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1 Introduction

My goal in this talk is to explain several extensions of ordinary TQFTs in two dimensions and how they’re related
to one another. The most famous example is the 2d fully extended TQFT as defined by Lurie [Lur09b], but I’ll
also discuss some weaker objects from a few perspectives. An important tool is the 2d version of Lurie’s cobordism
hypothesis, which states that a framed 2d fully extended TQFT is completely determined by the object it assigns
to the point, which is a fully dualisable object in the target 2-category. I’ll discuss the kinds of objects – satisfying
weaker hypotheses than full dualisability – which classify other types of 2d TQFT. The main reference for the talk
will be section 4.2 of [Lur09b].

The main intermediate type of TQFT which we’ll discuss is classified by a Calabi-Yau object in the target 2-category.
We might call the theory this object classifies a non-compact or 1 1

2 -extended theory. We’ll also discuss how such
theories are related to the open and open-closed theories described by Costello in [Cos07].

As well as Lurie’s paper, there are details descriptions of extended 2d TQFTs in chapter two of the paper [BZN09]
by Ben-Zvi and Nadler, and the thesis [Dav11] of Davidovitch.

2 Ordinary TFTs and Extended TFTs

We recall the following definition of an ordinary n-dimensional TQFT, following the notation of [Lur09b]:

Definition 2.1. A framed n-dimensional TQFT taking values in a symmetric monoidal category C is a symmetric
monoidal functor

Z : Cobfr(n)→ C
where Cobfr(n) is the category of framed n-dimensional bordisms between closed (n− 1)-manifolds with monoidal
structure given by disjoint union. We similarly define oriented and unoriented TQFTs as functors from the appro-
priate bordism categories.

In most familiar examples, the target category C is a linear category, such as the category of vector spaces or chain
complexes over a field, or a category of topological vector spaces with a sufficiently well-behaved tensor product. It
will be useful, for now, to keep the category C arbitrary.

We’ll describe some ways, in the case where n = 2, to extend this definition to one that assigns some meaningful
data not only to closed 1-manifolds and 2d bordisms between them, but also to certain 1-manifolds with boundary
and bordisms between them. An extended 2d theory is a particularly good way of doing this, with the cobordism
hypothesis giving us a concrete way of constructing examples explicitly.

In order to describe extended theories we define a 2-category of extended 2d bordisms. It will be important to
work with the appropriate homotopical notion of 2-category: an (∞, 2)-category, where one requires the 2-category
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axioms to hold only up to homotopy, but keeps track of the homotopies. In this talk we’ll keep the definitions
fairly imprecise, but one can make everything precise using one of several equivalent theories of higher categories,
for instance the theory of complete n-fold Segal spaces. Lurie gives a construction of the bordism categories in this
language in section 2.2 of [Lur09b], and another construction for n = 2 (as a bicategory) is given by Schommer-Pries
in [SP11].

Definition 2.2. We define an (∞, 2)-category Bordfr(n) as follows:

� Objects are framed 0-manifolds.

� Morphisms X → Y are framed 1-manifolds with boundary X tY , where Y is the manifold Y with opposite
framing.

� 2-Morphisms f ⇒ g are framed 2-manifolds with corners, with boundary homotopic to the fibre product of
f and g along their common boundary.

� 3-Morphisms are framing preserving diffeomorphisms between 2-manifolds fixing the boundary.

� 4-Morphisms and higher are higher isotopies between diffeomorphisms.

The category admits a symmetric monoidal structure via disjoint union.

Let’s be more precise about what this means. By a framing we always mean a trivialisation of the stable tangent
bundle up to isomorphism.

� 0-manifolds are disjoint unions of points. The point admits two framings, corresponding to the two components
of GLn(R). We denote the two framed points by + and −.

