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Abstract 

We analyse the structure of propositional proofs in the sequent calculus focusing on the well- 
known procedures of Interpolation and Cut Elimination. We are motivated in part by the desire 
to understand why a tautology might be ‘hard to prove’. Given a proof we associate to it a 
logical graph tracing the flow of formulas in it (Buss, 1991). We show some general facts about 
logical graphs such as acyclic@ of cut-free proofs and acyclic@ of contraction-free proofs (pos- 
sibly containing cuts), and we give a proof of a strengthened version of the Craig Interpolation 
Theorem based on flows of formulas. We show that tautologies having minimal interpolants of 
non-linear size (i.e. number of symbols) must have proofs with certain precise structural prop- 
erties. We then show that given a proof ZI and a cut-free form Il’ associated to it (obtained by 
a particular cut elimination procedure), certain subgraphs of II’ which are logical graphs (i.e. 
graphs of proofs) correspond to subgraphs of Zl which are logical graphs for the same sequent. 
This locality property of cut elimination leads to new results on the complexity of interpolants, 
which cannot follow from the known constructions proving the Craig Interpolation Theorem. 

Keywords: Cut elimination; Interpolation; Graphs of proofs 

0. Introduction 

Fundamental questions in complexity theory are formulated in terms of the co-NP- 

complete set of propositional tautologies. In [5], Cook and Reckhow pointed out that 

there exists a propositional proof system in which all tautologies have proofs of poly- 

nomial size (i.e. number of symbols) if and only if NP = co-NP. A number of proof 

systems have been proposed and a hierarchy of them has been defined with respect 
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to their polynomial simulation (for a survey see [18]). To exhibit ‘concrete’ examples 

(i.e. families of tautologies) to prove exponential lower bounds for the proof systems 

of the hierarchy seems to be a difficult task. Certain combinatorial principles provide 

good candidates for this task but it is equally difficult to show whether or not such 

principles have polynomial size proofs, 

We claim that this difficulty has its origin in the fact that all short proofs for such 

tautologies satisfy some non-trivial structural properties. With this idea in mind, we 

analyse the structure of propositional proofs in the sequent calculus (which is located 

high up in the hierarchy) and attempt to understand why a tautology might be ‘hard 

to prove’. Our analysis will focus on the well-known procedures of Interpolation and 

Cut Elimination [7]. 

The Craig Interpolation Theorem says that given a sequent A + B there is a formula 

C, called an interpolant, that is made up of subformulas ‘common’ to A and B and such 

that A --t C and C + B are provable sequents. We give another proof of this theorem 

and we strengthen its statement by describing the precise logical relations between 

occurrences of formulas in A, B and C. The proof is obtained as a corollary of the Cut 

Elimination theorem and as a consequence the size (i.e. the number of symbols) of the 

interpolant induced by the construction turns out to be in the worse case exponential in 

the size of A + B. Under certain conditions (on the cut-formulas in the proof) though, 

we show how to avoid cut elimination by building the interpolant directly from the 

original proof and we obtain the interpolant’s size to be at most quadratic. 

It is an open question whether or not the size of the smallest interpolant can be 

polynomially bounded by the size of the tautology. A positive answer would imply 

an important consequence in complexity theory, namely that NP fl co-NP C P/poly [ 11. 

Fixing a k, to find families of tautologies A,, + B, of size Lo(n) with interpolants C,, 

of minimal size bounded from below by some polynomial in n of degree k, is difficult. 

In [16], Mundici proves a lower bound for k = 2. We will show that indeed to have 

a non-linear lower bound for the size of C,, the structure of all proofs for A, -+ B, 

should satisfy some non-trivial requirement on the logical relations between formula 

occurrences in A, -+ B,, induced by the proof. 

This analysis is made by studying the properties of the graph defined by tracing the 

flow of formula occurrences in a proof. The formulation of ‘graph of a proof’ (called 

logical flow graph) we will be using in the paper was introduced by Buss in [2] to 

prove that the k-provability problem (i.e. given a formula A and an integer k, to deter- 

mine if A has a proof with k or fewer lines) for first order logic is undecidable. The idea 

of using the flow of occurrences to study the structure of proofs is fundamental in the 

work of Girard [8] where graphs calledproofnets are associated to linear logic proofs. ’ 

Our second task is the analysis of the transformation of logical flow graphs during 

the procedure of cut elimination (i.e. an effective way to transform any proof in the 

’ The notions of logicalPow graph and proof net are strongly related. We should emphasize that the concept 
offlow which will be fkxlamental for most of the results presented here, has a natural formulation in terms 

of proof nets as well. 
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sequent calculus into a proof with simpler structural properties). When we look at the 
procedure of cut-elimination geometrically, in terms of its effect on the logical flow 
graph, we see that it enjoys a certain similarity with the application of ‘local rules’ for 
cellular automata [21] or ‘division laws’ for coloured simplicial complexes [9], where 

nodes (‘cells’) of a graph are transformed into more complicated objects (‘complexes’) 
by a finite number of rules whose applicability in general depends on the neighbourhood 
relations of the node in the graph. In our case we want to transform a logical flow 
graph into another logical flow graph. Each rule of transformation is applied to a 
certain subgraph and transforms it into another subgraph, at times doubling the number 
of nodes. 

As for cellular automata or cell divisions it is interesting to study the relations 
between local and global behaviour of the transformation steps. We will show that 
given a proof II (possibly containing cuts) and its cut-free form n’, for any subgraph 
of Lr’ that is a logical flow graph and that satisfies some global conditions, there 
is a subgraph of n that is a logical graph with the same logical properties, namely 
the proofs associated to both subgraphs are proofs for the same sequent. The idea is 
illustrated by the following diagram: 

In order to have this inversion property one has to be careful about the method of 
cut elimination. It is not satisfied for whatever procedure of cut elimination we might 
apply (for instance it does not hold for the well-known cut elimination procedure 
introduced by Gentzen) because some of the information content of the original proof 
might be lost with the transformation. We shall give here a method of cut elimination 
for propositional proofs which does preserve this information. Our procedure does not 
work in predicate logic however. 

An additional motivation for this property lies in the observation that the complexity 
of the subgraph in Zi’ is in general much smaller than the complexity of the subgraph 
in L”. In fact the complexity of any procedure of cut elimination induces, in the worse 
case, at least an exponential expansion of the number of lines of the original proof (this 
fact is a consequence of the doubling of the number of lines we mentioned before). 

This inversion property suggests conditions under which given a proof (possibly 
with cuts) for A 4 B with no logical links (determined by the proof) between A and 
B, there is a proof either of A + or of -+ B with no greater complexity than the 
complexity of the original proof for A --+ B. (While this problem may appear absurd in 



252 A. CarbonelAnnals of Pure and Applied Logic 83 (1997) 249-299 

terms of reasoning, it is less trivial combinatorially.) This result cannot be derived as 

a consequence of the usual construction used to prove the Craig Interpolation Theorem 

because, as we observed above, the latter is based on the Cut Elimination Theorem 

which increases the length of proofs very substantially. 

The plan of the paper is as follows. In Section 1 we review the propositional formu- 

lation of Gentzen’s Sequent Calculus; in Section 2 we present the definition of logical 

flow graph, we prove acyclicity of cut-free proofs and of contraction-free proofs (possi- 

bly containing cuts), and we justify the intuition of inner proof (i.e. a proof associated 

to some subgraph of a logical flow graph); in Section 3 we give a proof based on 

logical flow graphs of a strengthened version of the Craig Interpolation Theorem; the 

result is obtained as a consequence of the Cut Elimination Theorem but we show how, 

under certain conditions, an interpolant can be constructed directly over proofs contain- 

ing cuts; in Section 4 the formal definition of inner proof is introduced together with 

properties of the structure of propositional proofs which are of general interest; the 

transformation of a logical flow induced by the well-known Gentzen’s Cut Elimination 

procedure is analysed, a new procedure for the elimination of cuts is introduced and the 

Inversion Theorem on subgraphs is shown. In Section 5 we obtain some new bounds 

on the complexity of interpolants which are suggested by the Inversion Theorem. 

Although the language of this paper is largely that of logic and complexity, in order 

to understand what is actually happening it is frequently better to think in pictures. 

Induction is convenient for making arguments precise, but it is also conducive to 

losing ideas in a wash of syntax. The main points are typically clearer if one imagines 

a formula moving towards an axiom or across a cut. One of our intentions here is to 

try to bring proofs closer to a geometric understanding. 

Part of the results presented in this paper appear in [3]. The author thanks Melvin Fit- 

ting for suggesting the analysis of the Craig Interpolation Theorem with logical graphs, 

Rohit Parikh for helpful discussions, Sam Buss and Stephen Semmes for comments in 

an earlier version of the work, and Alexander Razborov for pointing out Example 4.22 

which lead to the concept of compact pow, fundamental for the Inversion Theorem. 

1. The sequent calculus 

This section contains a brief review of the sequent calculus for propositional logic 

formulated by Gentzen. For a detailed exposition the reader can refer to [7, 191. 

The sequent calculus is formulated in a language with logical symbols A, V, 1 2 and 

propositional variables p,q, ~1, ~2, ~3,. . . , ql,q2, q3,. . . . Formulas are defined as usual; 

we will denote them with capital letters A,& C,. . . ,A,,&. . . ,B,, . . . . 
A sequent is a line of the form 

A ,,..., Ak + B1 ,..., B1 

‘The implication symbol 3 is sometimes included in the set of symbols formulating to a propositional 
language. The results presented in the paper can be extended in a natural way to the extended language. 
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where the Ai’s and Bj’S are formulas; its intended meaning is AiAi > VjBj. We per- 

mit k and 1 to be zero. A sequence of formulas separated by commas is a cedent; 

in the sequent above, Al,. . . ,Ak is the antecedent and BI,. . . , BI is the succedent. We 

will often refer to antecedents and succedents in a sequent using capital letters of 

the Greek alphabet. For instance r -+ A denotes a sequent. In the following a se- 

quence Al,. . . , Ak will be a multiset of formulas, i.e. finite (possibly empty) set of 

formulas, in which repetitions of some formulas are admitted; the order of formu- 

las in a multiset is not essential but for every member of the multiset the number 

of its occurrences is important. By the symbol r, A we denote the sum of the mul- 

tisets r and A (i.e. the multiset containing all formulas in r and A so that if nl 

and 112 are the number of occurrences of a formula A in r and A respectively, then 

nt + n2 is the number of occurrences of A in the union r, A). The multiset A, r 
is obtained from r by adjoining the formula A. We will write ri,r2 as r1,2, for 

short. 

It should be pointed out that a proof in the sequent calculus is intended to be 

a tree of sequents; each sequent must either be an axiom (in this case the sequent 

is labeling a leaf of the tree) or be derived by one of the rules of inference we 

will give below (the sequent is a label for an internal node of the tree). Every oc- 

currence of a sequent in a proof other than the end-sequent is used exactly once 

as a premise of an inference. Notice that a proof could be defined as sequence of 

sequents; but obviously any proof defined as such can be transformed into a tree- 

like proof by duplicating subproofs to derive intermediate results multiple 

times. 

The axioms for our sequent calculus are of the form A, r -+ A,A where A is atomic, 

and we will call them logical axioms. Formulas occurring in the cedents r, A of the 

above axioms are referred to as weak formulas of the sequent. Both occurrences of A 
are called distinguished occurrences. 

The rules of inference are divided into two groups: the logical rules that introduce 

logical connectives to the left and to the right side of a sequent, and the structural 
rules (note that cut rule and contraction rule will be the only structural rules of the 

calculus). 

The logical rules are the following: 

7 : left 
r ---) A,A 

7 : right 
A,T+ A 

TA,T --+ A r + A,TA 

A : right rl -+ AI,A rz + Az,B 

r1,2 --) AI,z,A A B 

A : left 
A,l---+ A A,T+ A 

AAB,r + A BAA,T --) A 
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V : left 
A,T, + A, B,rZ + A2 

A vB,r1,2 --f 4~2 

v : right 
r -+ A,A r -+ A,A 

T-t A,AvB r-+ A,BvA 

The structural rules are 

cut 
rl + Al,A A,r2 + A2 

r1,2 ---) 41,2 

Contraction 
r + A,A,A A,A,T ---f A 

r -+ A,A A,r+ A 

The formula occurrence, which is introduced explicitly into the lower sequent of a 

given rule of inference is called the main formula of the inference, and the formula(s), 

which are distinguished in the upper sequent(s) are the auxiliary formula(s). For ex- 

ample in the V : left rule the formula A V B is the main formula and the formulas A 

and B are the auxiliary formulas. The other formulas of a sequent (i.e. the formulas in 

r, A) are called side formulas. 
The cut rule has no main formulas; its auxiliary formulas are also called cut- 

formulas. An application of the cut rule will simply be called a cut. The auxiliary 

formulas of a contraction rule are also called contraction formulas. 

We do not need the usual Weakening and Exchange rules in our calculus (as they 

appear in Gentzen’s original formalization), because it uses multisets of formulas in- 

stead of sequences. The reader familiar with Gentzen’s original formulation may like to 

notice that weak formulas appearing in logical axioms play in fact the role of formulas 

introduced by Weakening. This idea will be made explicit in Lemmas 4.8 and 4.9. 

Our formalization will be referred to as PLK, ignoring the slight differences with 

Gentzen’s classical formalization. 

In the sequel, we will be concerned with different measures of complexity for proofs 

and formulas. The number of lines in a proof is defined as the number of nodes in 

its tree-like structure. The size of a formula A (denoted [AI) is its number of symbols. 

Namely, IAl is 1 if A is atomic; IA A BI = [A V BI = IAl + IBJ + 1; ITAJ = IAl + 1. The 

size of a sequent is the sum of the sizes of its formulas. The size of a proof is the 

sum of the sizes of its sequents. 

2. The logical flow graph of a proof 

In [2], Buss introduces the notion of logical flow graph to study how the influence 

of a formula spreads through a proof in LK, (i.e. the first order sequent calculus LK 
together with axioms for equality). Following his introduction, we present the notion 

of logical flow graph formulated for our propositional sequent calculus PLK. 
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Let IZ be a proof. An s-formula is an occurrence of a subformula of a formula in 

II (here, ‘s-’ stands for ‘semi-’ or ‘sub-‘). It has to be emphasized that an s-formula is 

an occurrence of a subformula in the proof as opposed to the subformula itself which 

may occur many times in the proof. Two distinct occurrences of the same formula 

A are called variants (we will use superscripts A”,Aj to distinguish variants of A). 

The logical flow graph (formally defined below) is a directed graph whose nodes are 

s-formulas in n; two s-formulas will be connected by an edge only if they are vari- 

ants of each other; any two s-formulas connected by an edge will be in (distinct) se- 

quents of some inference or will both be in an axiom on opposite sides of the sequent 

arrow. 

We define the logical flow graph by specifying the edges. 

First, in an axiom A, r --) A, A there is an edge directed from the left-hand A to the 

right-hand A. 
Second, in any logical and structural inferences listed above, there is an edge directed 

from each side formula in the antecedent r in the lower sequent to the corresponding 

side formula of r in the upper sequent(s). There is an edge directed from each formula 

in the succedent A in the upper sequent to the corresponding formula of A in the lower 
sequent. 

Third, in any logical inference or in a contraction rule if A (or B) is an auxiliary 

formula which appears in the succedent of an upper sequent of an inference then there 

is an edge directed from that A (or B) to the corresponding s-formula in the lower 

sequent. If A (or B) is an auxiliary formula which appears in the antecedent of an 

upper sequent of an inference then there is an edge directed towards that A (or B) 

from the corresponding s-formula in the lower sequent. 

