quotient $A_{\overline{\mathbb{Q}}}$:

$$A_{\overline{\mathbb{Q}}}(\mathbb{C}) \cong Gal(\overline{\mathbb{Q}}/\mathbb{Q}) .$$

The *rank* of α^m is the dimension of the vector space spanned by the conjugates of α.
Weak variant of Grothendieck’s period conjecture.

\[
\text{per} : \mathcal{P}^m \longrightarrow \mathbb{C} \quad \text{is injective}
\]
Weak variant of Grothendieck’s period conjecture.

\[\text{per} : \mathcal{P}^m \longrightarrow \mathbb{C} \quad \text{is injective} \]

Means that \(I^m \) does not depend on choices, and the action of \(\mathcal{G}^{dR} \) on \(\mathcal{P}^m \) can be transported onto the ring of periods itself.
Weak variant of Grothendieck’s period conjecture.

\[
\text{per} : \mathcal{P}^m \longrightarrow \mathbb{C}
\]

is injective

Means that \(I^m \) does not depend on choices, and the action of \(G^{dR} \) on \(\mathcal{P}^m \) can be transported onto the ring of periods itself.

Via group and Hodge theory, we can define many new invariants:
...
rank, unipotency degree, weight, Hodge numbers, degree,.....
<table>
<thead>
<tr>
<th>Unip. degree</th>
<th>Examples</th>
</tr>
</thead>
</table>
| 0 | Pure periods: π, elliptic integrals, \ldots
 | (classical) |
| 1 | Periods of simple extensions: $\log 2, \zeta(2n+1), \ldots$
 | (values of L-functions) |
| ≥ 2 | Multiple periods: MZV’s, Feynman amplitudes, \ldots
 | (unknown) |
 | —– Unexplored territory —– |
V. Applications and questions
There exist motivic versions of multiple zeta values \(\zeta_m^{(n_1, \ldots, n_r)} \in \mathbb{P}_m \) for all \(n_1, \ldots, n_r \geq 1, \ n_r \geq 2 \), whose periods are \(\zeta^{(n_1, \ldots, n_r)} \). They satisfy the 'standard' relations. The ring \(\mathbb{Z}_m \) generated by \(\zeta_m \) is stable under the group \(G_d \). Not known if they satisfy more relations. Think of \(\mathbb{Z}_m \) as a Galois extension of \(\mathbb{Q} \) with group \(G_MZV \times \mathbb{Z}_m \rightarrow \mathbb{Z}_m \).
Theorem (B. 2012)

There exist motivic versions of multiple zeta values

\[\zeta^m(n_1, \ldots, n_r) \in \mathcal{P}^m \]

for all \(n_1, \ldots, n_r \geq 1, n_r \geq 2 \), whose periods are \(\zeta(n_1, \ldots, n_r) \). They satisfy the ‘standard’ relations. The ring \(\mathcal{Z}^m \) generated by the \(\zeta^m \) is stable under the group \(G^{dR} \).
Theorem (B. 2012)

There exist motivic versions of multiple zeta values

$$\zeta^m(n_1, \ldots, n_r) \in \mathcal{P}^m$$

for all $n_1, \ldots, n_r \geq 1$, $n_r \geq 2$, whose periods are $\zeta(n_1, \ldots, n_r)$. They satisfy the ‘standard’ relations. The ring \mathcal{Z}^m generated by the ζ^m is stable under the group G^{dR}.

Not known if they satisfy more relations.
Theorem (B. 2012)

There exist motivic versions of multiple zeta values

\[\zeta^m(n_1, \ldots, n_r) \in \mathcal{P}^m \]

for all \(n_1, \ldots, n_r \geq 1 \), \(n_r \geq 2 \), whose periods are \(\zeta(n_1, \ldots, n_r) \). They satisfy the ‘standard’ relations. The ring \(\mathcal{Z}^m \) generated by the \(\zeta^m \) is stable under the group \(\mathcal{G}^{dR} \).

Not known if they satisfy more relations.

