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|. Particle physics



LHC
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Collision of beam particles

Test the laws of physics by analysing particle tracks.
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Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.

. \\
Feynman amplitude is a complex probability assigned to G.
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Perturbative Quantum Field theory

General framework describing fundamental forces and particles.

Every Feynman graph G represents a possible particle interaction.

Feynman
graphs

Feynman amplitude is a complex probability assigned to G.
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Higgs boson
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The blue line (background) requires calculating a huge number of
Feynman amplitudes.
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ll. Graphs and Numbers



Graph polynomials (Kirchhoff 1847)

Let G = (Vg, Eg) be a connected graph. The graph polynomial
Vi € Z|ae, e € E(G)]

is a sum over spanning trees T of G
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Graph polynomials (Kirchhoff 1847)

Let G = (Vg, Eg) be a connected graph. The graph polynomial
Vi € Z|ae, e € E(G)]

is a sum over spanning trees T of G

A tree T C G is spanning if VT = V.
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Example
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Example

\UG = Q304
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Example
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Example

Ve = azou + apaq + a1oq + agas + ajas

In general, W is homogeneous of degree hg (‘loop number').

deg\UG:hG NG:#E(G)
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Example

Ve = azou + apaq + a1oq + agas + ajas

In general, W is homogeneous of degree hg (‘loop number').

deg\UG:hG NG:#E(G)

Physically relevant graphs have vertices of degree < 4. (‘G in ¢*").
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Feynman integrals

For convergence, assume
e Ng =2hg
o N, >2h, forallyC G.
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Feynman integrals

For convergence, assume
e Ng =2hg
o N, >2h, forallyC G.

The residue is the convergent integral
Qg
Ig = / — S R
o V5

Ng
Q¢ = Z(—l)ia;dal Ao Ndap ... daNG
i=1

where
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Feynman integrals

For convergence, assume
e Ng =2hg
o N, >2h, forallyC G.

The residue is the convergent integral

Q¢
le = | 57 e R
o=/ w

where
Ng

Q¢ = Z(—l)ia;dal VARRAN (754,‘ A .. dapg
i=1

o={(ar:...:apn) € PNe—1(R) such that a; > 0}
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Graphs and numbers

We obtain a map

I : {convergent graphs in ¢*} — R
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Graphs and numbers

We obtain a map
I : {convergent graphs in ¢*} — R

Example:

Ve=a1+a

Compute the integral on the chart ap = 1:

| _/agdal —ardas _/ dag 1
¢ o (a1+m)? Juso(a+1)2
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The Zoo

20¢(5 36¢(3
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The Zoo

20¢(5 36¢(3

Nss = 32((5,3) + £¢(5)¢(3) — 25¢(8)
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The Zoo

I : 6¢(3) 20¢(5 36¢(3 N3 5
Nss = 3((5,3) + £¢(5)¢(3) — 2¢(8)

Multiple Zeta Values, defined for ny,...,n,_1 > 1, and n, > 2:

1
¢(m,....nr) = > o g ER
r

1<ki<kp<..<k, L °°°

12/41



Main problem

Folklore conjecture 90's
The numbers /g are Q-linear combinations of multiple zeta values. ’
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Main problem

Folklore conjecture 90's
The numbers /g are Q-linear combinations of multiple zeta values. ’

Cartier's dream:

77?7

-~ =

“utz)

Cartier postulated the existence of a ‘cosmic Galois group’ (1998).
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Properties |

@ Contraction-Deletion:

Ve =aeVe\e+ VYgye
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Properties |

@ Contraction-Deletion:

Ve =aeVe\e+ VYgye

@ Partial factorisation:

WG = \UV\UG/V + R’y,G

2 v G/vy

Vi = (a3 + as)(a1 + a2) + azay
——— N — ~——

v, Ve/y Ry.6

14/41



Properties |
@ Contraction-Deletion:

Ve =aeVe\e+ VYgye

@ Partial factorisation:

WG = \UV\UG/V + R’y,G

2 v G/vy

Vi = (a3 + as)(a1 + a2) + azay

v, Ve/y Ry.6

Determines W essentially uniquely.
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Properties |l

@ The graph polynomial is a determinant
Ve = det(Lg)

where L is the reduced graph Laplacian matrix.
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Properties |l

@ The graph polynomial is a determinant
Ve = det(Lg)
where L is the reduced graph Laplacian matrix.