Fourth, in a cut inference there is an edge directed from the cut-formula A in the 

succedent of the left-hand upper sequent to the occurrence of A in the antecedent of 

the right-hand upper sequent. 

Fifth, suppose there is a directed edge from an s-formula A’ to A2 and suppose 

B’ is a subformula of A’. Since A’ and A2 are variants there is a subformula B2 of 

A2 which corresponds to the subformula B’ of A’; the s-formulas B’ and B2 are, of 

course, variants. If B’ occurs positively in A’ then there is an edge from B’ to B2. If 

B’ occurs negatively in A’ then there is an edge from B2 to B’. Recall that B occurs 
positively (negatively) in A if B occurs an even (odd) number of times in the scope of 

a negation or in the left-hand operand of an implication. Clearly B’ occurs positively 

in A’ if and only if B2 occurs positively in A 2. This concludes the definition of logical 

flow graph. 

As an example consider the following proof: 

A-+A B-B 

A,B-+AAB C-C 
AVC,B--,AAB,C 

(AvC)AB-+AAB,C 

(AVC)AB+(AAB)VC 
V : right and Contraction 
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with logical flow graph restricted to the formula A (edges for B, C, AVC, (AVC)AB, AAB 

and (A A B) V C are not indicated) 

a 

ATA B--+B 

‘A. BbA A B c-c 

‘A, C>A A B,C 

t I 
(AVC) AB-AAB,C 

t 1 
(AVC)AB - (AAB)VC 

Notice that all pairs of variants A (respectively B and C) in Xl are connected by 

sequence of edges. In the following, we will call connected variants any pair of 

variants linked by some sequence of edges. We do not require the edges to respect the 

orientation. 

A formula B occurs positively (negatively) in a sequent r + A if B occurs neg- 

atively (positively) in a formula of r or positively (negatively) in a formula of A. 

If not otherwise indicated, in the following we intend that a positive or negative oc- 

currence of a formula be defined relative to sequents. Notice that in a logical flow 

graph there are four kinds of edges: edges connecting positive occurrences, that are 

directed downwards; edges connecting negative occurrences, that are directed upwards; 

edges defined on axioms, that are directed from negative occurrences towards positive 

occurrences; edges defined on cut-formulas, that are directed from positive occurrences 

towards negative occurrences. 

If a proof is cut-free, its logical flow graph will contain only three kinds of edges. 

Moreover, from a positive (negative) occurrence at most 1 edge goes out (comes 

in). If a contraction rule is applied to a positive (negative) occurrence, there are 2 

edges directed downwards (upwards) to positive (negative) occurrences in the main 

formula of the rule application. From an easy checking of the rules of the calculus, 

it follows that a contraction rule is the only way in which two distinct edges can be 

directed to/from the same node of a logical flow graph. Hence, each node of a logical 

flow graph, whenever labeled by a positive (negative) occurrence can have at most 

2 incoming (outgoing) edges and at most 1 outgoing (incoming) edge. From this, it 

follows that each node of a logical flow graph is at most of degree 3, where the degree 

of a node is the number of edges which depart or arrive at the node. 

A connected subgraph of a logical flow graph in general is not a tree. Take for 

instance the following proof: 

A+A 

A-+A 7A,A --f A-A 

A+A A,1AvA-+A lA,A + 

-+ 1A,A A,lAVA,lAVA-+A 
Contraction 

+yAvA A,lAvA+A 

A--+A 
cut 
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and notice the connected subgraph obtained by tracing some of the logical relations 

between the occurrences of the formula A in it 

A= 

A+A TEA+ A-A 
- 

-25% 

A,-IAVA+A -IA,A+ 
7 

1’ \ 
A,,‘Av A,TAv A+A 

+-IAvA A ‘,,A< 91 
, 

A+A 

We call any sequence of consecutive edges in the logical flow graph 9’ of ll : S 

(i.e. the proof Ii’ with end-sequent S) a logical path (two consecutive edges in this 

sequence should meet in a vertex which is a source for one and a sink for the other) 

or simply a path. We call any logical path starting and ending with two (distinct) 

s-formulas occurring in S a bridge. We call direct path a logical path passing through 

either positive or negative occurrences only. Notice that a direct path cannot cross an 

axiom or a cut, since this would force the path to pass through both positive and 

negative formula occurrences. Moreover, notice that the number of variants in a direct 

path is bounded by the height of II. 

Even though we will not use this fact in the following, it might interest the reader 

to see that cut-free proofs do not contain cycles (i.e. paths starting with an occurrence 

of a formula and going back to it). We call acyclic those logical graphs that do not 

contain cycles. 

2.1. Proposition. Let IZ : S be a cut-free proof The logical Jiow graph of Ii’ is 
acyclic. 

Proof. Let ll be a cut-free proof. Then there are only three kinds of edges connecting 

positive and negative occurrences of formulas in it, as remarked above. Notice that 

if all occurrences of formulas in a path are positive (negative) then the edges of the 

path should always go upwards (downwards), and therefore the path cannot be a cycle. 

Suppose there is a cycle in II. By the latter observation, both negative and positive 

occurrences of formulas must occur in it. In particular we should have a way to connect 

positive occurrences to negative occurrences but there are no such edges in a logical 

flow graph of a cut-free proof. Therefore a cut-free proof cannot have cycles. 0 

It is also provable that contraction-free proofs do not contain cycles. 

2.2. Proposition. Let ll : S be a contraction-free proof (possibly containing cuts). 
The logical flow graph of ll is acyclic. 

Proof. (sketch). Suppose IZ to be a contraction free proof with logical flow graph 

containing a cycle. Let ZIi, . . . , nk be the intermediate proofs obtained by applying 
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the Gentzen procedure of cut elimination [7] to all pairs of cut-formulas that are non- 
weak. Let Ii’, be II and nk be a proof possibly with cuts on weak formulas only. By 
inspection of the logical flow graphs induced by the transformation of the procedure 
of cut elimination it can be shown (here we use the assumption that the proof is 
contraction free) that if Z7i contains a cycle then n,+i must contain a cycle. Therefore 
nk contains a cycle. This gives a contradiction. In fact, it is enough to observe that 
a cycle cannot contain as a (sub)path any direct logical path passing through a cut- 
formula that is weak. This implies that a cycle cannot pass through any of the cut- 
formulas in &. But as a corollary of Proposition 2.1 we know that a cycle must pass 
through a cut-formula. 0 

As a consequence of Propositions 2.1 and 2.2 it is clear that ‘complicated’ logical 
flow graphs arise from the interaction of both cut and contraction rules in the proof. 
Other facts of general interest are the following: 

2.3. Proposition. Let Il : S be a proof and I7’ : S be a cut-free proof obtained by 
applying to Ii’ the Gentzen procedure of cut elimination. If there is a logical path 
between two variants in the end-sequent S of IS then there is a logical path between 
the same pair of variants of S in Il. 

Proof. (sketch). The procedure of cut elimination either duplicates or rearranges or 
eliminates subproofs of n. It is a routine to check that for each one of these steps no 
new logical paths between pairs of variants in S are introduced, but simply eliminated 
or duplicated. 0 

The following is the formulation in terms of logical paths of the well-known sub- 
formula property (i.e. each formula in a cut-free proof Zl : S is a subformula of 
some formula in S). The property is formulated for arbitrary occurrences of formulas 
in lI. 

2.4. Proposition. Let II : S be a cut-free proof For allpositive (negative) occurrences 
of a s-formula D in II, there is exactly one positive (negative) variant D’ in S with 
a logical path from (to) D. 

Proof. By induction on the height of the proof ZI. The result follows because all 
logical and structural rules have the property that the incoming and outgoing logical 
paths to the premises are naturally extended to the conclusion. For instance consider 
A : right to be the last rule of inference in II and the proof 17 be of the form 

nl n2 
r1 -+ Al,A r2 --+ A2,B 

r1,2 --) A1,2,A AB 

Suppose D is a positive (negative) occurrence in ZZ. If D is in ni, then by induction 
hypothesis, there is exactly one positive (negative) occurrence of a s-formula D” in 



A. Carbonel Annals of Pure and Applied Logic 83 (1997) 249-299 259 

ri -+ d 1, A with logical path from D. The natural extension of such path activates 
exactly one formula D’ in rt,~ -+ LI,,J,A A B, variant of D”. If D is in ri,~ -+ 
A~,J,A A B, the claim is obviously satisfied for D’ being D. 0 

Notice that a path links a pair of positive and negative variants if and only if it 
passes through an axiom of n. As a consequence all weak occurrences in a cut-free 
proof are linked to only one variant in the end-sequent and such a variant must be of 
the same sign. 

The orientation of the edges in a logical flow graph can be justified by the usual 
notion of soundness for axioms and logical rules. For instance, consider the edge 
connecting the occurrences of a formula A in the upper and lower sequents of a 1 : 

left rule 

and suppose that A --f A’ is a valid sequent. The rule obtained by substituting A with 
A’ in the lower sequent (as the direction of the logical edge suggests), i.e. 

I’ --+ A.A 

TA’,r --) A 

is a sound rule. On the other hand 

r + A,A’ 

TA,T -+ A 

is not sound. 
In the following, we focus on the logical relations between atomic formulas; namely, 

we will work with the subgraph of a logical flow graph whose nodes are atomic 
formulas. Whenever we refer to s-formulas we will intend them to be atomic. 

If one decides not to look at the whole logical flow graph for a proof IZ but at 
subgraphs of it, one may observe that there are subgraphs tracing proofs involving 
only certain occurrences of formulas in II. We will refer to them as inner proofs in 
17. Let us illustrate the idea with an example. Consider the following proof 

A-A DAD 

AVD-+D,A 

AVD--+A,CvD 

and the portion of the logical flow graph not relying on A 

A+A ,Dy 

AvD+A,D 
I \ 

AvD-+A,CvD 
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It is easy to see that it describes the inner proof 

D+D 

D--+CvD 

where we will refer to D --f C V D as inner sequent of A V D + A, C V D. 

On the other hand, not all subgraphs of II induce a proof. For instance, consider 

the subgraph 

A*VE9D+D 
D,AvE -+A,D 

D,dvE/+A!CvD 

Notice that a given proof may contain more than one inner proof. Consider the 

following very simple proof: 

B+B C-+C 

A-+A BvC+B,C 

A,B v C + B,A A C 

and the two logical flows for it 

By*7 

A-+A 4=sT/!Y 
A,BvC + B,A AC 

describing respectively the inner proofs 

A+A c+c 

A,C-+AAC 
and 

BAB C+C 

BVC+C,B ’ 

The idea of inner proof is a basic intuition for both the proof of the Craig Inter- 

polation Theorem and the result on the Cut Elimination Theorem we want to present. 

Given a proof of A -+ B we will ‘extract’ from its 

C (C -+ B) by keeping the logical paths linked to 

only linked to B (A). Second, we show that if we 

forgetting paths properly) a proof from the cut-free 

sequent, then we can ‘extract’ a proof directly 

sequent. 

cut-free form a proof of A + 

A (B) and forgetting the ones 

can ‘extract’ (by keeping and 

form of l7 of a certain inner 

from II of the same inner 
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3. Craig’s interpolation theorem 

We give a proof of the Craig’s Interpolation Theorem based on logical flow graphs. 

The statement describes in a precise way the logical relations between a tautology 

A ---) B and its interpolant C. 

3.1. Theorem (Craig’s interpolation theorem). Let Zl : A --) B be a proof Zf A and 
B have at least one propositional variable in common, then there exists a formula C 

(called the interpolant of A -+ B) containing only those propositional variables that 
occur in both A and B, such that 
(1) there exist proofs ZZA : A 4 C and IIB : C -+ B; 

(2) if p occurs in C then there is a p” in A and a p” in B such that ZZA (ZZB) 

contains a logical path between p and p” (ps) and ZZ contains a logical path 
between p” and pB; 

(3) tf ZZA (ZZB) contains a logical path between two occurrences p’ and p2 in A (B) 

then 17 contains a logical path between p’ and p2. 
Zf A and B contain no common propositional variable then either A -+ or + B is 

provable. 

The interpolant will be built by steps on the height of the subproofs using some easy 

considerations on the logical flows of formulas in the proof. By building the interpolant 

C, proofs of A -+ C and C -+ B are explicitly constructed from ZI and essentially the 

idea of the construction is to ‘forget’ all those paths in II that are linked only to B 

and A respectively. Each axiom and rule in n will turn out to belong either to the 

proof of A -+ C or to the proof of C + B (Corollaries 3.3 and 3.6). 

The same technique can be used to prove the intuitionistic version of the theorem 

and the theorem for the full predicate logic ([3]); in [4] the technique is used to deduce 

the Interpolation property for schematic systems (i.e. a generalization of the notion of 

proof system introduced in [ 171). 

3.1. Proof of the interpolation theorem 

We need first to prove an easy lemma on the use of weak formulas in proofs. We 

say that a weak occurrence of a formula A in a proof II is a formula whose direct paths 

all go to weak formulas A in axioms of n. (The proof needs two simple lemmas on 

the elimination and introduction of weak occurrences to be established in Section 4.) 

3.2. Lemma. Let ZZ : S be a proof of k lines. Then there is a proof ZS : S of at 

most k lines and such that no weak formula in ZS is an auxiliary formula for some 
rule in ZS. Furthermore, if ZZ is cut-free then ZS is cut-free. 

Proof. This is proved by induction on the height of the proof II. The only inter- 

esting cases arise when the last rule of II is either a binary rule or a contraction 
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rule. In the first case suppose that a A : right rule (similarly for V : left and cut) 

is applied to the subproofs II, : r, + Al,A and 172 : r2 --+ AZ, B where A is 

a weak occurrence in IZl. By eliminating A from ni (Lemma 4.9) and adding to 

the resulting proof weak occurrences r,, Az,A A B (Lemma 4.8) we obtain a proof 

with the same number of lines as n,, of ri, r2 + Al,Az,A A B. Let n’ be such 

proof. 

In case the last rule of inference of II is a contraction applied to r + A,A,A, and 

one of the A’s is weak then applying Lemma 4.9 to it we obtain the desired proof of 

r + A.A. 0 

We are now ready to prove the theorem. 

Proof of Theorem 3.1. Let II’ be the cut-free proof of A + B obtained as a result of a 

cut elimination procedure applied to a given proof of A -+ B. By Lemma 3.2 there is a 

proof Ii’* with no rules applied to weak auxiliary formulas. Without loss of generality 

we can assume both A,B to be non-weak and therefore having a propositional variable 

in common. (If L(A) fl L(B) = 8 then either A or B is weak in n*. This is not too 

difficult to check.) If B (A) is weak, the sequent A -+ (+ B) is provable and if P is 

a predicate in L(A) n L(B) then A + P A -P and P A TP + B are provable sequents. 

Notice that II* does not contain weak occurrences, therefore all axioms are of the 

form D -+ D. 

For each subproof ZI of II, with end-sequent r + A we show that 

(1) there exist subcollections rA, AA and rs, A3 of r, A such that 

(a) each formula occurrence in rA, AA (rB, AB, respectively) has a direct path to 

A (B, respectively), and 

(b) r is rA, rB and A is AA, AB, 

(2) either there exists a formula Cn such that 

(a) L(Cn)cL(A)nL(B), and 

(b) rA + AA,Cn and Cn,TB -+ AB are provable sequents, 

or Cn is not defined and, either TA + AA or rB + AB is a provable 

sequent. 

Notice that if II is II, then rA is A, AA is 8, TB is (,!I, AB is B and A -+ Cn,, 

Cn* + B turn out to be provable sequents. 