� 1-manifolds are disjoint unions of intervals and circles. The interval as a bordism + → + admits an infinite
family of framings indexed by Z, where the framing “twists” n times. The circle also admits a Z worth of
framings. Concretely these arise by gluing together two intervals, one with the trivial framing and one with
a framing with n twists. Alternatively we can see this intrinsically; if we fix the framing φ0 induced from the
standard embedding S1 → R2, and choose any other 2-framing

φx : TxS
1 × R→ R2,

chosen to coincide with φ0 at a basepoint, then (φ0)−1x φx describes a loop in GL2(R), i.e. an element of
ΩGL2(R) ∼= Z. The standard framing coming from an orientation on the circle corresponds to 2 ∈ Z. We’ll
denote the circle with framing corresponding to n ∈ Z by S1

n.

� There are a few noteworthy framed 2-bordisms which we should comment on. Firstly, the pair of pants gives
several framed bordisms: for any integers m and n the pairs of pants induces a framed bordism S1

n t S1
m →

S1
n+m. There is a unique pair of pants that bounds a disc, namely S1

0 , hence the disc describes a bordism
S1
0 → ∅. Finally, the so-called whistle describes a bordism from a circle to an interval, and can be described

for any framing on the circle and interval (with the same number of twists).

Any framed 2-bordism can be glued together out of these constituents and their reversed versions.

Now, let C be a symmetric monoidal (∞, 2)-category.

Definition 2.3. A fully extended framed 2d TQFT taking values in C is a symmetric monoidal functor of (∞, 2)-
categories

Z : Bordfr(2)→ C.

Remark 2.4. A weaker notion than a fully extended TQFT is a homological field theory. From the 2-category
Bordfr(2) one can produce a categoryH∗(Bordfr(2);Q) enriched in abelian groups by taking homology. A homological
conformal field theory is a functor of Ab-enriched categories

H∗(Bordfr(2);Q)→ Ch(k),
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where Ch(k) is the category of chain complexes over a field k. If a chain complex valued extended TQFT factors
through the homology, then it induces a homological conformal field theory.

There are two main families of target categories which are worth keeping in mind. The first directly extends the
targets for ordinary TQFTs I mentioned above: we might take the 2-category of linear categories over a field,
or more homotopically the (∞, 2)-category of categories enriched in chain complexes. Alternatively, we could use
Morita categories, which make sense in any context where we can talk about algebra and module objects.

Definition 2.5. The Morita category in a symmetric monoidal (∞, 1)-category 1 C is the (∞, 2)-category with

� Objects given by algebra objects in C,

� Morphisms from A to B given by A,B-bimodule objects, with composition given by tensor product of
modules over the appropriate algebra, and

� 2-Morphisms and higher from M to N given by the (classifying space of) bimodule maps.

The tensor product in C makes this a symmetric monoidal (∞, 2)-category.

If I just refer to a Morita category over a field k, I mean the Morita category in the homotopy category of chain
complexes over k, with the derived tensor product.

In order to state the cobordism hypothesis, let’s talk about full dualisability in (∞, 2)-categories. From an (∞, 2)-
category we can produce an ordinary (strict) 2-category by considering 2-morphisms up to equivalence. This is all
we’ll need to talk about dualisability, so for the rest of this section we can take C to be a symmetric monoidal strict
2-category

Definition 2.6. An object X ∈ Ob C is dualisable if there is another object X∨ ∈ Ob C and morphisms

ev : X ⊗X∨ → 1

coev : 1→ X ⊗X∨

where 1 is the monoidal unit, such that (ev⊗ idX) ◦ (idX ⊗ coev) = idX and (idX∨ ⊗ ev) ◦ (coev⊗ idX∨) = idX∨ .

Example 2.7. In a Morita category, every object A is dualisable with dual A∨ = Aop, the opposite algebra.

Definition 2.8. A morphism f : X → Y in C is left dualisable if there exists a morphism f∨ : Y → X and
2-morphisms

ev : f ◦ g ⇒ idY

coev : idX ⇒ g ◦ f

such that (ev · idf ) ◦ (idg · coev) = idf and (idg · ev) ◦ (coev · idg) = idg. Right dualisability is defined analogously,
with ev : g ◦ f ⇒ idX and coev : idY ⇒ f ◦ g.

Remark 2.9. The first definition is actually a special case of the second. If C is a monoidal category, one can form
a 2-category BC with one object, morphisms the objects of C, 2-morphisms the morphisms of C, and horizontal and
vertical composition given by the tensor product and usual composition respectively. Dualisability of morphisms in
BC corresponds to dualisability of objects in C (and symmetric monoidal means left and right duals coincide).

