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Goals

I There are many mathematical conjectures inspired by S- and T-dualities in physics. This work
gives a complete mathematical axiomatisation of a simple family of examples.

I We describe free theories generalising abelian Yang-Mills theories, in all dimensions, and a duality
relationship between local observables.

I This duality preserves the expectation values of local observables, i.e. the Feynman path integral.

I We can explicitly compute duals for many interesting examples of observables.

I The interesting observables are often nonperturbative, so our model of the quantum field theory
must be able to deal with this. This is possible for free theories.

I The fields in dual theories are related by Hodge star, so a theory with p-form fields is dual to a
theory with (n − p)-form fields. The abelian gauge group is also replaced by the dual torus.

Lagrangian Field Theories

I The data describing a field theory is a sheaf of fields and an action functional.

I Local classical states are given by the derived critical locus of the action, and classical observables
by the algebra of functions on this space.

I There are often local symmetries (gauge transformations), and equivalent fields are not physically
distinguishable. One way of encoding this is to describe fields by a simplicial (abelian) group
where only π0 is physically measurable.

I More practically, one often uses a cochain complex in degrees ≤ 0, which is equivalent by
Dold-Kan.

I Main example: abelian Yang-Mills with gauge group V /Λ (Maxwell’s theory). Fields U on are the
complex

Λ[2] ↪→ Ω0(U ; V )[1]→ Ω1(U ; V )

I More generally, for 0 < p < dim U one generalises this to the complex

Λ[p] ↪→ Ω0(U ; V )[p − 1]→ · · · → Ωp−1(U ; V )

viewed as describing “higher” circle bundles with connection [Freed].

I In all these theories there’s a curvature map to closed p-forms. The action is the L2-norm squared
of this form. We call these theories generalised Maxwell theories

I To encode the derived critical locus of an action functional, introduce the classical
Batalin-Vilkovisky formalism:
I Functions on the derived critical locus of S are described as polyvector fields on the space of fields, with a new

differential ιdS .
I Note that even if S is not defined locally (as above, forms may not be L2), its variation dS will be.
I Alternatively, we can view this as deforming O(T ∗[−1]Φ(U)), where Φ(U) are the local fields on an open set U .

Factorisation Algebras

I We want an axiomatic way of talking about the algebras of local observables in a field theory,
along with the relationships between observables on different open sets. ([Gwilliam],
[Costello-Gwilliam]).

I A prefactorisation algebra on X is a precosheaf of cochain complexes on X equipped with
Sk-equivariant isomorphisms

F(U1)⊗ · · · ⊗ F(Uk)→ F(U1 t · · · t Uk)

for every collection U1, . . . ,Uk ⊆ X of disjoint open sets.

I To be a Factorisation algebra, observables on an open set U need to all be “determined” by
observables in small neighbourhoods of finitely many points.

Figure : In a factorisation algebra, observables are determined by finitely many measuring implements of finitely small
radius of sensitivity

I The classical BV formalism above produces examples of factorisation algebras.

BV Quantisation

I The theories that admits easy quantisations are the free theories. A theory is free if the classical
differential ιdS increases polynomial degrees by one. Generally this means the action functional is
quadratic.

I This is natural if we’re interested in path integrals. We might like to formally evaluate expressions
like ∫

H0(Φ)
O(φ)e−S(φ)Dφ

which is a Gaussian integral if the theory is free.

I Example: If V is a finite-dimensional vector space, S is a positive definite quadratic form on V
and f ∈ O(V ), the path integral

∫
V f (x)e−S(x)dx can be computed as the cohomology class of

the top form fdx in the twisted de Rham complex with differential d − (∧dS). Contracting with
the volume form dx turns this into the cohomology class of f in a complex of polyvector fields.

I In this picture, the quantum BV operator D is the image of d as a differential on polyvector
fields. This still makes sense in infinite dimensions.