Let us start first by considering subproofs n of II*, of height 1 of the form D -+ D. 

If the 1.h.s. (r.h.s.) distinguished occurrence of D has a direct logical path to A in II*, 

while the r.h.s. (1.h.s.) distinguished occurrence of D has a direct logical path to B, let 

Cn be D (TD), the proof lIA be D + D (IIA : --t TD, D), the proof IIB be D + D 

(ZIB : TD, D 4). 

If both 1.h.s. and r.h.s. occurrences of D have a direct logical path to A (B), let Cn 

and IZB (HA) be undefined, define ZIA (nB) to be D --+ D. 
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For subproofs n of height k > 1 we will examine the last rule of 

Suppose R is a V : left rule of the form 

D, o:L A, E, Ozn’ -+ -42 

D v E, @1,2 ---f Al,2 

inference R. 

By construction there are (at most) two (defined) pairs of proofs #, IIf and @,IIf, 

and (at most) two (defined) formulas C n,,Cn, such that L(Cn,),L(Cn,)cL(A)nL(B). 

We will use this information to build the formula Cn (whenever definable) and, JIA : 

r$ ---f A”,,Cn and 17’ : Cn,rt --) Af,. There are two cases: 

(1) the main formula D V E has a direct logical path to A. In case Cn, and Cn, are 

both defined then let Cn be Cn, V Cn,, and define UA to be 

n: n: 
D, 0; --) A?, Cn, 6% -+ Ai,Cn, 

D,Of + Af,Cn, V Cn, E, 0; 4 A;‘,Cn, V Cnz 

D V E,Of,, -+ A&, Cn, V Cn2, Cn, V Cn, 

D v E,Of,, -+ Af.2, Cn, V Cn, 

and IIB to be 

where 0; is o’;‘,2, A$ is A:$,, Sf, is 0f,2, At is Af2. Clearly, L(Cn, V Cn,) C 

L(A) n L(B). If Cn, (Cn,) is defined and Cn, (Cn,) ‘is not, then let Cn be Cn, 

(Cn, ); if both formulas are undefined, also Cn will remain undefined. The proofs 

IIA and IIB are built as expected. 

(2) the main formula D V E has a direct logical path to B. Let Cn be Cn, A Cn, 

(whenever defined) and define lIA to be 

O; *YIf, Cn, 
n: 

0; + Ai, Cn, 

@A I,2 + A$,Cn, A Cn, 

and IIB to be 

nf nf 
D, Cn, 07 + AT E,Cn,,Of -+ A: 

D, Cn, A Cn,, Of’ + A? E,Cn, A Cn,,@ -+ A< 

DVE,Cn,ACn,,Cn, ACn2,@T,2-+Af,2 

DVE,Cn, ACn,,Of, -+ Af’, 

The case where Cn, and Cn, are not both defined, is handled as expected. 
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If R is a A : right rule the way to build the formula Cn and the proofs associated to 

it is symmetric to the case we just discussed. If R is a unary rule the formula CD is 

Cn, (whenever defined) and IIA,ZIB are built with the same ideas already used in the 

above case. This concludes the construction. 

Call C,IIA,IZB respectively, the formula Cn* and the derivations of A --t Cn, 

and CD* --+ B. Conditions (2),(3) of the statement are direct consequences of the 

construction above and Proposition 2.3. This concludes the proof. 0 

The following statements are direct consequences of the proof of Theorem 3.1. Let 

II* : A -+ B, C, IIA, IIB be defined as in Theorem 3.1. 

3.3. Corollary (Inclusion-exclusion formula). The number of axioms in II* is exactly 

the sum of the number of axioms in IIA and the number of axioms in IIB, minus the 
number of axioms where bridges connecting A and B pass through. 

Proof. It is enough to observe that the number of axioms in ZIA (IIB) is the number 

of bridges from A to C (C to B) plus the number of bridges from A to A (B to B), 
and that the number of bridges from A to C (C to B) is indeed the number of bridges 

fromAtoBinII*. q 

3.4. Corollary. If II* has k lines then IIA and ZIB have at most 3k lines. 

3.5. Corollary. There are no contraction rules in IIA,IIB where the direct paths from 

C pass through. 

This last corollary follows from the fact that along the construction we never applied 

any contraction to the subformulas of the interpolant. Furthermore, the size of the 

interpolant is controlled by the number of binary rules in the proof. This is part of our 

next corollary. 

3.6. Corollary. The size of the interpolant C is exactly the number of axioms in II* 
where bridges connecting A to B pass through. 

Proof. This is a consequence of Theorem 3.1 (condition (2)) and Corollary 3.5. 0 

This last corollary might suggest that the complexity of an interpolant for a proof n 

(possibly containing cuts) does not depend on the number of bridges which start and 

end in either A or B. In Section 5.2 we will prove this intuition to be false by showing 

that a tautology of size IZ has a non-linear lower bound for its minimal interpolant (i.e. 

the interpolant has size at least n2) only when all its proofs do contain bridges from 

A back to A and from B back to B. 

3.7. Remark. Because of Lemma 3.2 we do not need to consider an extension of the 

language L to include dummy symbols T, I as in the construction of the interpolant 



A. CarbonelAnnals of Pure and Applied Logic 83 (1997) 249-299 265 

proposed by Maehara (see [19, 71). The use of flows in our construction makes explicit 

the relations between the interpolant and the formulas A,B in the end-sequent A 4 B 

(this fact is expressed in conditions (2),(3) of the theorem) and justifies in a natural 

way the sets of formulas used in Maehara’s construction. 

3.2. Interpolation and proofs containing cuts 

There are cases where the interpolant for J7 : A 4 B can be built directly from a 

proof containing cuts. 

3.8. Definition. Let II : A -+ B be a proof. A cut-formula in II is A(B)-monochromatic 

if none of the paths passing through it connect to B (A). 

3.9. Definition. A proof II : A -+ B is monochromatic if each of its cut-formulas is 

either A-monochromatic or B-monochromatic, and if any path that does not start or 

end in the end-sequent either passes through A-monochromatic cut-formulas only or 

B-monochromatic cut-formulas only. 

Any monochromatic proof might contain paths starting in A (B) and ending in B 

(A). These paths do not pass through cut-formulas. 

3.10. Theorem.3 Let II : A --) B be a monochromatic proof (possibly with cuts) 
with k lines. Suppose A and B have at least one propositional variable in common. 
There is an interpolant C for A -+ B such that ICI <O(k) and there are two proofs 
IIA : A -+ C and IIB : C --) B such that #lines(IIA),#lines(IIB)dB(k) and their 
cut-formulas have size O(k). 

To show the bound on the interpolant C we need to prove two general facts for 

propositional proofs. The proof of the first fact needs a lemma on the introduction of 

weak occurrences to be established in Section 4.2. 

3.11. Lemma. Let II : A + B be a proof (possibly with cuts) of k lines. Then there 
exists a proof II’ : A 4 B with at most k lines such that each positive (negative) 

s-formula in a cut-formula of II’ has a direct path from (to) a distinguished occur- 
rence in some axiom. 

Proof. Apply Lemma 3.2 to II in order to obtain a proof II* where weak occurrences 

are not used as auxiliary formulas in rules. If fl* satisfies the condition of the statement 

we are done. Otherwise consider a subformula R of some cut-formula C in II* which 

3 A similar result holds for M-proofs as well. For the full predicate calculus the statement says that given a 

proof Il : A + B with k lines and monochromatic cuts only, there is an interpolant C for A - B such that 

ICI <21al+laii-c(k) and #lines(nA),#lines(nB) <O(k). The proof we presented holds for the full predicate 

calculus, but instead of Lemma 3.12 one should use Lemma 3.1 in [l 11. 
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admits no direct paths to axioms of H* from its s-formulas and which is maximal with 

respect to this property. The formula R must be a proper subformula of C because C 

cannot be weak; moreover R has to arise from A : left rules or V : right rules. More 

precisely, either there is a formula U such that U AR is a subformula of C or there 

is a formula V such that V V R is a subformula of C. (Negations could always be 

absorbed into R, contradicting maximality.) In the first case there is at least one direct 

path from R which ends up in the main formula U A R of a A : left rule, with U as 

the auxiliary formula, and in the second case there is at least one direct path from R 
which ends up in the main formula V V R of a V : right rule, with V as the auxiliary 

formula. All other paths (if any) should end up in formulas of the form U’ A U” 

introduced by a A : left applied to an auxiliary formula U”, or U’ V U” introduced 

by a V : right applied to an auxiliary formula U”, where R is a proper subformula of 

U’. (The choice of connective A and V here is independent of the preceding choice.) 

Binary rules could not be used to insert the connective (A or V) attached to R, because 

R would then have to have a direct path to an axiom. 

We would like to show that we can modify II* in such a way as to remove R from 

the cut formula C and its dual. Assume for the sake of argument that R arises in C 

as U A R. We can replace all U AR occurrences lying in the direct paths from C by 

U occurrences. By doing this we should also remove from the proof the A : left rules 

originally applied to U. We have to look now at what happens in the cut formula 

dual to C. There might be direct paths from U A R in the dual of C which end up 

inside the main formula of a A : left or a V : right rule, that is, in the part of the 

main formula that is added by the rule, and not the auxiliary formula. In this case 

we can replace all U A R occurrences in these direct paths by U occurrences. What 

else can occur? Since we have ruled out weak occurrences the connective in U A R 

has to be introduced by the binary rule A : right (because on the opposite side of the 

cut it was introduced by unary rules A : left). In this case the A : right rule will be 

applied to subproofs Zl R . . rl ---f Al, R and IZ’ : r, -+ AI, U. The proof we look 

for will be defined by replacing in ZZ* the A : right rule applied to IIR, 17” with the 

proof z7’U : ~I,J + 41.2, U obtained from II” by adding ri, Al as weak occurrences 

(Lemma 4.8). We should then replace all U AR occurrences in the direct path going 

to the cut formula dual of C with U. 

One treats V V R similarly since it either ends up in the easy part of a unary rule 

or in a binary rule. 

In all situations the size (i.e. number of symbols) of the resulting proof is strictly 

smaller than the size of II*. Call lT the new proof and apply the procedure again 

to some formula R (if any) occurring in a cut-formula and having no direct paths to 

axioms. Since the proof has a finite number of formula occurrences and the size of the 

proof is decreasing by applying the procedure, after a finite number of steps we will 

obtain the desired proof lT’. 0 

The following lemma can be seen as the propositional counterpart of Lemma 3.1 in 

[I l] which is formulated for the system LK (it appeared also in earlier work of Parikh 
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[17] and in the paper of Farmer [6]). Notice that we claim a bound on the size of 
the formulas in a proof though and not simply on the logical depth. Our statement is 
indeed stronger. 

3.12. Lemma. Let Ii : S be a proof (possibly with cuts) of k lines. Then there exists 

a proof ZI’ : S with at most k lines and in which formulas have size at most lSl+O(k). 

In particular cut-formulas in it have size O(k). 

Proof. Apply Lemma 3.11 to I7 and call IT* the resulting proof. Clearly all formulas 
in I7* with direct path to S have size at most IS]. So we need to look only at cut- 
formulas in IT*. Since for all s-formulas B (occurring in cut-formulas C in IT*) there 
is a direct path from B to an axiom in ZT*, it follows that ICI < O(k) (since there 
are at most k axioms, all axioms are defined on atomics and distinct s-formulas in a 
cut-formula should be directly linked to distinct distinguished occurrences in axioms). 
Thus the proof II* is indeed the proof II’ we are looking for. 0 

Proof of Theorem 3.10. The proof is based on two observations. For the first we 
assume that we are given a proof with only monochromatic cuts. For any subproofs 
IZ’ of it, having a cut as last rule of inference applied to IIt : 01 -+ ,4l,D and 
l72 : D, 01 -+ A2 where D is a monochromatic cut-formula (say, having all paths not 
going to (coming from) B), we can build the interpolant by defining IltA as 

=: n: 
0: + A&o”, cn, OA, q -+ fl;, c*, 

oA * 2 --+ fq&l,,G7z cut 

4 ’ --) AfJ,Cn, v Gl, 
v : left and Contraction 

and IT’* as 

(All paths not linked to A but passing through an A-monochromatic cut formula, do 
pass only through A-monochromatic cut-formulas in II because I7 is monochromatic. 
Those paths will then belong to IllA.) 

Second, notice that by Lemma 3.12, for each I7 : A + B with k lines there is a proof 
II’ : A --+ B with k lines and cut-formulas in IZ’ of size at most O(k). Furthermore, 
if IZ has monochromatic cut-formulas only then II’ has monochromatic cut-formulas 
only. This property is a direct consequence of the proof of Lemma 3.12. 

To show that there is an interpolant C for A -+ B such that ICI d O(k) it is enough to 
consider Ill : A + B and use an induction on the construction of the interpolant (defined 
by combining the proof of Theorem 3.1 and the first observation). The bounds on the 
complexity of the proofs for A + C and C + B follow directly from the construction. 

0 
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In Theorem 3.10, cut-formulas in II do not need to be in L(A) flL(B) but be linked 
either to A or to B. In Theorem 3.13 we will consider proofs with cut-formulas in 
L(A) n L(B), without assuming any hypothesis on logical links. 

3.13. Theorem. Let Il : A -+ B be a proof (possibly with cuts) of k lines. Suppose 
A and B have at least one propositional variable in common. Suppose also that all 

cut-formulas in I7 are in the language L(A)nL(B). Then there is an interpolant C for 
A ---t B such that JCI Q O(k2) and there are two proofs II’ : A --t C and I7” : C -+ B 

such that #lines(lI’), #lines(P) < O(k’). 

Proof. From l7 we build a proof of /j~=,(~Ai V Ai), A --t B where the Ai’s are all the 
cut-formulas in II. To do that we substitute in the obvious way all cut rules on Ai by 
a pair of rules of 7 : left and V : left. We will obtain a proof of 

lA,vA ,,..., lA,VA,,A-+B 

By n- 1 applications of A : right we finally have a cut-free proof of /jgl(lAiVAi), A -+ 

B with B(k) lines. By Lemma 3.12 the size of this sequent is JAI + IBI + O(k’) (since 
n < k). We then apply Theorem 3.1 to Zi” and build an interpolant 1 for this sequent 
and two proofs ZYll, : l\yE1(lAi V Ai),A --) I and Zl; : I -+ B of 8(k) lines. Since 
Ael(TAi V Ai) is in L(A) n L(B), I will be in L(A) f’ L(B) as well. The formula 
I V -(Arsl(TAi V Ai)) is clearly an interpolant for A + B of size S(k’). In particular 
II’ and II” are built from IIl, and IZ; in the obvious way (notice that the sequent 

‘AyC1(TAi V Ai) + is provable with S(k2) lines and nl,, Z$ are in size O(k) by 
Corollary 3.4). 0 

4. Cut elimination and flows 

The aim of this section is to show that given a proof Il : S and a cut-free proof 
n’ obtained by eliminating cuts from n, an inner proof for ZZ’ (say II; : S* ) 

of an inner sequent S* of S will induce an inner proof of S* (say n* : S* ) in 
Il preserving the logical relations between the occurrences of formulas in the end- 
sequent (i.e. if there is a sequence of edges between a pair of variants of &. in n’ 
then there is a sequence of edges between the corresponding pair of variants in S 
for IZ). 

n:s ,Il’: s 
I 
I 
I 

I 
1 

1 

I 

~*;S*______ ______+n; :s* 
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We will show that the picture above is roughly what one can prove; namely one 

should allow II’ to contain cuts on weak formulas (by eliminating these cuts one would 

indeed eliminate logical links between variants that we want to preserve). We call any 

such cut trivial. 
We will show that the property is not true if II’ is obtained by the usual Gentzen’s 

procedure of Cut Elimination. We present a counterexample to this fact together with 

an alternative procedure for the elimination of cuts that will satisfy the statement. 