Definition 2.10. An object X of C is fully dualisable if it is dualisable, and every endomorphism f : X → X
admits both left and right duals. In general, the fully dualisable objects of C and dualisable morphisms generate a
subcategory, denoted Cfd.

There is a neat characterisation of fully dualisable objects in this situation (Proposition 4.2.3 of [Lur09b]):

1At least, any sufficiently nice such category, where C admits and the tensor product preserves certain colimits.
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Proposition 2.11. An object X of C is fully dualisable if and only if it is dualisable, and the evaluation morphism
admits both left and right duals.

We can now state the cobordism hypothesis in dimension 2. For C an (∞, 2)-category, let C̃ denote its maximal
∞-groupoid, i.e. the (∞, 0)-subcategory obtained from C by discarding all non-invertible 1- and 2-morphisms.

Theorem 2.12. There is an equivalence of categories

Hom⊗(Bordfr(2), C)→ C̃fd

sending an extended TQFT Z to the object Z(+).

I won’t prove this, but In section 3 I’ll describe a map one way: starting from a fully dualisable object of C I’ll
construct a 2d TQFT assigning that object to the point.

3 Constructing Z from Z(+)

Let C be a symmetric monoidal (∞, 2)-category as before. I’ll describe how to start from a fully dualisable object

X ∈ Ob C̃ and produce a framed TQFT, in as concrete a way as possible.

� First, we evaluate the TQFT on objects. To the positive point Z(+) we will assign the object X, and
everything else will be determined from this choice.

� The positively framed interval is the identity morphism + → +, so maps to the identity morphism idX .
However, we can decompose the positively framed interval as a “zig-zag” gluing of two 1-bordisms as follows:

= =

Applying the functor Z yields an object Z(−), and morphisms Z(⊂) and Z(⊃) satisfying the axioms of 2.6.
Duals are unique, so Z(−) = X∨, Z(⊃) = evX and Z(⊂) = coevX .

� As Z is a monoidal functor, the TQFT is now determined on all objects: a 0-manifold consisting of n positive
points and m negative points is assigned X⊗n⊗ (X∨)⊗m. The empty manifold is assigned the monoidal unit.

� The framed circle S1
1 with framing coming from an orientation can be decomposed as a union of two framed

intervals. It is therefore assigned the object evX ◦ coevX ∈ Mor(1, 1). We can also investigate what the theory
assigns to the other circles by investigating what it assigns to intervals with twisted framings. The interval
with a single twist in the framing is mapped to an automorphism S : X → X. One can check that one can
obtain S from evR, the right dual to ev by the composite

X
1⊗evR

// X ⊗X ⊗X∨
swap⊗1

// X ⊗X ⊗X∨ 1⊗ev
// X .

In the case where C is a Morita category, we can compute Z(S1) more explicitly by understanding the evaluation
and coevaluation maps. An algebra A is naturally an A,A-bimodule, indeed, this realises the identity morphism
idA in the Morita category. An A,A-bimodule is the same thing as an A ⊗ A∨ left- or right-module: this realises
the evaluation and coevaluation morphisms. Composition is given by tensor product, so the map evA ◦ coevA is
realised by the k, k-bimodule

HH∗(A) = A⊗A⊗A∨ A,
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the Hochschild homology of A. Further, we can investigate other framed circles. The circle S1
0 receives the composite

evA⊗ evRA, or equivalently evA ◦(1⊗S)◦coevA. The right adjoint evR is assigned the linear dual A∗ as a left A⊗A∨-
module, therefore the composite evA⊗ evRA is realised by the k, k-bimodule

HH∗(A) = A∗ ⊗A⊗A∨ A = EndA⊗A∨(A),

the Hochschild cohomology of A. We observe that is the theory Z assigning A to a point was actually oriented then
the modules assigned to all the framed circles would coincide, and we’d have that HH∗(A) ∼= HH∗(A).

