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In these notes I’ll introduce you to Yang-Mills theory on the Riemannian 4-manifold R4, from the point of view
taken by [Cos11] and [EWY18] (much of the text in this note comes from the latter).

1 Yang-Mills in the Classical BV Formalism

Let G be a compact simple 1 Lie group, and let V be a finite-dimensional representation of G equipped with a
non-degenerate invariant pairing µ : V ⊗ V → R. The usual description of Yang–Mills theory, in what’s known as
the second-order formalism, is given as follows.

The fields of Yang–Mills theory are a gauge field A ∈ Ω1(R4; g) and a spinor ψ ∈ Ω0(R4;S⊗V ), where S ∼= S+⊕S−
is the Dirac spinor bundle. The (infinitesimal) gauge transformations are controlled by the Lie algebra Ω0(R4; g),
with a gauge transformation c acting on the fields by

A 7→ dc+ [c, A]

ψ 7→ α(c)(ψ)

where α is the derivative of the representation G→ Aut(V ).

In order to define the action of Yang–Mills theory we choose a non-degenerate G-invariant pairing µ : V ⊗ V → R,
and a positive operator m : V → V – the mass matrix of the fermions. We will also write ρ for the Clifford
multiplication map Ω1(R4;S)→ Ω0(R4;S). The Yang–Mills action is the functional

S(A,ψ) =

∫
R4

1

2
‖FA‖2 + µ(ψ, (/dA +m)ψ),

where FA = dA+ g[A,A] 2, and /dAψ = ρ(dψ + gα(A)ψ). The norm of FA is computed using the standard metric
on R4 together with a non-degenerate invariant pairing on the Lie algebra g.

We can fit Yang–Mills theory into the framework we’ve heard about in Phil’s lecture by computing the classical BV
complex. As a cochain complex, the classical BV complex takes the form

0 1 2 3

Fermion degree 0 Ω0(R4; g)
d // Ω1(R4; g)

d∗d // Ω3(R4; g)
d // Ω4(R4; g)

Fermion degree 1 Ω0(R4;S ⊗ V )
m+/d

// Ω0(R4;S ⊗ V )

1We could consider semisimple too – we’re just taking simple to make things easier, there will only be one coupling constant.
2g here is a real number called the coupling constant.

1



2 Section 2 How Quantization Works

placed in cohomological degrees 0, 1, 2, 3. The order 3 and 4 parts of the BV action functional define a classical
interaction in Oloc(R4) that solves the classical master equation: it looks, concretely, like

I = gTr(FA ∧ ∗[A,A]) + µ(ψ, ( /A)ψ) + ([c, A], A∨) + ([c, ψ], ψ∨) + ([c, c], c∨).

This theory has a problem: it doesn’t admit a gauge-fixing operator, so we can’t perform BV quantization. We get
around this problem by passing to a homotopy equivalent theory called the first order formalism for Yang-Mills.

1.1 The First Order Formalism

The problem with the classical BV complex above appears in the second order differential d ∗ d. The idea of the
second order formalism is that we introduce a Lagrange multiplier field B – a self-dual g-valued 2-form – along
with an equation of motion saying that B = FA, and then replace the term ‖FA‖2 in the action by a term like
Tr(B ∧ ∗FA). So, the new action functional looks like

SFO(A,B,ψ) =

∫
R4

〈FA, B〉 −
1

2
‖B‖2 + µ(ψ, (/dA +m)ψ).

The classical BV complex in first-order Yang–Mills theory is, as a cochain complex,

0 1 2 3

Fermion degree 0 Ω0(R4; g)
d // Ω1(R4; g)

d+
// Ω2

+(R4; g)

Fermion degree 0 Ω2
+(R4; g)

−id
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d // Ω3(R4; g)
d // Ω4(R4; g)

Fermion degree 1 Ω0(R4;S ⊗ V )
m+/d

// Ω0(R4;S ⊗ V ).

It comes equipped with a classical local interaction functional which takes the form

I = gTr(B ∧ ∗[A,A]) + µ(ψ, ( /A)ψ) + ([c, A], A∨) + ([c, ψ], ψ∨) + ([c, c], c∨).

This theory is homotopy equivalent to second-order Yang-Mills theory, as defined above, plus an auxiliary form B
with trivial action 〈B,B〉. The idea of the equivalence is that we can do an upper triangular change of variables,
sending B to B + (FA)+: we can turn this into a path in the space of action functionals.