Notice that this procedure works only for the propositional fragment of Gentzen sequent 

calculus. In purely combinatorial terms a cut elimination procedure deforms paths of a 

logical flow graph by adding new edges and cancelling old ones, and in the process it 

disconnects paths. It is this last feature that makes the analysis of the dynamics of the 

procedure particularly hard. The procedure we present allows one to control in some 

precise way the disconnecting of paths. 

The intuition of inner proof is formally captured by the notion of compact jZow. In 

this section we introduce the notion of flow and the fact that any flow (as subgraph 

of a logical flow graph) is a graph of a proof. Compact flows are a natural subclass 

of flows (see Section 4.1). Then we will show some general facts on the structure of 

propositional proofs. Finally we present the procedure of cut elimination and prove our 

main theorem, i.e. Theorem 4.27 (Section 4.3). A natural generalization of this result 

(Theorem 4.34) to compact subgraphs of subproofs is the Inversion Property of cut 

elimination we described and illustrated in the introduction. 

There are different possible choices that can be made to define a subgraph as a 

graph for a proof. They depend on the structure of the proofs we consider. Since the 

notion offlow is new we want to introduce it in its most straightforward form. Because 

of this we will prove the main result of this section (Theorem 4.27) for a class of 

proofs n called separated (separated proofs satisfy a certain regularity condition on 

contraction formulas). For arbitrary proofs n the idea for the proof of the theorem 

remains the same but the notion of flow should be refined (so that an analogue of 

Proposition 4.24 can be proved). In Proposition 4.18 we will show that for any proof 

of k lines always there is a separated proof of the same sequent with at most k lines 

(and the same number of symbols). Therefore from the perspective of complexity, 

to consider separated proofs is not restrictive (all tautologies are proved by some 

separated proof). Moreover, separated proofs better represent which logical relations 

between formula occurrences are essential for the provability of a sequent. But we will 

comment on this later. 

To avoid annoying syntactical details let us replace unary rules for binary connectives 

in PLK with the following pair of rules: 

A : left 
A,B,T --+ A 

Ar\B,r-+ A 
V : right 

l- + A,A,B 

r+ A,AVB 

We will still call this calculus PLK since it is obviously equivalent. With this change 

Lemma 3.2 should be interpreted as saying that for all proofs n of k lines there 

is a proof II’ of at most k lines such that no weak formula is used as auxiliary 
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formula for binary rules in ZI’, or for unary rules at one premise, or for contraction 
rules. 

4.1. Flows of PLK 

In the following we give a formal definition of inner proof by means of the notion 
of flow of formulas. As we have already observed in Section 2, we will focus on the 
logical relations between atomic formulas occurring in a proof, therefore whenever we 
refer to s-formulas we will intend them to be atomic. 

We now define the notion of full path. 

4.1. Definition. Let ZZ be a proof, _5? its logical flow graph, and f be a path in 9 
between s-formulas. We call f a full path if there is a formula Cl of f with no 
incoming edges (belonging to 9) and a formula Cz of f with no outgoing edges 
(belonging to 9); f may have no edges in which case Cl is C,. Moreover, for each 
i = 1,2 either Ci occurs in the end-sequent of n or Ci is an s-formula occurring in 
some non-distinguished formula of the axioms of Ji’ (i.e. in the cedents r, A). 

Notice that whenever Ci is a non-distinguished occurrence in some axiom, it does 
not give any logical contribution to the proof, in the sense that the validity of the 
sequent in which Ci appears, resides on the logical relations concerning formulas other 
than Ci. 

Atomic formulas that are nodes of a path are called active formulas in the path. 
More generally we say that a formula (not necessarily atomic) is active in a set of 
paths whenever some (possibly all) of its s-formulas are active. Thus if A is not active 
in TA then -A is not active, and if A is active in A A B then A A B is active even if 
B is not active. 

The active part of a formula occurrence in a proof is defined as image of the map 
introduced below. 

4.2. Definition. Let ZI : S be a proof and % be a subgraph of 9 in ZI. The ‘forgetfil’ 
map EZF from occurrences of formulas in ZZ to formulas (possibly none) is defined as 
follows : 

(1) if A is an atomic formula then HF(A) = i f-~~i~~tiue in 9 

1HdA) ifH&A) # 8 
otherwise 

( HdA) v HdB) iffb(A),&(B) # 0 

(3) HdA VB) = 
ff.dA) if HF(B) = 8 
H9(B) 

if HF(A) = 8 

0 ifHs+WGW = 0 

(4) HF(A A B) is defined as in (3). 
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Let A be a formula. The formula &(A) when defined, is not necessarily a sub- 

formula of A. On the other hand, not all subformulas of A can be images of some 

forgetful map Hy . Take for instance A to be -(C A (D V E)); the subformula D cannot 

be the image of any forgetful map and the formula -(C A E) is not a subformula of 

A but it can be obtained from A by forgetting D. Because of these properties, we will 

call HF(A) an inner formula of A. 

Let r be a multiset of formulas Al . . . A,; with the symbol HF(T) we denote the 

multiset Hy(Al ) . . . Hy(An). If r, A are two multisets of formulas then HF(T 4 A) 
denotes the sequent HI --) H&A) where H*(r), HP(A) are multisets. We will 

call H,F(T -+ A) an inner sequent of H,F(T + A). 
Notice that the map Hy is s-dependent. 

4.3. Definition (Natural extension of a path). Let II : S be a proof of height greater 

than 1 (i.e. II is not an axiom) with last rule R. Let R be either a binary rule applied 

to 17, : $1, IlIz : S2 or a unary rule applied to nl : SI. 

(1) Let f be a path in Iii passing through an s-formula C occurring positively (neg- 

atively) in Si (where i is either 1 or 2 in case R is binary, and 1 in case R is 

unary). If R is a binary logical rule or R is a unary rule or C occurs in some side 

formula of a cut rule, then a path f’ in n is the natural extension of f if it is 

defined by extending f with the outgoing (incoming) edge from (to) C to (from) 

the variant C’ in S (in the sense of the logical flow graph); 

(2) let R be a cut rule, fi be a path in II, passing through a subformula C occurring 

positively (negatively) in the cut-formula A of Si, fz be a path in iI2 passing 

through the corresponding subforrnula C of A occurring negatively (positively) in 

the cut-formula of S,. Then, a path f’ in Il is the natural extension of f 1, f 2 if 

it is defined by connecting f 1, f 2 with the outgoing (incoming) edge from (to) C 

in II1 to (from) C in fl2 (in the sense of the logical flow graph). 

We are now ready to define the notion of pow, that as we anticipated at the end 

of Section 2, will be used to bring out the intuition of inner proof. The definition is 

split into two cases. First we consider a proof ll to be an axiom, second we examine 

the last rule of inference in Il and define the flow with respect to flows existing for 

immediate subproof of it. 

4.4. Definition (pow). Let n : S be a proof with last rule R (if any) and logical flow 

graph 3. 

(1) Suppose II is an axiom of the form A, r ----f A, A; the subgraph 9 for ll of 

9, is called a flow if it contains the edge linking the atomic distinguished oc- 

currences of A (remember that by assumption, axioms are defined on atomic 

formulas); 

(2.a) Suppose R is a V : left, or a A:right applied to the subproofs IZi : Si and II2 : S2 

of 17. A subgraph P for II is called a flow if one of the following conditions is 

satisfied: 
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1. there exist flows %I, %2 for 17r,lI2 (where the auxiliary formulas in 81, S2 

might both be non-active, and) where % consists of exactly the natural exten- 

sions of paths in %I, %2, or 

2. there exists a flow %t for ZIr (respectively %2 for ZI,) with active auxiliary 

formula in Sr such that all natural extensions of paths in %r (respectively %;2) 

are in %; any other (possibly none) path in 9 is an s-formula of S for which 

there exists a logical edge to/from some side formula in S2 (respectively %I), 

or 

3. there exists a flow %I for I71 (respectively %2 for IT,) with non-active auxil- 

iary formula in Sr such that all natural extensions of paths in %r (respectively 

%2) are in %; any other (possibly none) path in % is an s-formula of S for 

which there exists a logical edge to/from some side formula in S2 (respectively 

%I), or is an s-formula of the main formula in S. 

(Note that in the last parts of cases 2 and 3, only the s-formula in S is included 

in the flow, and not its counterpart in S;! (Sr ).) 
(2.b) Suppose R is a cuf rule applied to the subproofs ZZr : & and IZ2 : S2 of ZI, and 

let A be the cut-formula of R. A subgraph % for I7 is called a pow if 

1. there exist flows 81, F2 for ZZr, 171 such that H;36, (A) and Hg,(A) are the 

same inner formulas and % consists of exactly the natural extensions of paths 

in %1,%_2, or 

2. there exists a flow %I for II, (respectively %2 for III,) where HF,(A) (respec- 

tively HF,) is empty, the flow % is the natural extension of %r (respectively 

%2); any other (possibly none) path in % is an s-formula of S for which 

there exists a logical edge to/from some side formula in SZ (respectively 81). 

(Again only the s-formula in S is included in the flow in this last part.) 

(2.~) Suppose R is a unary rule applied to the subproof Ii’, : S1 of Ii. A subgraph 9 

for I7 is called a flow if there exists a flow %t for IIr such that all the natural 

extensions of paths in 81 are in %. 

(2.d) Suppose R is a contraction rule applied to ZZr : SI. A subgraph % is called 

a flow if there exists a flow %I for IIr such that both images of contraction 

formulas in Ill are the same under H.q, and where % consists of exactly the 

natural extensions of paths in %I. 

This concludes the definition ofjow. The sequent H&S) induced by % is called a 

base for %. We say that an occurrence of the formula A in S does not belong to the 

base whenever it is not active (i.e. when H.&A) = 0). 

Notice that a flow % on Il with a binary rule R as last rule of inference, is 

sometimes passing only through one of the immediate subproofs of Il; more for- 

mally, the flow % does not contain subgraphs of one of the immediate subproofs 

of Ii’. Moreover, notice that the images under HF of the auxiliary formulas for R 

being a cut rule or a contraction rule, must coincide. The flow % obtained from 

%r,%2 (possibly only %I) is also referred to as natural extension 
of %r,%2. 
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4.5. Remark. As a consequence of Definition 4.4, for all subproofs ZZ’ of Zl the re- 

striction of a flow F to ZI’ (i.e. an edge belongs to the restriction if belongs both to 

F and to the logical flow graph of II’) whenever non-empty is a tlow for I7’. 

The crucial property of flows is emphasized in the following proposition. Its proof 

shows how, given a flow for a proof, one can ‘extract’ an inner proof from it. 

4.6. Proposition. Let Il : S be a proof of k lines and 9 a flow for Il. Then there 

exists a proof ll’ : H&S) with at most k lines. 

Proof. By induction on the height of Il. 

h(U) = 1: the proof Zl must be an axiom of the form A, r + A, A; if 9 exists then 

H,-(A) = A. Since A, HP(T) + Hy(A), A is an axiom then let ZZ’ be A, Hy(T) + 

HF(A),A. 
h(U) = k + 1: assume that 9 is a flow for ZZ; we can proceed by inspecting the 

form of the last rule of inference R. 

Let R be a 1: left rule applied to ZZr : rl + Al,A. Then apply the induction 

hypothesis to II, and obtain a proof ZIi such that # lines(lIi)<# Zines(l7,). If A is 

active in 9 then apply to Zll, a 1 : left; if not, notice that HF(&) is HP(S) and 

therefore Zl’ can be taken to be Z7:. Clearly # Zines(n’) < # lines(n). 

The 7 : right case is handled similarly. 

Let R be a V : left rule applied to IZr : A, rl -+ A, and II2 : B, T2 + A2. If F is de- 

fined in both ZZr and 172 then A and B might be both active and the induction hypothesis 

can be applied to ZYlr , IZ2 to find proofs ZZ:, IZ; to combine with a v : left and obtain ZI’. 

Clearly # Zines(l7’) = # Zines(n’,)+# lines(&)+ l<# Zines(nr)+# Zines(ZZ2)+ 1 = 

# lines(n). If at most one of the formulas A, B is active, say A, then apply the induc- 

tion hypothesis to ZZ, to find the proof Zli. Then apply Lemma 4.8 to ZZl, to add all 

weak occurrences Hq( C) for C in r2, A2. Let 17’ be the resulting proof. If both A, B 

are non-active, then let ZZ’ be either IZl, or II;, and add weak occurrences as before. 

If .9 is defined only in ZZr (respectively in n2) then apply the induction hypothesis 

to it to obtain Z7l, and Lemma 4.8 to add all weak occurrences HF(C) for C in r2, 42 

(respectively rr, Al). If HF(A) = 8 then apply Lemma 4.8 to add Hp(AV B) as well. 

Call the resulting proof ZZ’. Clearly # Zines(ZI{) <# Zines(nl) and by Lemma 4.8 

# Zines(ZZ’)d# Zine.s(ZZ’,)<# lines(n). The A : right rule is handled similarly. 

Let R be a V: right rule applied to ZZ, : rl + A,,A, B and Il with end-sequent 

rr --+ A,, A V B. If A, B are active in 9 then apply the induction hypothesis to ZZr 

to obtain IZ; and the V : right rule. In case either A or B is not active, then ap- 

ply the induction hypothesis to Ii’, . Clearly # Zines(n’, ) 6# Zines(l7, ) and therefore 

# lines(P) 6# lines(n). 

The contraction rule and the A : left rule are handled similarly. Note that condition 

(2.d) in the definition of flow for a contraction rule, plays a crucial role here. 

Let R be a cut rule applied to ZZr : rl + Al,A and ZZ2 : A, r2 --) AZ. If the 

cut-formulas are active in 9 then apply the induction hypothesis to II,, IZ2 to obtain 
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the sequents &(Ti) --+ HF(AI),HF(A) and HF(A),HF(~~) + &(Az), where both 
distinguished occurrences of H&A) are the same inner formula of A. Then apply a cut 
rule to these sequents. If 9 is active in II, (or similarly II2) but not in the cut formula 

A of ri + Ai,A (respectively, A, ri -+ Al), we can apply the induction hypothesis 
to obtain II; and Lemma 4.8 to add the weak occurrences H&B) for B in r2,A2 

(respectively ri, Al ). 0 

4.7. Corollary. Let Il : S be a proof and % a frow for it. Then H&S) # 0. 

Proof. By induction on the height of II. Notice that if the last rule of IZ is a cut rule 

applied to ZIi : rl -+ Al,A’ and n2 : A2,r2 + A2 such that HF(A’) = H9(A2) # 0 

and HLB(rl) = Hi = H9(T2) = HF(Az) = 8, then by Proposition 4.6, the se- 
quents -+ A and A + are both provable. This is in contradiction with the consistency 

of the calculus. 0 

4.2. Structural properties of propositional proofs 

In this section we present some properties of the structure of proofs in the propo- 
sitional calculus. We will present a number of transformations of proofs preserving 
the number of lines (as well as the number of symbols) and satisfying certain natural 
properties over logical flow graphs. Their interest is independent of the particular use 
we make of them in this paper. 

The first result essentially says that to each sequent we can always add new weak 
formulas without augmenting the complexity of the proof. In other words, the usual 
weakening rule can be simulated by the system PLK. Remember that a weak occur- 

rence in a proof ll was defined to be a formula A whose direct paths all go to weak 
formulas A in axioms of II. 