@ Many identities between /z. For example:

D0

I, I, = g6 -

and planar duals, completion (Fourier transform), . ..
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Counterexamples

16 /41



Counterexamples

W of degree 8 in 16 variables, 3785 terms.
Theorem: (B., Schnetz 2012)

The zero locus of W¢ is modular of weight 3, level 7.
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I should be algebraically independent from multiple zeta values!!
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The folklore conjecture is likely to be false. The nature of the
numbers /g is unknown.
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[1l. Periods
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Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the

form
| = / —dxy ..

where P, Q, € Q[x1,...,xs], and o finite union of sets
{fl,...,f/\/ > 0} with f; € @[Xl,...,x,,].
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form
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where P, Q, € Q[x1,...,xs], and o finite union of sets
{fl,...,f/\/ > 0} with f; € @[Xl,...,x,,].

d
vi- [ &
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Definition (Kontsevich-Zagier)

Periods are complex numbers with real and imaginary parts of the

form
| = / —dxy ..

where P, Q, € Q[x1,...,xs], and o finite union of sets
{fl,...,f/\/ > 0} with f; € @[Xl,...,x,,].

d
vi- [ &

X2S2 7
s :/ dxdy
x2+y2§1

d
log 2 :/ kel
1<x<2 X
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Ring of periods

Periods form a ring:

QCcQcPcC
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Ring of periods

Periods form a ring:

QCcQcPcC

Non-periods?
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o Additivity in w and o:

/w1+w2=/w1+/w2
g g ag
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g g ag

@ Algebraic changes of variables

/ w—/f*w
fuo o

21/41



o Additivity in w and o:

/w1+w2=/w1+/w2
g g ag

@ Algebraic changes of variables

/ w—/f*w
fuo o
/dw:/ w
o Jdo

@ Stokes:
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Galois

Algebraic numbers are periods.

Can one extend Galois theory to periods? J

Grothendieck, Kontsevich-Zagier, André, ...
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Galois

Algebraic numbers are periods.

Can one extend Galois theory to periods? J

Grothendieck, Kontsevich-Zagier, André, ...

Want a pro-algebraic group G
GgxP—P

which acts linearly on periods.
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Example: MZV's
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Example: MZV's

Leibniz:

dt; d
@= [ a

<n<p<i 1=t B
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Example: MZV's

Leibniz:
ibniz dty @

@)= [
@) 0<ti<t,<1 1 —t1 B2

Multiple Zeta Values:
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Example: MZV's

Leibniz:
ibniz dty @

( ) U<i]<12< 1 tl t2

d dt,
C(nla" -7nr) = (_1)f/0 i ‘

<th<-<ty<1 Bl — €1 th — €n

where (e1,...,¢6,) = 10m~1. . 10"~
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Example: MZV's

Leibniz:
d_dt

( ) U<i]<12< 1 tl t2

C(nla R nr) = (_1)r/0 dty - dt,

<th<-<ty<1 Bl — €1 th — €n

where (e1,...,¢6,) = 10m~1. . 10"~
MZV's form a subring of the ring of periods:

QcZzcP
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In weight 4: generators ((4), ((1,3), ¢(2,2), and ((1,1,2).

Relations:

€2 = 2¢(2,2)+¢(4)
€2 = 4¢(1,3)+2¢(2,2)
¢(1,3)+¢(4) = 2¢(1,3) +¢(2,2)
2C(17172) +'C(272) +‘C(1a4) = (171 )

A Galois group of periods should respect these relations!
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V. Motivic Periods

(a Galois theory of periods for dummies)
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Cohomology

X smooth affine over Q.