2 How Quantization Works

Now, let’s start to talk about the construction of the effective action functional I[L] at scale L, and its behaviour
under local RG flow. In particular, we can start to explain how to compute the 1-loop β-function for Yang-Mills
theory.

Let me remind you of the following story: the steps for quantizing a theory in the BV formalism.

1. First, choose a gauge-fixing operator QGF for the BV differential Q. The commutator D = [Q,QGF] defines
a generalized Laplacian.
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2. Calculate the heat kernel Kt mollifying the integral kernel for the operator D. Usually, we think of the
complex E as being divided into summands corresponding to BV fields in the theory. The heat kernel Kt will
likewise split as a sum over pairs of fields φ, φ∨ paired together under the symplectic structure.

3. Use QGF to calculate the propagator P (ε, L) for the theory. Just like the heat kernel, the propagator splits
into a sum over pairs of BV fields.

4. Now the key step, the introduction of counter-terms. We’ve learned that given a pretheory {I[L]} it’s possible
to obtain a local functional I in the limit of homotopy RG flow as ε → 0. Counter-terms allow us to go the
other way, i.e. describe a family of interactions at scale L starting from a local functional I. The idea is to
find some local functionals ICT(ε) depending smoothly on ε, so that the limit

I[L] = lim
ε→0

W (P (ε, L), I − ICT(ε))

exists. The counterterms ICT(ε) will be singular in the small ε limit, but it’s always possible to find such
functionals in the space Oloc(R4)[[~]][ε±1, log ε]. This procedure is very non-canonical, one needs to choose
something called a renormalization scheme in order to fix them: roughly a splitting of the space of ε-dependent
local functionals into functionals singular at ε, and regular at ε.

5. Call the tentative interaction Ĩ[L]. The result is a pre-theory, not necessarily a theory yet: the QME might fail
to hold. We can try to modify the interaction even more, by adding order-by-order in ~ a further correction
J cancelling the failure to solve the QME. This is not always possible, there is a cohomological obstruction.
At level n+ 1 we need to find a potential J in Oloc for the functional

On+1 = ~−n−1(QĨ[L]) + {Ĩ[L], Ĩ[L]}L + ∆LĨ[L].

Now, with this story in mind, we can calculate the 1-loop β-function using the following result.

Definition 2.1. The 1-loop β-function β(1) is the cohomology class of the logarithmic derivative of the 1 loop term
in the family RλI[L] under local RG flow.

Remember from Kevin’s lecture that, under local RG flow, to first order, the coupling varies by a term proportional
to log λ. We’re really interested in the sign: the coupling will end up becoming small at large λ as long as the sign
is negative.

Theorem 2.2. In a nice enough quantum field theory (classically translation and scale-invariant, and marginal
at 1-loop), β(1) can be identified with the cohomology class in the classical complex (Oloc(R4), Q+ {I,−}), of the
logarithmic 1-loop counter-term ICT

log .

So how do we compute ICT
log ? Well, as we described above, we’re supposed to look at the ε→ 0 limit of the part of

the weight W (P (ε, L), I) associated to the 1-loop Feynman diagrams, and extract the term asymptotic to log(ε) –
this is the part that the logarithmic counter-term is designed to cancel. We then determine its cohomology class,
which is well-defined (i.e. independent of the choice of renormalization scheme). The result is the following, first
demonstrated in a very different framework by Gross, Wilczek and Politzer (in 1973).

Theorem 2.3. The one-loop β-function of Yang–Mills theory is equal to

β(1)(g) = − g3

16π2

(
11

3
C(g)− 4

3
C(V )

)
where C(g) idg and C(V ) idV are the quadratic Casimir invariants for the representations g and V of G respectively.

Corollary 2.4. Yang-Mills with gauge group SU(n) and with f fundamental flavors is asymptotically free (has
negative 1-loop β-function) if f < (11/2)n.
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3 Quantization of Yang-Mills Theory

Ok, let’s try to quantize this classical field theory to a quantum field theory, according to Phil’s definition. So first
we need to understand the scale L BV operator, and then we need to cook up effective interactions I[L] at level L.
There’s a procedure for doing this by introducing counter-terms to modify the interaction – we can calculate these
at least to first order.