4.8. Lemma (Addition of weak occurrences). Let IZ : r --t A be a proof of k lines 

and A, 0 be multisets. A proof IS : T,A + A,@ with k lines can be constructed 
such that if IS has a flow %’ then there exists a $0~ % for ll with base HF(T + 

A) = HF,(T --t A). 

Proof. By induction on the height of ZI. If 17 is an axiom then n’ is an axiom as 
well. If IZ ends with a rule of inference R then apply the induction hypothesis to one 
of the premises whenever R is binary, or to the only one premise whenever R is unary; 
apply again the rule R to the result. 

Since the structure of II’ is essentially the same as the structure of n (the only dif- 
ference consists on the presence of weak occurrences A, 0 in n’) then # lines(lI’) = 
# Zines(Z7) and any flow of ZZ’ is a flow of Ii’ as well whenever it is restricted to 
formulas of II (notice that the formulas in A, 0 are weak occurrences, hence they do 
not interfere with the logical structure of ZZ). Cl 
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We can always eliminate weak occurrences from an end-sequent without augmenting 

the complexity of the proof. 

4.9. Lemma (Elimination of weak occurrences). Let IT : A,T -+ A (I7 : r -+ A,A) 
be a proof with k lines (possibly with cuts) and A be a weak occurrence. Then there 

is a proof IT : r --+ A with k lines such that IT has a flow F tf and only tf II has 
a Jaw 5. Moreover, for each flow F and any inner formula A’ of A there is a flow 

9 for IT such that &(T -+ A) = HF(T --+ A) and HP(A) = A’. 

Proof. By induction on the height of LI. If A,T + A is an axiom then r + A is 

an axiom as well (since A is a non-distinguished occurrence). If R is the last rule of 

inference in II we apply the induction hypothesis to the premise where a connected 

variant of A occurs and the rule R to the resulting proof. This can be done because 

a weak occurrence can be a main formula in IZ only for a contraction rule. If R is a 

contraction rule on two variants of A, we should apply the induction hypothesis twice. 

Otherwise we apply it only once. We call n’ the resulting proof. Clearly II’ is a proof 

of k lines. 

If II’ has a flow 9’ then define .F in IZ initially from 9’ in the obvious manner. 

Clearly the direct paths from (to) A in Zl are non-active. In particular they will end up 

in some weak occurrences of axioms of II. If the axiom is active, then force A in it 

to be active in F with image A’ and activate the paths from the active s-formulas of 

A till the end-sequent. In case the axiom is not active, consider the first active sequent 

where the path is passing through and activate the variant A in it with image A’ and 

the paths from its active s-formulas till the end-sequent. 0 

The idea behind the following propositions is that for any non-atomic formula in the 

end-sequent of a proof we can always find a proof of its ‘premises’ without augmenting 

the complexity of the proof, sometimes reducing it indeed. 

4.10. Proposition (Elimination of negative conjunctions). Let Il : A A B, r --+ A be a 
proof (possibly with cuts) of k lines. Then there is a proof II’ : A,B, T --) A of at 
most k - 1 lines whenever A A B is non-weak, and of at most k lines tf A A B is 
weak. Moreover, tf 9’ is a flow for II’, then there is a flow B for ll such that 

H&r + A) = H*(T + A), HFI(A) = z&(A) and FLY(B) = H&B). 

Proof. By induction on the number of lines of the proof. 

If # lines(n) = 1 then l7 is of the form A A B, T --) A where A A B is a weak 

occurrence (since axioms are defined on atomic formulas only). Define n’ to be the 

axiom A, B, T --+ A with A, B weak occurrences. 

If # lines(n) = k > 1 then let R be the last rule of inference of l7. If AAB is not the 

main formula for R then we simply apply the induction hypothesis to the premise(s) 

and again R to define n’. If it is the main formula for R then there are two cases we 

should consider. 



276 A. Carbonel Annals of Pure and Applied Logic 83 (1997) 249-299 

Suppose R is a A : left rule applied to IZi : A, B, r ---f A. Then define II’ to be Iii. 

Suppose R is a contraction applied to II, : A A B’,A A B2, r -+ A. If either A A B’ 

or A A B2 is weak then apply Lemma 4.9 to ZIi , to obtain a proof Zi’l, : A A B, r ---t A 
of k - 1 lines. Then apply the induction hypothesis to I7{ to prove the assertion. If 

neither one of the contraction formulas is weak, then apply the induction hypothesis 

twice to obtain the proof Ill : A,A, B, B, r -+ A of k - 3 lines. By applying suitable 

contraction rules, we obtain a proof IZ’ : A, B, r -+ A of k - 1 lines. 

This concludes the construction of II’. 

Given a flow F’ for II’, we will define F essentially as 5’. If # Zines(ll) = 1 

then we force all s-formulas in A A B, r + A to be active whenever their corresponding 

variant is active in A, B, r --f A. If # lines(ll) > 1 then we define 9 essentially as 

natural extension of flows in the premise(s) of the last rule of inference R. In the 

contraction case we might need to use Lemma 4.9. 0 

There is a dual version of Proposition 4.10 regarding formulas A V B occurring 

positively in the end-sequent. 

4.11. Proposition (Elimination of positive disjunctions). Let Il : r + A,A V B, be a 

proof (possibly with cuts) of k lines. Then there is a proof II’ : r -+ A,A,B of at 
most k - 1 lines whenever A V B is non-weak, and of at most k lines if A V B is 

weak. Moreover, if F’ is a jlow for IS, then there is a J~OW 9 for Il such that 
HF,(r + A) = &(T + A), &=((A) = HF(A) and H,-!(B) = &(B). 

Propositions 4.10 and 4.11 speak about unary rules for binary connectives in a proof. 

Similar properties can be proved for binary rules. 

4.12. Proposition (Elimination of negative disjunctions). Let Zl : A V B, r + A be a 

proof (possibly with cuts) of k lines. Then there are proofs llA : A,T + A and 
IIB : B,T + A of at most k lines. Moreover any pair of variants in r, A which are 

connected in II are also connected in IIA and IIB. 

Proof. By induction on # lines(U). The case of # lines(U) = 1 and the case where 

A V B is not a main formula for the last rule of inference R, are treated as in Proposi- 

tion 4.10. In case R is a V : left rule applied to IZ, : A, rl -+ Al and II2 : B, r2 + AZ, let 

IIA be the proof defined by applying a cut to II; : A, rl --) A,, B and 112 : B, r2 ---t A2 

(where ZZ; is obtained from nr by adding B as a weak occurrence). (It is important to 

use the cut rule here instead of adding weak occurrences to maintain the logical connec- 

tions in the proof.) Define Z7a similarly. Clearly # Zines(UA), # lines(IIB) = # lines(n). 

In case R is a contraction rule applied to ni : A V B’,A V B2, r --) A then we proceed 

as follows. If A V B’ (analogously A V B2) is weak then apply Lemma 4.9 to obtain 

I7i : A V B2, r -+ A of k - 1 lines and then the induction hypothesis to IZ; to prove the 

assertion. If neither one of the contraction formulas is weak, then apply the induction 

hypothesis to A V B’ to obtain IIf’ : A,A V B2, r + A and IIT’ : B,A V B2, r + A 
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(of k - 1 lines) then we apply it a second time to A V B2 in lY7:’ and IIf’ to obtain 

II!” : A, A, r 4 A and @’ : B, B, r -+ A (of k - 1 lines). We define nf, ZIf (of k 
lines) from U;l” ,lIy” by applying a contraction on A and on B respectively. 0 

4.13. Remark. If we do not ask that logical relations between formulas n be preserved, 

then we can find proofs IZA,ITB of at most k - 1 lines. The proof is the same as for 

Proposition 4.12 except when R is a V : left rule. In this case we simply add weak 

occurrences Tz, 42 to II, and we save at least one sequent. 

The dual version of Proposition 4.12 is stated as follows: 

4.14. Proposition (Elimination of positive conjunctions). Let II : r + A,A A B be a 

proof (possibly with cuts) of k lines. Then there are proofs 17A : r -+ A,A and 
llB : r -+ A,B of at most k lines. Moreover any pair of variants in r, A which are 
connected in Il are also connected in llA and IIB. 

We will call 27 an amalgam of IZA and IIB if the latter are produced in the manner 

of Propositions 4.12 and 4.14. Note that in Propositions 4.12 and 4.14 we did not state 

how flows behave with respect to amalgams. We will do this in Proposition 4.24. 

4.15. Remark. It should be noticed here that Proposition 4.12 (and Proposition 4.14, 

respectively) does not define IZA,IIB from 27 just by reversing the order of the rules 

of inference. This operation would indeed remove contractions on A V B but it would 

not imply certain properties of flows we desire to be satisfied. We illustrate this point 

with an example. Take the proof lI with flow 8 

A,qTB A+A yD?F 

AVB,Cq<+y 

Av B, AV BPC7D + B, AiC A,D 

A V B,C, D + B,A,C A D 

and the proof II’ (obtained by reversing in Il the order of the rules) with flow 8’ 

It is easy to observe that the validity of the end-sequent A V B, D, C -+ A, B, C AD is 

‘justified’ by different inner sequents in IZ and Zl’ (i.e. C, D -+ CAD and A V B + A, B 
respectively). In particular II and l7’ do not have flows of base A V B -+ A,B and 
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C, D -+ C A D respectively. Proposition 4.24 will ensure that by transforming n into 

17’ (as described in Proposition 4.12) ‘justifications’ are preserved. 

4.16. Proposition (Elimination of negations). Let I7 : d,r + A (respectively II : 

r -+ A, 1A) be a proof (possibly with cuts) of k lines. Then there is a proof II’ : 

r -+ A,A (respectively II’ : A, r + A) of at most k - 1 lines whenever 1A is non- 

weak, and of at most k lines if 7A is weak. Moreover, if F is a jaw for II’, then 

there is a jlow F for Il such that HFI(T + A) = HF(Z- + A), H&(A) = HF(A). 

Proof. By induction on the # lines(U), as in the proof of Proposition 4.10. 0 

Now we present a structural result concerning contractions in proofs. We say that 

a proof 17 is separated when all pairs of directed paths from its non-weak contraction 

formulas, parallel each other until some binary rule separates them. We show that 

given an arbitrary proof of k lines, one can always find a separated proof of the same 

sequent of at most k lines. More formally. 

4.17. Definition. A proof 17 is separated if for all pairs of non-weak contraction for- 

mulas C’, C2 in ,$Z and all pairs of direct paths f I, f 2 from (to) C’, C2 respectively, 

there is a binary rule applied to subproofs II, : C, rl -+ Al and II2 : C,r2 -+ 42 

(respectively nl : rl -+ Al, C and Z7, : r2 + A2,C) such that the occurrence C in 

ZZi is a variant in f’, for i = 1,2. The rule R is called separation rule and the proofs 

IZ,, Ii’2 are called separation subproofs for C. 

Note that the proof of the sequent A --+ A presented in Section 2 

presence of a cycle in its logical flow graph, is not separated.4 

4.18. Proposition. Let Il : r -+ A be a proof (possibly with cuts) 

there is a separated proof Il’ : r + A of at most k lines. 

and showing the 

of k lines. Then 

Proof. Without loss of generality we can assume the last rules of inference of Zl to 

be n contraction rules applied to n* : Co, C', . . . , C", r + A where Co, C’, . . , C" are 

non-weak and the last rule of 17* is different from a contraction over some C’. If one 

of the C”s is weak, notice that by applying Lemma 4.9 we can always eliminate it 

and define II’ to be the resulting proof followed by n - 1 contractions. Moreover, if 

# lines(ll*) = 1 then n - 1 occurrences of C must be weak and in this case again the 

contraction rules can be eliminated. So, let R be the last rule of inference of ZI* and 

let h be the number of lines in ZI*. 

We show the claim by induction on h. 

If none of the C”s is a main formula for R then we might have two situations. If 

R is binary, the formulas Co, C’ , . . . , C” might belong to distinct premises, say IIT : 

C",C1,...,Cm,r, -+ A, and II: : Cm+l,...,Cn,r2 -+ 42 with number of lines hl, h2 

41t can be shown that there are separated proofs with cycles though. 
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respectively (where hl + h2 + 1 = h). In this case we consider the proofs nF,ZI$ 

respectively followed by m and n -m - 1 contractions over the C”s, and we apply the 

induction hypothesis to the resulting proofs to obtain separated proofs IIT* : C, ri --+ 

Al and II:* : C,rz --+ 42 of ht + m and h2 + n - m - 1 lines respectively. By applying 

first the binary rule R and then a contraction rule to the C occurrences, we obtain a 

separated proof of hi + hx + n + 1 = h + n lines of C, r + A. 

In case Co, C’ , . . . , C” belong to the same premise then we proceed similarly (by 

applying the induction hypothesis to a proof of at most h - 1 lines). 

Suppose now that one of the C”s is a main formula for R, say i = 0. Notice that 

R is not a contraction on formulas C by hypothesis, so we need to handle only two 

cases. 

If R is a A : left rule applied to Ill : A’, B”,A A B’, . . . ,A A B”, r 4 A then we 

can apply Proposition 4.10 to all A A B”s (for i = 1 . . . n) to obtain a proof nl, : 

A0 B” A’ B’ 3 , 9 ,...,A”,B”,T -+ A of h- 1 -n lines (remember that the AAB’s are non- 

weak). Applying twice the induction hypothesis over the A’s and B’s to II: followed 

by n contractions over A and n contractions over B, we obtain a separated proof of 

A, B, r + A with h + n - 1 lines (note that the first induction hypothesis is applied to 

h - n - 1 and the second to h - 1). By applying the rule R we prove the statement. 

If R is a V : left rule applied to n1 : A”,A V B’, . . . ,A V Bm,I’, -+ Al and Z12 : 

B”,A v B”‘+’ , . . . ,A V B”, r2 --+ 42 (with m >O and hl, hz lines respectively, where 

h = hl + h2 + 1) then we can apply Proposition 4.12 to the A V B’s in ni and Ii’2 

to obtain proofs II\ : A”,A1,. . . ,A*, rl + Al and Zi’i : B”, Bm+‘, . , . , B”, r2 + A2 of 

at most hl, h2 lines. Applying the induction hypothesis to nl, and Z& followed by m 

and n - m contractions respectively, we find two separated proofs of A, rl + Al and 

B, r2 -+ 42 respectively. To prove the statement we need only to apply R to the pair 

of separated proofs. 

The A : right and V : right cases are handled similarly. For the 1: left and 1: right 

cases we should use Proposition 4.16. 0 

Since we are interested in the complexity (i.e. the number of lines5) of proofs 

for a given sequent, the last proposition says that we can always restrict ourselves to 

separated proofs. Moreover from its proof it directly follows that for any path linking 

two occurrences in r + A of II’, there is a path linking the corresponding occurrences 

of r + A in II (but not the other way around). In this sense, separated proofs turn 

out to be a better approximation for what is essential to the provability of a sequent. 

Let us observe now that all constructions used in Propositions 4.10-4.16, transform 

separated proofs Il into separated proofs II’,lIA, nB. We show this fact only for 

Proposition 4.10 since the other cases can be seen similarly. 

5 It can be easily checked that the size of the proof n’ in Proposition 4.18 is also bounded by the size 
of n. 
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4.19. Proposition. Let ZZ and ZZ’ as in Proposition 4.10. Zf Il is separated then ZZ’ 

is separated. 

Proof. By induction on the steps of construction of II’ from ZI. Notice that 17’ is 

essentially obtained from 17 by deleting A : left rules over pairs A, B wherever they 

are applied, and by substituting weak formulas A A B in axioms of IY7 with pairs A, B. 

