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Algorithme de recherche de biais 
des codons dans les génomes, espaces de 

genes et espaces d'organismes 

transcription

translation

messangerRNA

protein

Redundancy of the genetic code

Transfert RNA

Bias on codon usage   &   preferred codons

high tRNA number
high expression

Codon preference and tRNA : Ikemura, 1985; Bennetzen and Hall, 1982; Bulmer, 1987; Gouy and Gautier, 1982. 
tRNA and elongation rate :      Varenne et al., 1984.
High expression and codon preference : Grantham et al., 1980; Wada et al., 1990; Sharp and Li, 1987; 
Sharp et al., 1986; Médigue et al., 1991; Shields and Sharp, 1987; Sharp et al., 1988; Stenico et al., 1994.

In E.coli and other organisms that reproduce rapidly

correlated to    codon preference
(experimentally)
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Visualisation of genes in a genome
and identification of their codon bias

g

g = [x1,g x2,g … x64,g]       xi,g  relative frequency of codon i in g

Vector normalisation:

(xi,g – xi) / σi  xi  mean of frequencies xi,g

 σi  standard deviation of xi,g

Normalized vectors and PCA are used to “see”

- organisms in codon space
- genes and functions

codons

Haemophilus influenzae
Staphylococcus aureus

Bacillus subtilis
Salmonella typhi
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Bacillus subtilis
Salmonella typhi

similar geometry 
& 

translation + rotation

E.coli

Ribosomal proteins
ATP binding proteins
IS proteins
NADH proteins
Flagellar biosynthesis proteins
Lipoproteins, membrane proteins,

transport proteins

Proteins codifying for “translation”,
glycolysis …

They are the most expressed in E.coli

How to define “codon bias” and how to search for
highly biased genes in an automatic manner?
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How to define “codon bias” and how to search for
highly biased genes in an automatic manner?

L             number of codons in g

wk frequency of  the kth codon of g in S
frequency of the dominant synonymous codon in S

CAI(g) = (Πk=1…L wk)1/L (Sharp & Li, 1987)
Codon Adaptation Index

g
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

 (Πk=1…11 wk)
1/11

L             number of codons in g

wk frequency of  the kth codon of g in S
frequency of the dominant synonymous codon in S

CAI(g) = (Πk=1…L wk)1/L

Let S be a set of genes and g be a gene

(Sharp & Li, 1987)
Codon Adaptation Index

proteines codifying for “translation”, 
glycolysis …

L             number of codons in g

wk frequency of  the kth codon of g in S
frequency of the dominant synonymous codon in S

CAI(g) = (Πk=1…L wk)1/L

Let S be a set of genes and g be a gene

(Sharp & Li, 1987)
Codon Adaptation Index

proteines codifying for “translation”, 
glycolysis …X
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L             number of codons in g

wk frequency of  the kth codon of g in S
frequency of the dominant synonymous codon in S

Let S be a set of genes and g be a gene

|Sk|
|S|

SCCI(g) = (Πk=1…L wk)1/L

Self Consistent Codon Index

we compute S

Let S be a set of genes and g be a gene

SCCI(g) = (Πk=1…L wk)1/L

Self Consistent Codon Index

we compute S

SCCI values on genes in S are maximal :
SCCI(G/S) ≤ SCCI(S), G is the set of all genes

Self consistency 
condition

Idea of the algorithm:

– Compute the weight of the codons over the whole genome and
compute afterwards SCCI values for all genes

– Select the 50% of genes with the highest SCCI value
– Repeat the iteration and select the 25% of the genes
– and so on… until we arrive to the 1% of genes in the original set.
– … then repeat the iteration on the 1% of genes with highest SCCI until

convergence is reached.
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Idea of the algorithm:

– Compute the weight of the codons over the whole genome and
compute afterwards SCCI values for all genes

– Select the 50% of genes with the highest SCCI value
– Repeat the iteration and select the 25% of the genes
– and so on… until we arrive to the 1% of genes in the original set.
– … then repeat the iteration on the 1% of genes with highest SCCI until

convergence is reached.

S found by the
algorithm:

E.coli

SC
C

I (
al

go
rit

hm
)

(E.coli reproduce rapidly)

Validation for other fast growing organisms SCCI : a universal measure

Borrelia burgdorferi

Pseudomonas aeruginosa

SCCI

Strand bias

SCCI

GC3 bias
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The set of biased genes
• is unique (for the organisms we checked, ~210)
• exists also for organisms that do not have an

evolutionary tendency explained with
translational pressure.