3.1 Gauge Fixing

As a first step, we have to define a gauge-fixing operator QGF for first-order Yang-Mills theory. There’s a fairly
obvious guess, using the adjoint operator d∗ to the de Rham differential.

Ω0(R4; g) Ω1(R4; g)
d∗oo Ω2

+(R4; g)
2d∗oo

Ω2
+(R4; g) Ω3(R4; g)

2d∗+
oo Ω4(R4; g)

d∗oo

Ω0(R4;S ⊗ V ) Ω0(R4;S ⊗ V ).
/d−m
oo

.

In order to show that this defines a gauge fixing operator we must compute the operator [Q,QGF], and check that
it’s a generalized Laplacian. In the pure gauge sector, it’s the sum of two terms: the usual Laplacian on differential
forms, plus a first-order operator Dvert defined by

Ω0(R4; g) Ω1(R4; g) Ω2
+(R4; g)

Ω2
+(R4; g)

−2d∗

OO

Ω3(R4; g)

−2d∗+

OO

Ω4(R4; g).

Restricted to the fermions, the operator D = [Q,QGF] is clearly just the usual Laplacian – obtained as the square
of the Dirac operator – minus the identity times m2. Therefore the total generalized Laplacian is the sum of two
terms:

D = (∆Ω −m2 idmatter) +Dvert

where ∆Ω is the usual Laplacian operator on differential forms, and Dvert is the vertical operator defined above.

3.2 The Heat Kernel and the Propagator

With this generalized Laplacian, we can define Kt, the integral kernel for the operator e−tD, living as a section of
Sym2(E). Since the Laplacian splits as a sum, so does its kernel: Kt = K∆

t +Kvert
t +Kmatter

t .

In order to describe Kt it will be useful to decompose the classical BV complex E. This complex if finite-dimensional
as a dg-module over the ring C∞(R4), so we can split it up, as a graded vector space, as

E = C∞(R4)⊗ (Y ⊗ g⊕ S⊗ V ),

where Y and S are finite-dimensional graded vector spaces with a shifted symplectic pairing, and where the differential
is independent of g and V . The heat kernel splits up according to the decomposition of Y ⊕ S into BV particle
species (i.e. into pairs (c, c∨), (A,A∨), (B,B∨), (ψ,ψ∨) of fields, which are paired with one another).
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Remark 3.1. I’m going to write down the heat kernel and the propagator for abelian Yang-Mills theory – the
algebra g and representation V go along for the ride. More precisely, Kt and P (ε, L) both can be written as sums
of tensors that include factors of the form g⊗2 or V ⊗2. In the former case, we’ll always just have the tensor κ
representing the pairing on g, and in the latter the tensor µ representing the pairing on V appearing in the action.

1. So let’s consider the term K∆
t associated to the ordinary Laplacian on the bosonic fields first. The heat kernel

for the usual Laplacian acting on functions on R4 has the form

kt(x, y) =
1

(4πt)2
e−|x−y|

2/4t.

Using the pairing on the finite-dimensional graded vector space Y , the whole heat kernel has the form

K∆
t (x, y) = kt(x, y) · (KAA∨ +KBB∨ +Kcc∨)

where the components KAA∨ , KBB∨ , and Kcc∨ come from the different irreducible components of the sym-
plectic pairing on Y. Explicitly, we find

KAA∨ = dxj ⊗ ∗dyj + ∗dxj ⊗ dyj ,

KBB∨ = −1

2

(
σI ⊗ σ′I + σ′I ⊗ σI

)
,

Kcc∨ = −(dvolx⊗1 + 1⊗ dvoly)

where we sum over repeated indices as usual.

2. To deal with the term Kvert
t we can use a trick. Note that Dvert squares to zero and commutes with the usual

Laplacian acting on forms. Thus, for a fixed field ϕ ∈ E we have

e−t(∆Ω+Dvert)ϕ = e−t∆Ω(1− tDvert)ϕ = e−t∆Ωϕ− te−t∆ΩDvertϕ.

It follows that the second piece of the analytic heat kernel can be written as

Kvert
t = −t (Dvert ⊗ 1)K∆

t .

3. Finally, for the matter term, we use the same idea as in (1) above. That is, the heat kernel for the matter
sector is

Kmatter
t = kt ·

1

2
(ψj ⊗ ψ′j + ψ′j ⊗ ψj).