Hence, the construction does not essentially change the tree-structure of the proof (i.e. 

for each subproof of II there is a corresponding subproof of n’). Since the construction 

does not touch any formula other than A A B, this implies that all pairs of contraction 

formulas that do not have direct link to A AB in II’, satisfy the condition of separation 

in n’ (in fact, they were satisfying the condition of separation already in II). 

In case the contraction rule R is applied to II, : A A B1,A A B2, r --f A, notice that 

the construction furnishes a proof for A’, B’, A=, B2, r --+ A where A’, B’ and A=, B2 

correspond pairwise to the occurrences A, B in A A B’, A A B2 respectively. Since ll is 

separated, for any pair of direct paths f ‘, f2 from A A B’, A A B2 respectively, there 

are in ni two subproofs, say Zli : A A B, rl --+ Al and ZI: : A A B, r2 + 42 such 

that the A A B’s in IZi and ZI: are variants of the direct paths f ‘, f2 respectively. 

The construction transforms ZZ; and IIT into two proofs Hi’ : A,B,Tl -+ Al and 

II:’ : A,B, r2 + A2 where A,B in IIt’ and n:’ are linked respectively to A’,B’ and 

A2,B2. Therefore A’,A2 and B’,B2 satisfy the condition of separation in II’. q 

4.20. Remark. If l7 is an amalgam of nA,IZB and 17 is separated, notice that the 

tree-like structures of UA,ZI’,n are essentially the same (this is a direct consequence 

of the proof of Proposition 4.12). In particular to each pair of separation subproofs for 

A v B (A A B) in Ii’, correspond a pair of separation subproofs for A in IIA and a pair 

of separation subproofs for B in DB. 

We finally state the last property. It is a property of flows for amalgams of separated 

proofs and it is fundamental for the proof of Theorem 4.27. In general given two flows 

for nA,IIB with the same base (with the obvious exception for A and B), there is not 

a priori a flow for the amalgam I7 preserving such base. The next example illustrates 

this point. 

4.21. Example. Let II be a non-separated proof of the form 

A+AB+B 
A+A A,B+AAB B-+B,C 

AVB,A--tA,AAB B-BVC 
A V B,A V B,4 A,A AB,B v CContraction 

AVB+A,AAB,BVC 

then by applying the procedure described in Proposition 4.12 we obtain the proofs 17A 

of the form A -+ A, A A B, B V C and lYIB of the form 

B -+ B,C,A,A AB 

B--tBVC,A,AAB 
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Let FA,FB be flows for IIA, IIB with base HFA(A * A,AAB,BVC) = A -+ A,BVC 

and H~B(B -+ A,A A B, B V C) = B --+ A, B V C respectively. Notice that there is no 

flow for II with base A V B + A, B V C. In fact any flow forcing the occurrence B 

on the left-hand side of the end-sequent in IZ, must force both occurrences B in the 

right-hand side as well. 

To restrict ourselves to separated proofs though, it is still not enough. Indeed given 

two arbitrary flows for lIA and lTB, we might not be able to combine them in a flow 

for their amalgam. We illustrate this 

4.22. Example. Consider the proofs 

A-+A.B 

point with the following 

IP, IP 

example. 

B+B,A 

@--,A + B_ B,TB+A 

\ \ 
ByJ,7Av TB + A,B 

B AvB dli 91 l-+9 

with flows FA, FB of base A -+ A, B and B -+ A, B respectively, and amalgam Il 

eB+B A+A&j$%+ 
AvB,TA+B AvB,7B+A 

A V B, A V B, 1A V ~B j B, A 
AvB,yAv7B+B,A 

Contraction 

Both FA, 9’ are flows with the same base but there is no flow of base A V B --f A, B 

that can be defined over II. 

Given a proof l7 with logical flow graph 9, we say that a subgraph 9’ of 9 

is compact if 9” is a union of connected components of 3’ (i.e. any variant in Y 

connected to a variant in 9’ belongs already to 9”, and any edge of 9 connecting 

two variants in 3” is an edge of Y’), and if moreover any variant in 9’ has a 

connected variant in the end-sequent of II. A compact subgraph which is a flow is 

called a compact jlow. 

Notice that a compact subgraph is uniquely determined by its base (derived from the 

end-sequent). This is easy to check, from the definitions. One can try to go backwards, 

take a collection of points in the logical flow graph of a proof that come from the end- 

sequent, and ask whether it is the base of a compact subgraph. One can always take the 

compact subgraph that these points generate, i.e. the smallest compact subgraph that 

contains them, but that might lead to additional points in the base. In order to know 

that the original collection of points is the base for a compact subgraph one needs to 

know that all variants in the end-sequent which are connected through the proof are 

already contained in the original collection. 

Notice that a compact subgraph need not be a flow. 
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4.23. Proposition. Let II be a proof and 9 its logical flow graph. If Y is a compact 
subgraph of 9, then 2” is a compact flow tf and only tf all weak occurrences in 9 

are supported by axioms whose distinguished formulas lie in 3’. 

Proof. By induction on the height of the proof; the claim follows readily from the 

definition of a flow. 0 

We show next that any pair of compact flows for IIA, IIB having the same base can 

be combined to obtain a compact flow for the amalgam Ii’ which preserves that base. 

4.24. Proposition. Let II : A V B, r -+ A (II : r + A,A A B) be a separated cut- 
free proof (possibly containing trivial cuts, i.e. cuts on weak occurrences) and an 
amalgam for IIA,IIB. Let .FA and FB be compact flows for IIA and IIB such that 
HF.d(I -+ A) = HF6(I + A). Then there is a compact flow Y for II such that 
HF(I+A)=HFa(I-+A)=HFa(I -+ A) and Hy(A) = HFd(A) and HF(B) = 

HP-B(B). 

Proof. We show the statement for n : A V B, I + A. The proof works exactly the 

same way for II : r + A,A A B. 
For all proofs IZ : A V B, I -+ A, all direct paths from A V B either end into an 

axiom of Zl where the variant A V B is weak or they end into a main formula of a 

V : left rule applied to some subproofs II: : A, I, + Al and II: : B, I2 + AZ. If 

the proof II is separated, in the second case we can say that there is no non-weak 

formula in ri,z -+ Al.2 directly linked to some subformula of A V B in the end-sequent 

of II. This is a direct consequence of the definition of separated proof. Therefore 

IIA,IIB are in essence the same as II except that all variants in direct paths from 

A V B to axioms in ZI are substituted by variants A and B, and all subproofs U* 

(which combine proofs II: and II: with a V: left rule) are replaced with IIF’ of the 

form 

A,I, “z A,,B B,IZ 3 A2 

A,Il,z + 4~2 

and l7,*’ of the form 

n** n; B,Iz A A2,A A,I, ---t A, 

A,Il,z --+ 41.2 

(where II:* and II,** are obtained from IIt and II: by adding B and A as weak 

occurrences, respectively). Moreover, all variants occurring in the path between A V 

B in II* and A V B in the end-sequent of Zl are respectively substituted by 

A and B. 
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With this construction in mind (which we described in Proposition 4.12 for proofs 

possibly containing non-trivial cuts), we can define the flow % as follows. 

If II does not contain separation subproofs for A V B (i.e. A V B is not contracted 

over non-weak occurrences) then either A V B is weak or there is at most one pair of 

subproofs ZZ:, II: in II whose main formula is a variant of A V B. Even though the 

construction is easy let us say precisely how % is defined. 

In case A V B is a weak occurrence with direct paths to some weak formulas in 

axioms of II*, then as in (the proof of) Proposition 4.12, the proofs Zi’: and IIT are 

essentially the same proof Ii’* where A and B are added as weak occurrences in it. We 

choose to define % either forcing %A or forcing %B over II* in ZZ and imposing the 

image HF(A V B) = HF~(A) V Hp(B) for all variants A V B (belonging to the direct 

paths) occurring in active sequents of n. In case HF~(A) (Hp(B)) is 0, the image 

H.F(A V B) will be HFB(B) (HF~(A)) (notice that there are no connected variants of 

A and B in S other than A,B themselves). Since %A,%B are compact, % will be 

compact. 

In case A V B is non-weak, then we claim that the compact subgraph with base 

H~I(A) V H~B(B),H~A(~) -+ HF~(A) is a compact flow. To show this we will 

use the fact that %A, %’ are compact flows (with the same image on r, A) and 

the following property: if C’, C* are connected variants of n occurring in A,B re- 

spectively, then there is a variant C3 in r, A such that C’, C3 are connected variants 

in nA and C*, C3 are connected variants in ZIB. (Notice that all paths in ZI, flA, LIB 

starting or ending in A (and similarly in B) can pass through exactly one axiom 

because the proofs have no cuts except on weak occurrences. The property follows 

readily from this. In particular, the property holds for all those proofs Lr which con- 

tain cuts only on weak formulas.) The argument for proving our claim goes as fol- 

lows. All connected subgraphs in the logical flow graph of nA and ZIB which are 

linked to some active occurrence in r, A, are active for both %A and %* (this is 

because %’ and %’ are compact). Therefore we can define % as in %A,%B over 

all formulas of L7 except for those variants which are connected to some occurrence 

in A,B; over those variants we should define % as in llA,IZB respectively. Notice 

that any pair of connected variants C’, C* in A, B of II will be either both active 

or non-active since there is a variant C3 connected to them (by the property men- 

tioned above) and the image of C3 under 4 , rA %* coincides by hypothesis. This 

shows that 6 is a compact subgraph. To show that % is a flow we use Proposi- 

tion 4.23. 

This concludes the construction of % in case II does not contain separation sub- 

proofs. The flow 9 is defined in a similar way in case contractions over non-weak 

occurrences of A V B exist in Ii’. To do this we argue as in the previous case. The 

compactness condition on %‘, %B guarantees that contraction formulas A V B can be 

forced to have the same image under %. 0 

4.25. Remark. If Ii’ contains for instance cuts on atomic formulas (which are non- 

trivial) the claim in Proposition 4.24 can fail to hold. To see this consider a proof 17 
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with the following structure: 

where the separation rule is a cut on a pair of non-weak atomic formulas C, and formula 

occurrences A, B, C are linked as indicated in the picture. As in Proposition 4.12 the 

proofs II’, IIB will be of the form 

Notice that in IIA (iIB) the cut-formula C occurring on the right-hand (left-hand) side 

of the sequent ends up into a weak occurrence. Clearly given any flow %A where CA 

is active and any flow %’ where CB is not active, we will not be able to define a 

flow for II which is compact (i.e. the splitting of Il induces a partition of the set of 

connected variants). 

4.26. Remark. The statement of Proposition 4.24 says that a compact flow % can be 

defined out of two compact flows %A and %‘. We can also try to produce % given 
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a compact flow FA (RB) for IIA (lIB) without having a compact flow FE (PAA) for 

LIB (IIA). This can happen when HFa(A) # 0 and H&(r + A) = 0 (Hps(B) # 0 
and HF6(I’ -+ A) = 0). If this is the case we define F as PA (FE). 

4.3. The statement of the Theorem, an example and a procedure of cut elimination 

We are now ready to state the main result of this section. Its local version (i.e. its 

relativization to subproofs) described in the introduction, is a natural generalization of 

this statement and it is formulated in Theorem 4.34. 

4.27. Theorem (Inversion property). Let IT : r -+ A (possibly with cuts) be a sep- 

arated proof Then there is an efhective procedure that transforms IT into a proof 

IT’ : A, v 1A ,,..., A, V 1A,,,r --) A with only trivial cuts tf any, where the Ai’s are 
atomic formulas. Moreover if 9’ is a compact $0~ for IT’ with HF,(Ai V TAi) being 
either Ai V 7Ai or 8 for each i = l,..., n, then IT has a compact flow 9 with base 
H&r + A) = H_q(T -+ A). 

The idea of the proof consists in showing that a compact flow for a proof can 

be transformed into a compact flow for another proof obtained by applying a certain 

procedure of cut elimination. We present a procedure different from the well known one 

proposed by Gentzen (see for instance [7]). The main reason for which this change is 

essential concerns the behaviour of flows through contraction formulas. More precisely, 

suppose 17 to be of the form 

Gentzen’s procedure defines the transformation n’ as follows: 

n1 n2 
n1 r, --) Al,C c,c,r2 + A2 

6 + Al,C C,rl,2 + Al,2 

r1,1,2 + 41,~~ 

: contractions 
rl,2 + 4~2 

in 

If we have a flow for II’ passing through the occurrences of C in D2, it is not 

necessarily true that this tlow would have the same image over both C occurrences 

(remember that this condition is required by the definition of flow), therefore we would 

not be a priori able to define from such a flow, a flow for II. The following example 

illustrates the point. 
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4.28. Example. Let n be the proof 

k%%= c-c 
CLAM A 

C-(AnCjkA 

and let F’ be the flow for 

(A A C) V 1A 

c c fei=$t 
A 

A,c”jA ?ii?- A -+-+ 
AC C 1A ---f 1A 

7 + (AAC)V~A,+-A,C 
(AAC)v-A,A+A (AAC)V~A,+TAVC 
(AAC)v-A,(AAC)VTA,A+AA(-AVC) 

(AAC)V~A,A+AA(~AVC) 

C,A+AA(TAVC) 

Il’ defined by duplicating ZZr over the contraction formulas 

A-+A 

Clearly the contraction formulas in ZI’ have different images over the flow indicated 

in the picture (one of them is (A A C) V 1A and the other C). On the other hand there 

is no flow 9 in n having the same base as F’. In fact any possible flow with some 

active occurrence A would force all occurrences of A in the end-sequent to be active. 

In particular, if the Gentzen’s procedure is applied to eliminate all cuts from II, it 

gives a proof of the form 

C,A +AA(-IAvC) 

CAC 

A-+A C--+TAVC 
C,A-+AA(7AVC) 

having a flow with base C, A + A AC (notice that this is the only cut-free form for our 

example which comes from Gentzen’s procedure since II’ does not contain contractions 

on cut-formulas and the procedure in this case is essentially deterministic). Since the 
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original proof ll cannot have any flow with such a base, the claim fails to hold for 

the usual Cut Elimination procedure. 6 

Therefore, to prove the claim we modify the Gentzen’s procedure to avoid the du- 

plication of the proof IIt over the pair of contraction formulas C in II’. The new 

procedure will depend on the logical form of C. Namely given any cut 

n1 172 

I’, -+ Al,C C,r, + A2 

r1,2 --) 4~2 

in II, if C is (non-weak and) of the form A A B then we define II’ to be of the form 

nA 1 % 

UT r, + A,,AA,B,r2 + A2 

rl + Al,B Byrl.2 + 41.2 

rl,l,2-‘Al,l,2 

1 contractions 

h2 + 41,2 

.A 

where II; is obtained by applying Proposition 4.10 to II2 (and Lemma 4.8 whenever 

needed) and IIf, IZT are obtained by Proposition 4.14 applied to Ill. The case of A V B 

can be treated in the same way. 

If C is (non-weak and) of the form -A then we apply Proposition 4.16 to IIt and 

II2 to obtain proofs II{ : A, rl-+ Al and IZ; : r2 -+ A2,A respectively. We define II’ as 

n; nl, 
r2+A2,AA,rl-+Al 

rl,2 + 41,2 

If C is (non-weak and) atomic we will convert the cut into a disjunction C V -C 

introduced on the left-hand side of the sequent. One can also think to eliminate cuts 

on atomics by following the usual procedure suggested by Gentzen. Since our purpose 

is to analyse the transformations of flows though, we will be content with eliminating 

cuts except for trivial and atomic ones (see Remark 4.31). 