For any bacteria we can compute:

+ dominant bias: strand bias, GC3, AT, ...
+ numerical criteria to determine the

strength of translational bias

Random version of the
algorithm

• Choose randomly the 1% of genes in G
• Compute weights and CAI values
• Select the 1% of genes with the highest CAI
• Repeat the iteration until convergence

Bacteria and Archaea
in SCCI codon space

An organism is a 
64-dim vector where

coordinate 
= 

SCCI codon weight 

Aquifex aeolicus

Treponema pallidum

E.coliSalmonella

Staphilococcus

Vibrio cholerae

Y.pestis

Pyrococcus

Chlamidiales

S.solfataricus
Thermoplasma vulcanium

Leptospira

Mycoplasma

Agrobacterium tumefaciens

Halobacterium sp

Chlorobium tepidum

Helicobacter

Aeropyrum pernix
Methanobacterium thermoautotr.
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AT content

O
ptim

al grow
th tem

perature

Forget the colors!

AT content

O
ptim

al grow
th tem

perature

Can we exploit the geometry of the space to derive
functional characteristics of groups of organisms?

Phylogenetically related families :
γ-proteobacteria

Enterobacteriales

Enterobacteriales

Enterobacteriales
Pasteurellales

Vibrionales/
AlteromonadalesXanthomonadales

Similar physiology and habitat
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Organisms at small distance: similar physiology and habitat

Environmental clusters :
soil bacteria
enterics
symbions

spore formers
small intercellular pathogens
small extracellular pathogens

Can we use this signal to deduce some
more biological information ?

Coherence in the organisms space
based on SCCI

Can we determine the most important metabolic networks
in a (translationally biased) organism ?

Metabolic networks

E.coli

EcoCyc network, P.Karp et al.

Relative
Pathway

Index

RPI(P)
=

(PI(P)-µM)/σM

Pathway
Index

PI(P)
=

mean SCCI(g)
g∈P
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TCA cycle
aerobic respiration

Glycolysis

Non-oxidative branch 
of the pentose 
phosphate pathway

Histidine+purine+
pyrimidine biosynthesis

...and also :

L-serine degradation
(Pizer&Potochny 1964)

Ammonia assimilation 
Pathway

(Reitzer 1986, 
Helling 1994)

 Helicobacter Pylori BioCyc network, P.Karp et al.

Glycolysis

Thioredoxin (Baker 2001)

Riboflavin biosynthesis (Worst 1998)

Even genomes that do not grow rapidly might have signals of translational bias

Metabolic pathways essential to
Mycobacterium tuberculosis

Biotin synthesis (Norman et al. 1994)
Chorismate biosynthesis (Parish and Stoker 2002)
Aspargine degradation (Sassetti et al. 2003)
Pyridoxal 5’phosphate biosynthesis (Sassetti et al. 2003)
Valine degradation (Sassetti et al. 2003)
Leucine biosynthesis (Sassetti et al. 2003)
ppGpp (Primm et al. 2000)

Essential to  M.tuberculosis but not to other bacteria

Can we use this signal to deduce some
more biological information ?

Coherence in the organisms space
based on SCCI

We determined the most important metabolic networks in
a (translationally biased) organism

Can we determine genes belonging to minimal gene sets ?
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Are these genes among the most essential ?

A parenthesis on synthetic biology

Genome synthesis Genome programming

1st step 2nd step
Craig Venter, November 2002
Synthesis of a bacterial genome
the chromosome will be inserted in a living cell (whose genetic
material has been removed) to verify if it can direct normal
functional activities of the organism.

Clyde Hutchison, 1999  (Science 286, 2165-2169):
Gene knock out (517) of Mycoplasma genitalium (580kb), and
estimation of how many genes are necessary to life over 517:
about 300 to survive.

Eckard Wimmer, 2002 (Science 297, 1016-1018):
Synthesis of a poliovirus that infects cells! (~7500b)

Venter, Hutchison, Smith, 2008 (Science 319, 1215-1220)
Synthesis of Mycoplasma genitalium 
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Why to do this :

Add genes to transform Mycoplasma in a
“useful” bacteria

Remedy against environmental pollution, new
industrial chemical substances production,

insuline production…

Search for a minimal genome To search for a minimal set is not easy…

Experiments : transposomal mutagenesis

E.coli
620 genes / 3746

(Gerdes et al. 2003)
234 genes / 2994

(Hashimoto et al. 2005)

B.subtilis
300 genes/~4000

(Itaya, 1995)
248 genes/~4100
(Kobayashi, 2003)

M.genitalium
265 genes / 482

(Hutchison et al., 1999)
382 genes / 482

(Hutchison et al., 2006)

H.influenzae
670 genes/ ~1272

(Akerley et al. 2002)

S.cerevisiae
1105 genes/ 5916

(Giaever et al. 2002)

C.elegans
1722 genes/ 19427
(Kamath et al. 2003)

Comparative genomics

34 genomes
80 genes

(Harris et al 2003)

100 genomes
60 genes

(Koonin et al. 2003)

147 genomes
35 genes

(Charlebois & 
Doolittle 2004)

2 genomes
256 genes
(Mushegian & 
Koonin 1996)

S.aureus
150 genes

(Yi et al. 2001)