Ok, now we can compute the propagator, which means hitting the heat kernel above with QGF⊗ 1 and integrating.
Applying the gauge-fixing operator changes which summands of E⊗ E will appear in the sum over pairs of particle
species. We’ll end up, again, with three summands in the pure gauge sector, and one summand in the matter sector.

Lemma 3.2. The propagator of Yang-Mills theory on R4 takes the form

P (ε, L) =

∫ L

ε

dt

(
∂kt
∂xi

(x, y)
(
P iAB + P iA∨c

)
+

∂2kt
∂xi∂xj

P ijAA

+
∂kt
∂xi

P iψψ

)
,

with the three rows coming from the three summands of the heat kernel, where the P i are some combinatorial
tensors of the form

P iAB = σijx ⊗ dyj + ∗(dxiσ1j
x )⊗ σ1j

y

P iA∨c =
(
1⊗ ∗dyi + ∗dxi ⊗ 1

)
P ijAA = 4(δijdx` − δi`dxj)⊗ dy`

and P iψψ = (Γiψj)⊗ ψ′j + ψ′j ⊗ (Γiψj).
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The key thing to note from this is that in the Feynman rules, we’ll be able to draw edges from A to B, from A∨ to
c, from A to A, and from ψ to ψ.

3.3 One-loop Feynman Diagrams

Ok, so let’s conclude by finally talking about some specific Feynman diagrams. We now know everything that we
need to know in order to calculate the weight of a Feynman graph (with the bare interaction): we need to know the
propagator P (ε, L) as a section of E⊗E, and we need to know the interaction, as an element of Oloc(E) (in our case
it’s a purely cubic functional on E). The Feynman weight is calculated by contracting these expressions together
according to the topology of the graph.

So what are the 1-loop Feynman diagrams that occur? All 1-loop Feynman diagrams in theories like this – with
purely cubic interaction – are given by wheels: k-gons with external legs at each vertex. We can check the following
in the case of Yang-Mills theory (it’s a purely analytic calculation, proven using Wick’s lemma type considerations).

Lemma 3.3. The weights associated to wheels of size k in Yang-Mills theory are convergent in the ε → 0 limit
unless k = 2.

So only one shape of Feynman diagram contributes. There are two internal edges to which we assign the Yang-Mills
propagator. Since the propagator splits up as a sum, we can write our weight as a sum over labellings of the
diagram, where we attach a particular summand of the propagator to each edge, and a particular summand of the
interaction to each vertex. The weights that occur take the following forms.

A B

B A

A A

A∨ c

c A∨

A A

A B

A A

B A

A A

A A

B B

Figure 1: The four purely bosonic one-loop Feynman diagrams that contribute to the log divergence, and therefore
to the one-loop β-function. The internal propagators are decorated when the species of a particle alters between
its two end points.

We’ll refer to the four diagrams in Figure 1 as diagram I to IV, or as ΓI to ΓIV (left to right, then top to bottom).
We’ll refer to the fermionic diagram in Figure 2 as diagram V, or as ΓV.

Remark 3.4. There’s actually one other possible diagram: a 1-loop correction to the fermion propagator. It turns
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ψ

ψ

A A

Figure 2: The remaining diagram that contributes to the one-loop β-function, depending on a choice of matter
representation.

out that the weight of this diagram is exact for the classical BV differential, and therefore won’t contribute to, for
instance, the β-function.

Ok, so let’s conclude by saying something about what it looks like to evaluate these diagrams. We have all
the ingredients: for each diagram we need to take two summands of the propagator, and two summands of the
interaction, then contract them together to obtain a local functional depending on ε. While we need the full
expression to determine I[L] at one loop, to work out the one loop β function we only need the part asymptotic to
log ε. Finally, we must determine the cohomology class in Oloc – in this case it turns out that the term corresponding
to each diagram is individually closed (this might not always happen, it could be that only their sum is closed).

To actually work out the weight, we recall that E can be factored as C∞(R4) ⊗ (Y ⊗ g ⊕ S ⊗ V ). When we’re
contracting together the various tensors we can write the result as a product of a term involving C∞(R4) (this is
the term that involves doing an integral), a term involving Y or S (this term involves a little combinatorics), and a
term involving g or V (this will just evaluate to the quadratic Casimir).
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