This concludes the description of the cut elimination procedure. Notice that our pro- 

cedure can be applied to arbitrary proofs n (i.e. the proof IZ might not be separated). 
In fact Propositions 4.10, 4.12 and 4.16 do not require any hypothesis on the struc- 

ture of the proof II. The notion of separation is needed though to prove the claim 

because the property of flows described in Proposition 4.24 requires that the proofs be 

separated. 

6Similar counterexamples can be constructed for proofs containing no weak formulas. They are a bit more 

complicated though. 
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4.29. Proposition. Let Il be a separated proof: Any step of the procedure of cut 

elimination described above, transforms 17 into a separated proof IS. 

Proof. Suppose the cut-formula C has the form A A B and that the cut is applied 

to subproofs nl, II2 of L!. Then by Proposition 4.19 (and Remark 4.20) the proofs 

II:, l7g, II: are separated proofs because II,, ZIz are separated. 

Moreover notice that the procedure introduces new contractions on side formulas. 

These new contraction formulas come from different subproofs and therefore the re- 

sulting proof n’ is separated. 

If C has the form A V B or TA, the claim is shown similarly. 0 

4.30. Remark. Gentzen’s procedure does not transform separated proofs into separated 

proofs. This is because of the step of permutation of cuts upwards (see [19]). 

4.31. Remark. Since Proposition 4.24 should be applied to separated cut-free proofs, 

and Gentzen’s procedure (even when restricted to cuts on atomics) does not preserve 

separation by Remark 4.30, we are forced to keep track of atomic cuts by transforming 

them into appropriate disjunctions. 

4.32. Remark. Our procedure does not handle explicitly the case of weak cut-formulas. 

This is because we want to preserve the structure of the proof Il during the transfor- 

mation (in order to preserve compactness) and the elimination of weak cut-formulas 

(as suggested in Gentzen’s procedure) would lead to the pruning of some subproofs 

of it. By maintaining links between variants in ll, we essentially reduce our cut elim- 

ination procedure to two simple combinatorial operations; namely, we either stretch 

and relax paths of a flow graph, or disconnect those pairs of paths which start and 

end into the atomic occurrences Ai of those formulas Ai V YAi in the end-sequent 

of II’. 

4.33. Remark. To check whether or not a compact subgraph of a proof II is a flow can 

be accomplished by checking just the axioms of n. This is proved in Proposition 4.23 

and holds for proofs II containing cuts. One would like to have a way to decide if 

there is a flow for IZ with a certain given base, where the flow might not have an 

underlying graph which is compact. One might hope to use cut elimination to analyze 

this question, but Example 4.22 shows that the property of being a flow is not preserved 

by the procedure. Theorem 4.27 tells us what is preserved in the process of eliminating 

cuts, however. 

4.4. Proof of the Theorem 

We are now ready to prove Theorem 4.27. We remind the reader that the degree 
of a formula is inductively defined as follows: d(A) = 1 if A is atomic, d(A A B) = 
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d(A v B) = sup{d(d) + l,d(B) + 1) and d(-A) = d(A) + 1. The degree of a cut is 

the degree of its cut-formulas. 

Proof of Theorem 4.27. If n is cut-free then the claim holds. 

In the following we will consider the procedure of cut elimination described in 

Section 4.3 and we will study how compact flows are transformed by it. The procedure 

transforms any cut of degree > 1 in n into a cut(s) of lower degree, possibly no cuts. 

This operation must be repeated until every cut of degree > 1 has systematically been 

eliminated (except for trivial cuts). We require that each time a cut is eliminated the 

supporting subproofs are already free from non-trivial cuts (that is, we eliminate cuts 

from the top down). The proof n’ will be obtained from ll by a finite number (k > 0) 

of steps of reduction transforming Iii into II+, and where 171 is 27 and flk is II’. 

We say that n,+l has been obtained from ni if a step of the reduction procedure is 

applied to a cut on a formula in the proof ZIi. 

Assume that ni+l has a compact flow with base Hi+, (r + A); we want to show 

that ni has a compact flow where Hi(T 4 A) = Hi+l(r + A) and with either full or 

empty images for those disjunctions Aj V TAj which are introduced to eliminate cuts 

on atomic formulas Aj, in some step j <i. Notice that this is sufficient to show the 

claim. 

There are two kinds of reduction we must discuss: 

(1) the reducibility of the complexity of a cut when it is of degree > 1; 

(2) elimination of cuts of degree = 1. 

Let us begin with reductions of the first kind. Suppose C is A A B and let Iii, Ili+l 

contain subproofs II, 17’ defined as in the description of the cut elimination procedure 

given in Section 4.3. We follow the notation used there. 

By construction the subproof 171 contained as a subproof in ZIi is separated, it is 

cut-free (possibly it contains trivial cuts) and it is an amalgam of n;‘, flf. Moreover 

the flow %+I (defined over II,+,) when restricted to the subproofs II;‘, IIf gives two 

compact flows F,A, F,B where H?A(~I + Al) = H$B(~I + Al) (this is because %+I 

is a flow and contractions on r,, Al must have the same image by definition of a 

flow). Hence by Proposition 4.24, from /, cA,3B we can define a compact flow 4 for 

ZI, such that &(T, --+ Al) = kfT~(r, + A,) = F%B(~, + AI), Ha(A) = Hq~(A) and 

H.%(B) = H?B(B). If only one of the flows is defined, say F,A (resp. FIB) for instance, 

then apply Remark 4.26 instead of Proposition 4.24. Define pi over n, as 4. By 

Proposition 4.10 there is a compact flow Y;2 for II2 with the same base as the compact 

flow 4+, on ZI:. Define Bi over II2 as p-2. Finally, define pi on 2 as for %+I. 

In a similar way, we treat the cases where C has the form A AB or TA, by applying 

Proposition 4.19 and Proposition 4.16 respectively. Define the flow on 2 in ZIi as for 

A in Hi+,. 

Reductions of the second kind simply consist in re-establishing a cut from a disjunc- 

tion. Notice that the flow 9i is defined as %+I where the path through the cut-formula 

A is deformed in the obvious way. Notice that compactness holds for Fi because we 

asked the flow %+I to be either full of empty over the disjunction. This means that 
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the variants connected to one of the disjuncts in Zli+i are active if and only if the 

variants connected to the other disjunct are active. 

This concludes the proof. 0 

Next we want to discuss a more local version of Theorem 4.27. The inversion 

property given there does have the nice feature of going inside proofs, through the 

notion of compact flows, but the inner proofs that it treats are still global in a certain 

way. To have a more local result we need to be able to work with compact subgraphs 

with respect to any subproof. This is the content of Theorem 4.34. It shows that for 

any compact subgraph of the logical flow graph in n’ (lying in some subproof of n’) 

that is a graph for some proof there is a subgraph of I7 that is a graph for a proof of 

the same sequent. In particular, this means that for any subproof of the cut-free proof 

Xl’ (possibly containing trivial cuts) associated to II, we can always find an inner proof 

of the same sequent in II. 

4.34. Theorem (Locality of the inversion property). Let the proofs IZ : r + A and 
IT’ : A, v 1A ,,..., A, V 7A,,r + A be as in Theorem 4.27. For all subproofs IIlk : 

Ai, V lAi,,...,Aik V lAi,,Ti+Ai of II’ there is a subproof IT, : r* + A* of Zl such 
that for all compact flows 5; of ITi with Hp;(Ai, V TAi,) being either Ai, V TAi, or 

0 for all j = 1,. . . , k, there is a compact frow 5* of II, such that Hs=;(r$ -+ A’,) = 

H.+(r* -+ A*). 

Proof. (sketch). For any subproof II; : Ai, V TAi,, . . . , Ai, V TA,, ri + Ai of II’ we 

find a subproof II* : r* + A* of Zl and a flow P* for Ii’* such that H~r,(r* -+ 
A*) = r; + A’,. Intuitively the flow 9* (induced by the procedure) can be thought 

as a ‘maximal’ flow in II satisfying Hs+(r* + A*) = r$ 4 A:, i.e. any compact 

flow for ZZ; of some inner sequent of ri + A; will evolve (through the steps of the 

procedure) into a subgraph of 9* that is a compact flow for the same inner sequent 

of Hy*(T*+A*). 
To find the subproof II,, consider a subproof II; : ri -+ Ai of IIf and let 9: 

be the logical flow graph of it restricted to atomic formulas only. By definition 9; 

is a compact flow (note that all formulas are active). The procedure described for 

Theorem 4.27 assures that all steps of cut elimination (from a proof ZIi+t to a proof 

ni) preserve the image HF; (r$ 4 A’,) of the end-sequent of the subproofs in n,+i 

and IZi where the flow passes through. A detailed proof would be a replica of the 

proof of Theorem 4.27. q 

An immediate consequence of Theorem 4.34 is the following: 

4.35. Corollary (Inverse image of subproofs). Let the proofs il : r -+ A and IT’ : 

Al VTA,,..., A,, v -A,,, r + A be as in Theorem 4.27. For all subproofs II; : Ai, V 

YAi,, . . . , Ai, V 1A,, T$ + AL of II’ there is a subproof IT* : r* + A* of Ll for which 
there is a compact flow F* of IT* such that Hy*(r* -+ A*) = Ti + A’,. 
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5. On the complexity of interpolants 

The construction of the interpolant proposed in the proof of Craig’s Interpolation 
Theorem (Theorem 3.1) points out a correspondence between the size of the inter- 
polant for a tautology A --) B and the complexity of a cut-free proof of it (Corol- 
lary 3.6). For the first order predicate calculus with equality, it has been proved by 
Meyer [14] that there is no general recursive bound on the length of the smallest in- 
terpolant. It is an open question whether or not the size of the smallest interpolant in 
the propositional case can be polynomially bounded by the size of the tautology. A 
positive answer to this open question would have a consequence in complexity theory, 
namely that NP n co-NP c P/poly. To see this consider a language L ~(0, l}* and L E 
NPnco-NP (theret\ -e the complement I? of L is in NP). It is well-known that there are 
sequences of proposi.lonal formulas A,( ~1,. . . , p,,, ql,. . . , qm), B,(pl, . . . , pn, r-1,. . . , rx) 

(where pl,...,Pn,ql,...,qm,rl,..., r, are the only propositional variables occurring 
within A,, B,) such that JA,(, JB,I <n’(l) and 

L={(p1,..., pn) E {O,l}” I 3~1 . ..Y~~.(PI,...,P~,Y~,...,Y~) holds) 

E={(p1,... ,P,) E {O,l}” I % . ..zs.B.(pl,...,p,,zl,...,z,) holds} 

Clearly A, -+ YB, is a tautology (for all n). By hypothesis there is an interpolant 

MPI,...,P,) for A, -7B,, such that 11,) <f((A,,I + IBnl) (for all n) where f is some 
function computable in polynomial time. Therefore L E P/poly. This observation has 
been made also in [ 161. 

The results we will present, suggest that the complexity of an interpolant for A -+ 
B depends on the logical relations of the s-formulas in A and B. Certain tautolo- 
gies will turn out to be ‘easier’ to prove than others and, they will have an inter- 
polant of low complexity (for a discussion concerning related topics and motivations 
see [20]). 

5.1. Splitting a proof 

As suggested by Theorem 4.27, to find new results on the complexity of interpolation 
we will look at compact subgraphs of the logical flow graph of a proof II. Without 
loss of generality we assume the logical flow graph of n to be compact, i.e. all s- 
formulas in IZ are connected to the end-sequent. In fact we have the following (recall 
the notion of bridge defined just before Proposition 2.1): 

5.1. Lemma. Let Il : A + B be a proof: There is a proof II’ : A + B whose logical 

flow graph is compact and # lines(lI’)d# lines(n). If ll does not have any bridge 
between A and B, ll’ does not have any bridge between A and B either. 

Proof. For the argument that follows it will be convenient to use the extra propositional 
symbol I and the corresponding extension of PLK (where the axiom I-+ is added), 
but there will not be any occurrence of -L in the proof II’ that we produce. We 
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substitute all occurrences of atomic formulas in Il which are not lying in the compact 

subgraph of base A+B with -I_. Call this proof IF. We have that axioms C, r-+ A, C 
will be replaced by the sequent I, r* ---t A*, -L (with r*, A* obtained by substituting 

_L to those occurrences in r, A which are not connected to the end-sequent) which 

we can think to be the axiom -L,r* ---) A* where the right occurrence I is added as 

a weak formula. It is clear then, that all positive occurrences of -L which appear in 

cut-formulas of n* are directly linked to a weak occurrence in some axiom. Applying 

Lemma 3.11 we transform U* into a proof 17’ with no J- occurrences in the cut- 

formulas of the proof (notice that the proof of Lemma 3.11 does not require axioms 

in U* to be logical axioms, i.e. axioms of the form C, r -+ A, C). Lemma 3.11 is 

indirectly removing all the distinguished axiomatic occurrences of I from the proof 

and since there are no -L occurrences in the end-sequent of IZ* the proof fl’ satisfies 

the claim. 0 

Call A-axioms (B-axioms) those axioms in Il : A + B whose distinguished formulas 

are connected to variants in A (B) but not to variants in B (A). Notice that certain 

axioms might be neither A-axioms nor B-axioms since they might be connected to both 

A and B; if so, we refer to them as AB-axioms. We might also have axioms whose 

distinguished formulas are not connected to the end-sequent, but they can be removed 

as in the lemma. 

5.2. Corollary. Let IL : A ---f B be a proof There is a proof IS : A -+ B whose axioms 
are either A-axioms or B-axioms or AB-axioms, and # lines(l7’) <# lines(l7). If 
there are no bridges between A and B in IT, then axioms in IS are either A-axioms 

or B-axioms. 

5.3. Theorem. Let IT : A + B be a proof (possibly with cuts) with no bridges 
between A and B. Suppose that all s-formulas occurring in weak formulas of IL 

and lying in the compact subgraph of base A + ( -+ B), occur in A-axioms (B- 
axioms). Then there exists a proof IT’ : A ----t (II’ : -+ B) such that # lines(II’)<# 
lines(R). 

A compact subgraph is uniquely determined by its base (as discussed just before 

Proposition 4.23). If there are no bridges between A and B the compact subgraph of 

base A -+ and the compact subgraph of base --+ B always exist. The theorem says 

that under certain conditions, these compact subgraphs are graphs of proofs. In other 

words, whenever the languages of A and B are disjoint and weak formulas are properly 

distributed in II, it says that we can find either a proof of A -+ or a proof of + B with 

complexity bounded by the complexity of the original proof. This bound cannot be 

obtained from the construction used to prove the Craig Interpolation Theorem because 

the proof ll may contain cuts and the bound induced by the theorem would be in 

general exponential in the number of lines of the original proof (since it uses the Cut 

Elimination Theorem). 



A. CarboneIAnnals of Pure and Applied Logic 83 (1997) 249-299 293 

Proof of Theorem 5.3. By Proposition 4.23 the compact subgraph of base A -+ ( + B) 

is a compact flow. Apply Proposition 4.6 and find a proof II’ : A-+ (ZZ’ : --+B) with 

the desired bounds on the complexity of the proof II’. 0 

5.4. Corollary. Let ZZ : A-+ B (possibly with cuts) be a proof with no bridges between 

A and B. Zf all weak occurrences in ZZ have either direct paths to A or to B and 
they are used as auxiliary formulas only by unary rules, then there exists a proof 

ZZ’:A+ or aproof 27’ : -+B such that # lines(ZZ’)<# lines(n). 