With a bit more work, one can go further and describe the 2-morphisms associated to 2-bordisms. I won’t do this,
but I’ll at least mention that the pair of pants as a framed bordism S1

0 t S1
0 → S1

0 gives us a multiplication on
the Hochschild cohomology, the pair of pants as a framed bordism S1

0 t S1
1 → S1

1 gives an action of the Hochschild
cohomology on the Hochschild homology, and the bordism S1

0 t S1
0 → ∅ given by capping a disc on a pair of pants

gives a bilinear form on the Hochschild cohomology. These notions all agree with more classical descriptions of the
same, for instance the product on cohomology agrees with the multiplication on Ext groups.

4 Calabi-Yau Objects

Suppose that instead of framed TQFTs, we were looking at oriented TQFTs. The group SO(2) acts orientation
preservingly on the circle by rotation, inducing an action of SO(2) on the image of the circle under the functor Z,
namely Mor(X,X). This allows us to make the following definition.

Definition 4.1. An object X ∈ Ob C is called Calabi-Yau if it is dualisable, coevX is right dual to evX , and the
evaluation (counit) map η : evX ◦ coevX → id1 in MorC(1, 1) exhibiting this duality is SO(2)-invariant.

This is strictly weaker than full dualisability (in the oriented setting: SO(2)-invariance implies that if an inverse
to evX exists then it must be given by coevX . Indeed, without orientability one can compute the left and right
inverses to evX in terms of coevX and the Serre automorphism.)

Example 4.2. By way of example, what does this mean in the Morita category? Well, the claim about the right
dual boils down to requiring that the Serre automorphism is trivialised, or equivalently that coev ∼= evR. In the
Morita category we already computed what these modules are: we’re requiring that A ∼= A∗, i.e. self-duality up to
equivalence. The counit map is the trace map

HH∗(A)→ k,

which we require to be invariant for the circle action on Hochschild cohomology. The example motivating the name
fits in to this context. Let A = Ω∗Dol(M): the Dolbeault complex of a complex manifold M . If M is Calabi-Yau
then the self-duality requirement holds by Serre duality. In particular Hochschild homology and cohomology agree.
One can show (and we’ll discuss this later) that

HH∗(Ω
∗
Dol(M)) ∼= C∗(LM)

where LM is the free loop space of M . In the case where M is Calabi-Yau, one can realise the SO(2)-invariant
trace map by pulling back under the inclusion of constant loops, then integrating using the Calabi-Yau structure.

Example 4.3. Another example justifying the name shows up when C is the 2-category of linear categories. The
category Db Coh(X) is a Calabi-Yau object if X is a smooth projective Calabi-Yau variety. This is discussed
in [Cos07] in the context of A∞-categories.

Like fully dualisable objects, Calabi-Yau objects also generate a kind of extended 2d TQFT, but with slightly less
data. One can no longer construct the cap: the disc as a bordism S1 → ∅.

Definition 4.4. The (∞, 2)-category of non-compact bordisms Bordnc(2) has the same objects and 1-morphisms as
the category Bordor(2) of oriented bordisms, but a constraint on 2-morphisms: that every component of a 2-bordism
must have non-empty incoming boundary.
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Theorem 4.5. The map
Hom⊗(Bordnc(2), C)→ CCY

sending an extended TQFT Z to the object Z(+) induces a bijection on equivalence classes.

Here CCY is the set of Calabi-Yau objects of C. (I’m not quite confident enough to claim an equivalence of categories
here.)

We’ll sketch a construction of this bijection following Lurie and Costello.

5 Open and Open-Closed Theories

There’s another approach to defining 2d topological field theories with boundary conditions, as described by Costello
in [Cos07]. We define an (∞, 1)-category OC of open-closed bordisms as follows:

� Objects are oriented 1-manifolds with boundary.

� Morphisms are oriented 2-bordisms, such that every connected component has non-empty incoming bound-
ary.

� 2-Morphisms and higher are oriented diffeomorphisms, isotopies etc between bordisms.

There is a full subcategory O of open bordisms consisting of only those objects which are unions of intervals, i.e.
every component must have a non-empty boundary. There is also a natural boundary functor ∂ : OC → Bordor

1 ,
sending an object J to its boundary ∂J . This describes an essential surjective functor of symmetric monoidal
(∞, 1)-categories.