@ Algebraic de Rham cohomology:

closed algebraic forms of degree n

H(X: —
dr(X;Q) exact algebraic forms of degree n
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Cohomology

X smooth affine over Q.

@ Algebraic de Rham cohomology:

closed algebraic forms of degree n

H(X: —
dr(X;Q) exact algebraic forms of degree n

@ Betti (singular) cohomology:

Hg(X) = Ha(X(C))"

e Comparison theorem (de Rham, Grothendieck):

Hir(X;Q)®@C — Hp(X

c - omfo
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Example: 2im

X = P1\ {0, 00}. X(C) = CX.

(&)
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Example: 2im

X = P1\ {0, 00}. X(C) = CX.

(&)

Hi(x) = Q[%]
Hi(X(C)) = QN
Period:
%:21'7'(

Hir(X)®C — HY(X)®C
[F] = 2im )Y
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A ring of ‘motivic’ periods

@ P™ the Q-vector space spanned by symbols
[H"(X),w, ]
modulo an (elementary) equivalence relation, where H"(X) is

a triplet (Hg, Har, [), with Hg, Hqr € Vecg, | an
isomorphism between their complexifications.
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A ring of ‘motivic’ periods

@ P™ the Q-vector space spanned by symbols
[H"(X),w, ]
modulo an (elementary) equivalence relation, where H"(X) is

a triplet (Hg, Har, [), with Hg, Hqr € Vecg, | an
isomorphism between their complexifications.

@ Ring structure (Kiinneth)

[V,wAl® W, o' Y]=[VeWwew,vy&~]
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@ Period homomorphism

per: P" — P

[H(X),0,7] / ¥
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@ Period homomorphism

per: P™ — P

H7(X),0,7] / ¥

@ We gain the action of a pro-algebraic group
ng x pMm __, pm
It acts linearly on Hj(X):

g[H"(X),w,7] = [H"(X), gw,"]
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Given a period
| = /w
gl

Try to express | as a period of cohomology

w e HgR(X) ’ Y E Hn(X((C)) :
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Given a period
| = /w
gl

Try to express | as a period of cohomology

we Hgr(X) 7€ H(X(C)) .

Replace I by ‘its’ motivic version (NB choices!)

I™ = [H"(X),w,~] € P

The action of the group GR on I™ generates a representation of a
quotient of GIR. We can use group theory to define invariants, or
to discover new relations.
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Example: 2im

X =P"\{0, c0}.

(2im)™ = [H'(X). [£], 7]
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Example: 2im

X =P"\{0, c0}.

(2im)™ = [H'(X). [£], 7]

ge gk g(2im)™ = Ag(2im)™ |

It spans a one-dimensional representation

ng _ GL]_
g = Ag

So (2im)™ is a motivic period of rank 1.
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Example 2: logarithms

log™(2) & A\g log™(2) + v

Equivalently

(o )~ o Bai) (o 32)
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Example 2: logarithms

log™(2) & A\g log™(2) + v

(o )~ o Bai) (o 32)

Hence a two-dimensional representation

Equivalently

ng _ GL2
1 vg
s~ (o %)

So log™(2) is of rank 2.
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Example 3: Algebraic numbers

Let o € C algebraic. There exists canonical a™, whence

Q c pm

G9R acts on Q via a pro-algebraic quotient A@:

A5(C) = Gal(Q/Q) -
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Example 3: Algebraic numbers

Let o € C algebraic. There exists canonical a™, whence

Q c pm

G9R acts on Q via a pro-algebraic quotient A@:

A5(C) = Gal(Q/Q) -

The rank of o™ is the dimension of the vector space spanned by
the conjugates of a.
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Period conjecture

Weak variant of Grothendieck’s period conjecture.

per: P — C is injective |
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Means that /™ does not depend on choices, and the action of gdR
on P™ can be transported onto the ring of periods itself.
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Period conjecture

Weak variant of Grothendieck’s period conjecture.

per: P — C is injective |

Means that /™ does not depend on choices, and the action of gdR
on P™ can be transported onto the ring of periods itself.