S.pneumoniae
110 genes

(Thanassi et al. 2002)

& RNA silencing

- life/environmental conditions of the organism during the experiment

Experiments:

Computational detection of sequence homology:

-     parameters and tools to detect homologies

Genes  relevant to environmental conditions are missing

Genes with uncharacterized functions are missing

Number of genes in the minimal set depends on

Stress response genes are missing

→ bacteria live in very good lab conditions

→ there are genomes with more than 60% of genes with unknown function

Genes in minimal gene sets

- Genes with uncharacterised function
- Genes dependent on specific environmental conditions
- Stress response genes
- Highly expressed genes (belonging to most species)
- Non-orthologous genes

SCCI(g) > µ+σ
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SCCI(g) > µ+σ = 0.42
We look at the tail

Core genes

Map of core genes of 27 organisms (based on 200 most biased genes)

Genes with specific metabolic functions
are in the tail

Photosynthesis metabolism : Synechocystis
Phycobilisome proteins
Photosystem I and II
Fructose-1,6-bisphosphate-aldolase

Methan metabolism : Methanosarcina acetivorans
Methanol-5 hydroxybenzimidazolylcobamideco methyltransferase
Methyl coenzyme M reductase
Methylcobamide methyltransferase isozyme M
Corrinoid proteins
Ack, Pta, cdhA

Ferrodoxin metabolism : Pyrococcus abyssi
Ferredoxin
Ferredoxin oxidoreductase
Keto-valine-ferredoxin oxidoreductase γ-chain

Carbohydrates metabolism : Streptococcus mutans
Transport and metabolism of cellobiose, sucrose, beta-glucoside
Metabolism of mannitol
Genes for metabolism of glucose, fructose, mannose, maltose/maltodextrin
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Stress response genes are in the tail

Comparison with data from comparative genomics

Most represented functional classes of genes
issued by comparing M.genitalium and

H.influenzae (Mushegian and Koonin, 1996)
correspond to most represented functional

classes in functional genomic cores

Core genes expected to be essential but missed in (Mushegian&Koonin) :

Transcription : Sigma factors (rpo), termination factors (rho),
                        chaperons (hsp90)
Energy metabolism : PTS proteins
Translation : no tRNA nucleotidyltransferase is found (consistently with

        comparative genomics)

Comparison with experimental data

there are no  a priori false positives nor 
false negatives

difficult to make

E.coli:
620 essential genes (Gerdes et al., 2003)
234 essential genes (Hashimoto et al., 2005)

620 essential genes over 3746 analyzed ones
520 core genes: 62.5% are essential

Enolase (eno) is a core gene and it does not belong to the 
620 genes claimed to be essential for E.coli

E.coli (Gerdes, 2003) :

E.coli (Hashimoto et al., 2005) :
234 essential genes, 1890 non-essential, 900 unknown behavior

over 2994 analyzed ones (after genome minimization)
              520 core genes : 129 essential, 278 non-essential,

            53 unknown behavior,
   63 deleted after minimization

Most are stress
response genes
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248 essential genes
519 core genes : 126 essential

Most genes involved in Embden-Meyerhof-Parnas
pathway are core genes in agreement with their unexpected
essentiality for (Kobayashi et al. 2003)

B.subtilis (Kobayashi et al., 2003) :

Collaborations and references
Algorithm and microbial SCCI codon space :

• F.Képès, CNRS & génopole Evry
• A.Zinovyev, IHÉS & Institut Curie (Paris)

A. Carbone, A. Zinovyev, F. Képès, Codon adaptation index as a measure of dominating codon
bias, Bioinformatics, 19, 2005–2015, 2003.

A. Carbone, F. Képès, A. Zinovyev , Codon Bias Signatures, Organization of Microorganisms in
Codon Space, and Lifestyle, Molecular Biology and Evolution, 22, 547–561, 2004.

Metabolic networks comparison :

• D.Madden, IHÉS & IGI (USA)

A. Carbone, R. Madden, Insights on the Evolution of Metabolic Networks of Unicellular
Translationally Biased Organisms from Transcriptomic Data and Sequence Analysis, Journal of
Molecular Evolution, 59, 1–25, 2005.

Minimal gene sets :

A.Carbone, Computational prediction of genomic functional cores specific to different microbes,
Journal of  Molecular Evolution, 2006, in press.

Bootstrapping information
from translationally biased organisms

translationally biased organisms are everywhere

Small genomes : M.genitalium and B.aphidicola

504 coding genes
498 genes homologous to E.coli genes

484 coding genes
266 genes homologous to E.coli genes

189 genes are shared by B.aphidicola and M.genitalium

Buchnera aphidicola str Bp

Mycoplasma genitalium

129 of these genes have high SCCI in E.coli
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Plasmodium
falciparum
il parassita della

malaria

Physiologie similaire 
et habitat :

G
C

-rich
Transl.bias

A
T-rich