Remark 5.1. Of course, we could also describe an (∞, 1)-category of closed bordisms, using only those objects
without boundary. This recovers the most classical notion of a bordism category: basically the category Cob2, with
higher morphisms between 2-bordisms given by diffeomorphisms etc as usual.

Remark 5.2. In [Cos07], Costello discusses open-closed theories with a fixed set of branes Λ. This means that we
associate an additional piece of data to objects: an object is now an oriented 1-manifold I with a function from
∂I to Λ, and a morphism is a bordism compatible with these functions (so we think of the data of the function as
assigning a brane to each “free” piece of the boundary of a 2-bordism.

Costello also described d-twisted versions of O and OC. From our description of OC we can construct a symmetric
monoidal dg-category, with the same objects as above, and Hom(I, J) given by the complex of chains on the moduli
space of Riemann surfaces whose underlying 2-manifold is a 2-bordism from I to J as above. This can be modified
by taking instead chains with coefficients in a local system, specifically the dth tensor power of the determinant
local system. This won’t play a role in my talk, but Aron will discuss it in more detail in his talk next week.

The category of open-closed bordisms arises naturally from the forgetful functor Bordor
1 → Bordnc

2 via a Grothendieck
construction. This is realised by the following theorem ( [Lur09b] 3.3.28).

Theorem 5.3. For a fixed symmetric monoidal (∞, 1)-category C, there is an equivalence between the following
data:

1. Essentially surjective symmetric monoidal functors of (∞, 2)-categories C → D.

2. Symmetric monoidal cocartesian fibrations B → C.
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The map from 1. to 2. can be concretely described. Starting from a functor F : C → D we perform a Grothendieck
construction to produce B = Groth(F ) , defined as the (∞, 1)-category whose objects are pairs (X, η), where
X ∈ Ob C and η : 1 → F (X), and whose morphisms are given by the (classifying spaces of) 2-morphisms in D
from η1 : 1 → F (X1) to η2 : 1 → F (X2). This comes equipped with a forgetful functor to C which is a symmetric
monoidal cocartesian fibration 2.

This equivalence interchanges the natural inclusion functor Bordor
1 → Bordnc

2 and the boundary map OC → Bordor
1 .

Indeed, performing the Grothendieck construction on this functor we find the category whose objects are oriented
1-manifolds with boundary, and whose morphisms are the 2-morphisms in Bordnc

2 , which gives another description
of OC.

Now, let C be a symmetric monoidal (∞, 1)-category. We can now describe open and open-closed field theories.

Definition 5.4. An open-closed field theory with target C is a symmetric monoidal functor Z : OC → C of (∞, 1)-
categories. Similarly, an open field theory is a symmetric monoidal functor Z : O → C.

Clearly there is a restriction functor from open-closed theories to open theories, given by precomposing with the
inclusion i : O ↪→ OC: we denote this functor i∗. More interestingly, it is possible to go the other way, by performing
left Kan extension along the inclusion, constructing a left adjoint functor i! to i∗. In general, the Kan extension
of a functor F : C → X along a functor Φ: C → D is a universal lift to G : D → X and natural transformation
G ◦ Φ → F , which can be built as a certain colimit. Lurie describes the analogous theory for (∞, 1)-categories
in [Lur09a].

Costello describes this functor by describing a general construction: given a functor F : C → D of symmetric
monoidal dg-categories he describes a functor F! = D⊗LC : C-mod→ D-mod by the usual tensor product of modules
applied to a suitable flat resolution of objects, given by a Bar construction. He then gives explicit descriptions of
OC and O as symmetric monoidal dg-categories, so that TQFTs are described as modules for these categories. The
hard step is showing that the open-closed theories thus obtained are split : that is, there are natural maps

Z(I)⊗ Z(J)→ Z(I t J),

and one has to show that they are equivalences in the target category. Costello does this by constructing explicit
models for O and OC (quasi-isomorphic symmetric monoidal dg-complexes) and computing the relevant natural
maps directly in this category.