Proof. (sketch). Given any proof n where all weak formulas have direct paths to A or 

to B, one can always rearrange weak formulas properly in order to find either a proof 

whose weak occurrences directly linked to A lie in A-axioms or a proof whose weak 

occurrences directly linked to B lie in B-axioms. Such a proof has the same number of 

lines as n. (It is crucial here that weak occurrences are not used as auxiliary formulas 

of binary rules.) By applying Theorem 5.3 we derive the claim. 0 

A weak formula C in 17 : A-+B is called A-weak (B-weak) if each s-formula in C 

has at least one connected variant in A (B). 

5.5. Theorem. Let 

A(PI ,...,Pn,41,..., qm)~B(pl,...,p,,rl,...,v,) 

be a tautology where ~1,. . . , p,, are the only variables common to A and B. Suppose 
there is a proof (possibly containing cuts) of k lines for the tautology and suppose 
that A-weak (B-weak) formulas occur only in A-axioms (B-axioms). For any assign- 
ment o of T,I to the variables pi’s, the sequent A(o(pl) ,..., o(p,,),ql,..., qm) -+ 

(-B(o(pl),...,a(p,),rl,..., rs)) is provable with a proof of at most k + 21AJ + 1 

(k + 21B( + 1) lines. 

In essence the theorem considers those proofs where A-weak (B-weak) formulas can 

only lie in axioms of the form qi, r + A, qt (rj, 0 -+ A, rj). 

Proof of Theorem 5.5. Let n be a proof of k lines for the tautology. Substitute all 

occurrences pi in n with o(pi) E {T, I} and call the new proof n’. We have that 

axioms pi, r -+ A, pi will be replaced either by T, r’ + A’, T or by I, r’ -+ A’, I where 

we may think of T, P + A’, T (I, r’ +_‘,I) as the axiom Z’-+A’,T (I,Z’-+A’) 

where the left (right) occurrence T (I) is added as weak occurrence. (The multisets 

r’, A’ are obtained from r, A by substituting variables pi with o(pi) in them.) We will 

think of axioms T, r’+ A’, T and I, r’ --) A’, I in this way only when their negative 

occurrence T and their positive occurrence I are directly linked to the end-sequent. 

We want to ‘forget’ all direct paths from positive occurrences of lkl (if k = 0 or 

k is even), negative occurrences of ~~1 (if k is odd), negative occurrences of -I~T 
(if k = 0 or k is even) and positive occurrences of lkT (if k is odd) in A+B. (We 

assume here that k is taken as large as possible for the given occurrence.) They will 
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clearly be weak occurrences because of our interpretation of the axioms. We describe 

the transformation of the proof ZZ’ for the case of lkl occurrences only. For lkT the 

treatment is similar. 

If a positive occurrence 1~1 in A --) B has paths to auxiliary formulas of some 

V:right (if k = 0 or k is even) or fdejii (if k is odd), then we erase all variants 

connected to it which lie in its direct paths. (The proof structure should be reshaped in 

order to eliminate extra deft, -vight, V:right, Mejii rules but the details are obvious.) 

If a positive occurrence all_ in A-+B has paths to auxiliary formulas of some V:left (if 

k is odd) or A:right (if k = 0 or k is even), we should be a bit more careful. If the rule 

is an r\:right for instance, and it is applied to II, : r, + Al, -kl and II2 : rz + AZ, C 

then we substitute it with a cut on Ill, : r, --+ Al, I and ZIi : _L,r2 --+ Ax, C, where 

ZIl, is obtained from Ill by erasing the rules of T:right, -deft applied to I, and Ii‘; 

is obtained by adding I as weak occurrence to n2. (Note that we are not removing 

the paths from lk_L in this case, but we simply ‘redirect’ them into weak occurrences. 

Again we should modify the earlier proof below the place where the binary rule was 

used to account for this redirecting.) It is important to notice here that the only weak 

occurrence we add is a I occurrence. For a V : left rule with k odd we also add only 

a I on the right side of the sequent as a weak occurrence. 

Call A” -P B” the resulting sequent, and ZZ’ the proof. It is easy to check that we 

can always prove A --+A” and B” + B in at most 21AI and 21BI lines. (The argument is 

similar to Lemma 5.8 below.) Therefore to derive our statement, we only need to show 

that we can ‘split’ Zi” and find a proof of A0 -+ ( + B”) with complexity bounded 

by k. 

We would like to apply Theorem 5.3 to Zi” : A” +B’, or rather an obvious extension 

of Theorem 5.3 to the language containing T, 1. The first point to observe is that no 

contains no bridges between A” and B”. This is an immediate consequence of our 

construction of II0 (which replaces every bridge with a path that ends in some weak 

occurrence). For Theorem 5.3 we would also like to know that any s-formula which 

occurs as a weak formula in an axiom and which lies in the compact subgraph with 

base A0 -+ (respectively ---t B”) actually lies in an A’-axiom (B’-axiom). Our hypotheses 

ensure that this is the case for the weak formulas from the original proof II, but in the 

preceding construction we added some new weak occurrences. One can check that all 

of these additional weak occurrences are either positive occurrences of T or negative 

occurrences of 1. These occurrences may not be linked correctly to A”-axioms (B’- 

axioms), but when they are not correctly linked it is easy to adapt to the situation 

using the fact that -+ T and I 4 can be used as axioms. With this observation it is 

easy to extend Theorem 5.3 to the present situation, following the same argument as 

before. 0 

Theorems 5.3 and 5.5 consider proofs IZ with cuts. If the proof IZ is cut-free we 

can show stronger statements. In fact if there are no bridges between A and B, we 

can always find (by simply applying Lemma 3.2) either a proof Zl’ : A + or a proof 

II’ : -+B such that # lines(P) 6# lines(U). 
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5.2. Interpolants of linear size 

In this section we show that if A (respectively B) has a ‘relatively simple construc- 
tion’ in II : A -+ B, then the size of the interpolant for A -+ B is linearly bounded by the 
size of A. More precisely, we show that whenever A (respectively, B) does not contain 
pairs of subformulas linked by a bridge one to the other, then there is an interpolant 
with size linearly bounded by the size of A (respectively, B). 

Our claim is precisely stated as follows: 

5.6. Theorem.7 Let IZ : A+ B be a proof (possibly with cuts); suppose there are no 
bridges from A back to A in ll vrom B back to B, respectively). If there is a bridge 
between A and B, then there is an interpolant C for A-+B such that 

(i) ICJ 64jAI (ICI d4(B\, respectively), and 

(ii) #lines(lIA)<5(AI and #lines(IIB)<3 . #lines(n), where ZIA : A --) C and Zl’ : 

C+B (and symmetrically in the other case). 
If there is no bridge between A and B, then either there is a proof Ill : A + or a 

proof l7’ :+ B such that #lines(lI’) <#lines(n). 

To prove Theorem 5.6 we need some more definitions and considerations about 
logical flow graphs. We will extend the first order language L with atomic formulas 
T, I and the system PLK with new axioms 0 -+ A, T and I, 0 + A. We call the 
new language and the new system L+ and PLK+, respectively. 

5.7. Definition. Let B be a formula in L. A variation B* of B is a formula in L+ 

obtained by substituting in B none, one or more of its s-formulas with T or I as 
follows: 
(1) if C is an s-formula that occurs positively in B then C is replaced by T; 
(2) if C is an s-formula that occurs negatively in B then C is replaced by 1. 

Clearly, there are more than one variation associated to a given formula B. Given 
a variation B*, we denote *B the formula obtained from B* replacing all occurrences 
of T, -L with I, T respectively. For instance, if T A B is the variation (A A B)* then 
I r\B will be denoted *(A AB). 

Notice that a variation (yB)* of TB can also be written as 1 *B and the formula 
*(lB) as 7B*, for some variation B* . 

5.8. Lemma. Let A be a formula in L. For all variations A* of A we have that 
the sequents A + A* and *A + A are PLK+-provable with a proof Il such that 

#lines(II)<21Al. 

7The result holds for the full predicate calculus LK as well (as proved in [3]). The proof is the same but notice 

that the complexity of the interpolant C in (i) should be modified to be ICI <(2k + 5)IAI (ICI 6(2k + 5)1B1, 

respectively), where k is the arity of some predicate constant common to A and B. 
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Proof. By induction on the size of A. 

(Al = 1: If A* is A then the claim is obviously satisfied since A-+A is an axiom 
of PLK; if A* is T then *A is I and the claim holds because A + T and _L -+A are 

axioms for PLK+; 
(Al > 1: We will discuss in detail only the case in which A is of the form 7B. 

The other cases can be handled similarly. 
If A is of the form 1B and (-B)* is an arbitrary variation of it, we want to show 

that 7B --t (7B)* and *(lB) -+ 1B are PLK+-provable sequents. 
By induction we know that B + B* and *B + B are PLK+-provable sequents, for 

all variations B* of B. 

Then, for all pair of variations B* it is easy to derive the sequent 1B --) 7*B from 
*B + B, and the sequent 7B* -+ 1B from B -+ B*. Hence, the sequents YB + (7B)* 

and *(lB) + 1B are PLK+-provable for all variations (-B)*. 

The bound on the number of lines of a proof of A +A* or *A +A is clear. 0 

5.9. Lemma. Let A be a formula in L and A * the variation of it made up of T,I 
and logical symbols only. Then the sequents --+ A* and *A + are PLK+-provable in 

IAl steps. 

Proof. By an easy induction on the complexity of A. 0 

Observe that in a sequent A1 . . .Ak + Bl,. . . , Bt all formulas Ai (for i = 1,. . . ,k) 

appear negatively in the sequent. This justifies the statement of the following lemma 
(with respect to Definition 5.7): 

5.10. Lemma. Let ll : S be a PLK+-proof and let A be an s-formula in L (i.e. A is 
neither T or I). Then either there is a bridge between A and a variant of it in S or 
there is a PLK+-proof IT’ : S’ where the sequent S’ is obtained by replacing A with 

T (I) and #lines(W) <#lines(U). 

Proof. Let A be an s-formula occurring in S and suppose there is no bridge to S 
starting from A. 

Transform J7 : S into LI’ : S’ by replacing A and all its variants (linked to A by 
the logical flow graph) by T (I). The logical flow graph of LZ’ is essentially the 
same as the logical flow graph of II; the only difference concerns the sequence of 
edges associated to A (in LZ), that in Li” is associated to T (I) (because of the 
renaming). 

We have to show that II’ is a proof. We discuss only a few crucial cases; the others 
are treated similarly. 

First, where Zl has an axiom A, P -+ A,A, II’ might contain T, r’ -+ A’, T (I, 
P -+ A’, I), where both A’s are replaced by T (I) and r’, A’ are obtained from P, A 
by replacing some variants of A by T (I). The new sequent is clearly an 
axiom. 
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Second, where Xl has a contraction, ZI’ might contain 

T-+A.C’,C” 

l- + A, C”’ 

where C’, C”, C”’ are obtained from the formula C replacing some variant 

of A by T (I). By definition of logical flow graph, each s-formula positively 

(negatively) occurring in C”’ has incoming (outgoing) edges from (to) the cor- 

responding s-formulas occurring in C’ and C”. This implies that C’, C”, C”’ 

are actually the same formula and the inference in ZI’ is a valid inference. 

q 

5.11. Remark. The preceding argument is similar to the one used by Buss to show 

Proposition 6 in [2]. 

Proof of Theorem 5.6. Suppose that there is at least one bridge between A and B. 

This implies that there is at least one propositional variable common to A and B. Let 

R be such a propositional variable. 

Apply Lemma 5.10 repeatedly to all s-formulas in A that do not have a bridge 

to some variant in A ---t B in n so that the s-formulas occurring positively in A are 

replaced with T and the s-formulas occurring negatively in A are replaced with i. 

In this way one obtains the proof II’ : A* -+ B. Notice that by hypothesis A does 

not have bridges to itself, so all s-formulas in A* are either linked to some vari- 

ant in B or their form is T, 1. This means that all predicates occurring in A* are 

common to A and B. By Lemma 5.8 we also know that A --) A* is provable; and 

by definition of variation, the size of A* is the same as the size of A. Now we 

need just to transform A* into a formula C of the original language L. By replac- 

ing T with 7R V R and I with 7R A R, we can transform A* into the formula C, 

i.e. the desired interpolant. Since IA*\ = [A( then by the transformation we have that 

(Cl 64lAI. Moreover, #lines(17A)<5(Al (note that axioms of the form r-+ A,T,I,r* 
A should be replaced by 3 line proofs and the bound follows from Lemma 5.8) and 

#lines(IF) < 3 #lines(D). 

If there are no bridges between A and B then we notice that A* is a formula 

made up of T, l_ and logical symbols only. In particular, all s-formulas in A* of 

17’ : A* + B are weak in II’. We now erase all direct paths which start and end in 

A* (which amounts to deleting weak occurrences, as in Lemma 4.9). This gives us 

a proof of -+ B in PLK+. We want a proof in PLK, so that we need to delete the 

remaining occurrences of I and T. This can be accomplished using the obvious ex- 

tension of Lemma 3.11 to PLK+, as in Lemma 5.1. That is, the remaining occurrences 

of _L and T in the proof have to go through cuts, since they have been removed 

from the end-sequent. Each occurrence will be weak on one side of the cut, and so 

we can eliminate them using Lemma 3.11. This gives a proof IIB with the correct 

bounds. 0 
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5.12. Remark. Since a bridge links a negative to a positive occurrence, there are no 
possible bridges from a monotone (i.e. negation-free) formula back to itself. Therefore 
if either A or B is monotone then the tautology A -+ B has an interpolant C such that 

ICI <@(IAl + IBI). 

5.13. Corollary. Let A+B be a tautology of size m > 5. If the minimal interpolant 

of A -+ B has size at least m2, then all proofs of A -+B must contain bridges from A 
back to A, and bridges from B back to B. 

The converse of Corollary 5.13 does not hold, i.e. there are tautologies with small 
interpolants but for which bridges are necessary. Take for instance the tautology 

yA(y< ++(X@y))‘-V(zQ -(x@z)) 

where @ denotes addition modulo 2 (i.e. x @ y abbreviates ((x A my) V (TX A y))) and 
the symbol x c--) y abbreviates ~((x A 7 y) V (TX A y)). The tautology has interpolant 1x 
and all proofs of it have bridges between the second and third occurrence of y, and 
the second and third occurrences of z. (If there were a proof in which the second and 
third occurrences of y were not logically linked, then we would still have a tautology 
after renaming the occurrences of y so that they were different. This would clearly not 
be a tautology.) 

Nevertheless the corollary shows the necessity of bridges from A to A and from 
B to B to have complex interpolants, no matter the number of lines of the proof or 
the size of the tautology. This suggests that when investigating the complexity of the 
interpolant we should not consider standard quantities (like the number of lines or the 
size), but instead look at measurements of structure, such as the number of bridges 
from A to A and from B to B. This point is illustrated by the following result. 

5.14. Proposition. For any n, arbitrarily large, there exists a tautology A,, + B, of 
size O(n) with smallest interpolant of size at least n2/400. Any proof of A,, --+ B,, 

should contain at least n bridges from A,, back to A,, and at least n bridges from B, 
back to B,. 

The lower bound for the size of the smallest interpolant stated in Proposition 5.14 
has been proved in [16] (as a consequence of Krapchenko’s lower bound; see [12, 131) 
by considering a sequent A, + B, with A, of the form 

Y,A(Yz~(X~$X~))A(Y~~(X~$Y~))A...A(Y~H(~~$Y,-I)) 

and B, of the form 

for n a natural number. For any proof of the tautology A,, + B,,, the pairs of occurrences 
of the variables yi and z; in A, and B,, must be linked by bridges. For if this were not 
the case, we could rename those pairs of occurrences by different propositional letters, 
and the sentence so obtained would no longer be a tautology. 
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