Via group and Hodge theory, we can define many new invariants:

...,rank, unipotency degree, weight, Hodge numbers, degree,.....

34/41



Unip. degree | Examples
0 Pure periods: m, elliptic integrals, ...
(classical)
1 Periods of simple extensions: log2,¢(2n+1),...
(values of L-functions)
>2 Multiple periods: MZV's, Feynman amplitudes, . ..

(unknown)

—— Unexplored territory —
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V. Applications and questions



Multiple Zeta Values
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Multiple Zeta Values

Theorem (B. 2012)

There exist motivic versions of multiple zeta values
Cm(nla o0 0 nr) S

for all ny,...,n, > 1, n, > 2, whose periods are {(ny,...,n,).
They satisfy the ‘standard’ relations. The ring Z™ generated by
the ¢™ is stable under the group G<.
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Multiple Zeta Values

Theorem (B. 2012)

There exist motivic versions of multiple zeta values
Cm(nla o0 0 nr) S

for all ny,...,n, > 1, n, > 2, whose periods are {(ny,...,n,).
They satisfy the ‘standard’ relations. The ring Z™ generated by
the ¢™ is stable under the group G<.

Not known if they satisfy more relations.

Think of Z™ as a Galois extension of Q with group

gMZV ) Zm _, zm
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Theorem (B. 2012)
gMZV _ UMZV q Gm

where UMV pro-unipotent. Its graded Lie algebra is free on
generators in degrees -3,-5,-7, ...

03,05,07, ... .

Hence gM4V = GuT(2)-
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Theorem (B. 2012)
gMZV _ UMZV G

where UM2VY pro-unipotent. Its graded Lie algebra is free on
generators in degrees -3,-5,-7, ...

03,05,07, ... .

Hence gM4V = GuT(2)-

The 02,41 act via
O2n+1 Cm(2m + 1) = (5,,7,,,

Think of o3 as 'differentiation with respect to (™(3)’, etc

38/41



Cosmic Galois group
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Cosmic Galois group

Theorem (B. 2014, using Bloch-Esnault-Kreimer 2005)

There exist canonical ‘motivic’ Feynman amplitudes

Ig e P™

for any convergent G, whose period is /.

Not all expected relations are known.

Many new invariants to amplitudes (weights, rank, etc).
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Cosmic Galois group

Theorem (B. 2014, using Bloch-Esnault-Kreimer 2005)

There exist canonical ‘motivic’ Feynman amplitudes

Ig e P™

for any convergent G, whose period is /.

Not all expected relations are known.
Many new invariants to amplitudes (weights, rank, etc).

Define a cosmic Galois group
Geos := ng/K
where K is the subgroup acting trivially on all /.

39/41



Conjecture of Panzer and Schnetz

Extraordinary Conjecture
The vector space generated by the /7', for G convergent in ¢t is
stable under the action of Gps.

Verified in every known example ~ 250 cases.
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Very strong constraint on the possible amplitudes. Enables one to
constrain /g ‘in advance’ from smaller graphs.
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Conjecture of Panzer and Schnetz

Extraordinary Conjecture

The vector space generated by the /7', for G convergent in ¢t is
stable under the action of Gps.

Verified in every known example ~ 250 cases.

Very strong constraint on the possible amplitudes. Enables one to
constrain /g ‘in advance’ from smaller graphs.

Related to partial factorisation property of graph polynomials.
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Conclusion

‘Motivic' version of Cartier's dream:

Smr2)

QFT P1\{0,1,00}

“Motivic operad” “Motivic 71"

The two pictures look very similar, but are subtly different.

Q: What is the mathematical and geometric framework to describe
amplitudes in quantum field theories?
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