Remark 5.5. Realising OC as the Grothendieck construction applied to the inclusion ι : Bordor
1 → Bordnc

2 gives us
another description of an open-closed theory, via the equivalence 5.3. Let Z : Bordnc

2 → C be a non-compact TQFT
as in section 4. By precomposing with the inclusion ι : Bordor

1 → Bordnc
2 we produce a 1d TQFT Z1 : Bordor

1 → C
which necessarily factors through C1: the (∞, 1)-category obtained by discarding all non invertible 2-morphisms in
C. Applying 5.3 to this, we produce an open-closed theory fitting into the commutative diagram

OC ∂ //

Z
��

Bordor
1

ι //

Z1

��

Bordnc
2

Z

��

C // C1 // C

.

Not all open-closed theories should be expected to arise in this way: the functor Z will satisfy a technical condition
related to the cocartesian fibration structure of the maps ∂ : OC → Bordor

1 and C → C1. Still, we might expect
open-closed theories satisfying such a suitable condition to correspond to Calabi-Yau objects, as in theorem 4.5.

At this point we come back around to Calabi-Yau objects, via the main theorem of [Cos07]. Let C be a symmetric
monoidal (∞, 1)-category (Costello uses the category of chain complexes over a field of characteristic zero).

Theorem 5.6. [Theorem A1 of [Cos07]] There is a natural equivalence between open TQFTs with target C and
Calabi-Yau objects in the Morita category internal to C.

2Being a cocartesian fibration is a technical condition which I won’t dwell on. See Lurie’s definition 3.3.3 and 3.3.4 in [Lur09b], and
section 2.4.2 of [Lur09a].
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As usual, it’s instructive to understand how to recover the Calabi-Yau algebra from an open TQFT. We do so using
the left Kan extension discussed above, which associated to an open TQFT Z an open-closed TQFT Z ′ that we
can then evaluate on S1. The pair of pants makes Z ′(S1) into an algebra, so an object in the Morita category. This
object is naturally self-dual, and the cap Z ′(S1)→ k provides a Calabi-Yau structure.

Now, we can explain why theorem 4.5 should be true, using the theory of open and open-closed TQFTs (and, again,
following the exposition in [Lur09b]). Start with a target (∞, 2)-category C and associated (∞, 1)-category C1.
Choose a Calabi-Yau object in C. The cobordism hypothesis in dimension 1 associates a one-dimensional oriented
field theory to A, call it Z1 : Bordor

1 → C1. Then precomposition with ∂ : OC → Bordor
1 yields an open-closed theory.

In order to produce an extended (non-compact) 2d theory, we again use 5.3. If we can lift this theory along
the cocartesian fibration C → C1 associated to the embedding C1 → C then the equivalence of that theorem
gives us the desired extended 2d theory. We’ll try to construct this lift using Costello’s theorem 5.6. The open-
closed theory Z1 restricts to an open theory, and thus by 5.6 corresponds to a Calabi-Yau algebra in the Morita
category MorC1 . We know exactly what this algebra is: it’s the object assigned by Z1 to the circle, namely the
endomorphism algebra End(A) = A⊗A∨ with Calabi-Yau structure coming from the evaluation map: the induced
map HH∗(End(A))→ HH∗(k) = k.

Using Costello’s theorem again, lifting to a theory with target C corresponds to lifting End(A) to a Calabi-Yau
object in this category. That is, we must put a Calabi-Yau structure on the object coev : k → A⊗ A∨ in C (using
the Grothendieck construction). To do so, we’d like an (SO(2)-invariant) morphism in C from coev : k → A⊗A∨ to
id : k → k yielding an induced map on Hochschild homology. Post-composition with the evaluation map gives such
a morphism provided we have an SO(2)-invariant 2-morphism from ev ◦ coev to idk, which is precisely a Calabi-Yau
structure on A itself.

This shows one direction of the theorem: to a Calabi-Yau object we have associated a non-compact extended 2d
TQFT. All that remains for the other direction is to show that there is an essentially unique way of extending this
open theory to an open-closed theory. Lurie says that this follows from a “relative” version of Costello’s theorem,
but I haven’t tried to work out the details.
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