Think of \(\mathcal{Z}^m \) as a Galois extension of \(\mathbb{Q} \) with group

\[\mathcal{G}^{MZV} \times \mathcal{Z}^m \rightarrow \mathcal{Z}^m \]
Theorem (B. 2012) $G_{MZV} = U_{MZV} \rtimes G_m$ where U_{MZV} is pro-unipotent. Its graded Lie algebra is free on generators in degrees $-3, -5, -7, \ldots$. Hence $G_{MZV} = G_{MT}(\mathbb{Z})$.

Think of σ_{2n+1} as 'differentiation with respect to $\zeta_m(2m+1)$' etc.
Theorem (B. 2012)

\[G^{MZV} = U^{MZV} \rtimes \mathbb{G}_m \]

where \(U^{MZV} \) pro-unipotent. Its graded Lie algebra is free on generators in degrees -3, -5, -7, \ldots

\[\sigma_3, \sigma_5, \sigma_7, \ldots \]

Hence \(G^{MZV} = G_{MT}(Z) \).
Theorem (B. 2012)

\[G^{MZV} = U^{MZV} \rtimes \mathbb{G}_m \]

where \(U^{MZV} \) pro-unipotent. Its graded Lie algebra is free on generators in degrees -3,-5,-7, \ldots

\[\sigma_3, \sigma_5, \sigma_7, \ldots \]

Hence \(G^{MZV} = G_{MT}(\mathbb{Z}) \).

The \(\sigma_{2n+1} \) act via

\[\sigma_{2n+1} \zeta^m(2m + 1) = \delta_{n,m} \]

Think of \(\sigma_3 \) as ‘differentiation with respect to \(\zeta^m(3) \)’, etc

There exist canonical ‘motivic’ Feynman amplitudes $I_m G \in \mathbb{P}^m$ for any convergent G, whose period is I_G.

Not all expected relations are known.

Many new invariants to amplitudes (weights, rank, etc).

Define a cosmic Galois group $\mathbb{G}_{\text{cos}} = G_{dR}/K$ where K is the subgroup acting trivially on all $I_m G$.

There exist canonical ‘motivic’ Feynman amplitudes

\[I_G^m \in \mathcal{P}^m \]

for any convergent \(G \), whose period is \(I_G \).

Not all expected relations are known.

Many new invariants to amplitudes (weights, rank, etc).

There exist canonical ‘motivic’ Feynman amplitudes

\[I_G^m \in \mathcal{P}^m \]

for any convergent \(G \), whose period is \(I_G \).

Not all expected relations are known.

Many new invariants to amplitudes (weights, rank, etc).

Define a cosmic Galois group

\[G_{\text{cos}} := G^{dR} / K \]

where \(K \) is the subgroup acting trivially on all \(I_G^m \).
Extraordinary Conjecture

The vector space generated by the I^m_G, for G convergent in ϕ^4, is stable under the action of G_{cos}.

Verified in every known example ~ 250 cases.
Extraordinary Conjecture

The vector space generated by the I^m_G, for G convergent in ϕ^4, is stable under the action of G_{cos}.

Verified in every known example ~ 250 cases.

Very strong constraint on the possible amplitudes. Enables one to constrain I_G ‘in advance’ from smaller graphs.
Extraordinary Conjecture

The vector space generated by the I^m_G, for G convergent in ϕ^4, is stable under the action of G_{cos}.

Verified in every known example ~ 250 cases.

Very strong constraint on the possible amplitudes. Enables one to constrain I_G ‘in advance’ from smaller graphs.

Related to partial factorisation property of graph polynomials.
‘Motivic’ version of Cartier’s dream:

\[\mathcal{I}_G^m \neq \mathcal{Z}^m \]

\(G_{\text{cos}} \)

\(G_{\text{MT(Z)}} \)

QFT

\(\mathbb{P}^1 \setminus \{0, 1, \infty\} \)

“Motivic operad”

“Motivic \(\pi_1 \)”

The two pictures look very similar, but are subtly different.

Q: What is the mathematical and geometric framework to describe amplitudes in quantum field theories?