I There is a Poisson bracket on polyvector fields. The operator D is given by the Poisson bracket in
degree 1: D = {, } : T0Φ(U)⊗O(Φ(U))→ O(Φ(U)), and extends to higher degrees by the
formula

D(φ · ψ) = D(φ) · ψ + (−1)|φ|φ · D(ψ) + {φ, ψ}.

I The complex of quantum observables is the result of adding D to the differential in the complex
of classical observables. We can do this locally to get a factorisation algebra.

Expectation Values

I The above story suggests that the path integral for free theories should admits a nice homological
description. It does in nice situations!

I If the complex of fields is a complex of vector spaces, and if e−S is nondegenerate, then there is a
canonical quasi-isomorphism from H0 of the complex of quantum observables to R.

I We can compute this using path integrals by filtering our fields by finite-dimensional vector space
(regularisation). When the fields are given by p-forms on a compact manifold we can use the
filtration by eigenvalues of the Laplacian.

I The fact that the map is canonical means any way of computing it gives the same answer. A nice
method is using Feynman diagrams.

I Let O be a monomial observable. Write it as a product of linear observables

O = On1
1 · · · O

nk
k .

I The expectation value is a sum over all graphs with k vertices of degrees ni , with each graph
weighted using the Oi .

Figure : One of the diagrams in the computation of the expectation value of an observable O7
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I Edges between vertices Oi and Oj contribute weights of form
∫

X Oi ∧ ∗Oj . The total weight of
a diagram is the product of the weights of its edges.

I For this to give well-defined answers, we generally need to work with smooth (as opposed to
distributional) observables; things like pairing a p-form with an (n − p)-form (or polynomials
therein). General observables can be approximated by such smooth observables.

I We can compute expectation values in generalised Maxwell theories by working through the
theory where fields are closed p-forms (like replacing connections by their curvatures). We need
to modify the definition of the expectation value on spaces X with Hp(X ) 6= 0, to deal with an
integral periods condition.

I Specifically, we push a local observable forward to a global observable on X , then compute the
path integral. We can do this by, instead of integrating over closed p-forms, we integrate over the
lattice of closed p-forms with periods in the lattice Λ.

Fourier Duality

I

(p − form theories, gauge group T )
Fourier duality←→

(
(n − p)− form theories, gauge group T∨

)
I First described in [Witten], [Verlinde].

I We’d like to define the Fourier dual of an observable using Feynman integrals, using the fact that
the Fourier dual of a Gaussian polynomial is also a Gaussian polynomial. I.e.

Õ(α̃)e−S̃(α̃) =

∫
H0(Φ(U))

O(α)e−S(α)+i〈α,α̃〉Dα.

However, this doesn’t work locally; the integrals don’t converge unless U is compact.

I We fix this by defining the dual Õ using Feynman diagrams, and checking that this agrees with
the path integral when U is compact.

I The idea is a lot like Feynman diagrams for expectation values, but some edges can be left free
(source terms).

Figure : A term in the dual of O8
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I Edges between vertices Oi and Oj contribute weights of form
∫

X Oi ∧ ∗Oj . Source terms
contribute weight i . The total weight of a diagram is the product of the weights of its edges.

I Theorem: An observable O and its Fourier dual Õ in generalised Maxwell theories have the
same expectation value.

I The idea of the proof is to use Plancherel’s theorem applied to an observable O as a functional
on all p-forms, and the delta distribution δcl ,Λ on the closed p-forms with periods in Λ. This
distribution is Fourier dual to its pushforward under Hodge star.

I The theorem can be restated as a correspondence of factorisation algebras. It’s only a
correspondence because we have to choose a way of extending O from closed p-forms to all
p-forms.

Future Work

I This duality should extend naturally to supersymmetric abelian gauge theories, in particular the
abelian N = 4 theory.

I The N = 4 theory admits a CP1 family of topological twists. Duality is supposed to exchange
antipodal twists.

I Duality should give an equivalence on categories of D-branes, and the abelian equivalence should
recover geometric class field theory à la Laumon-Rothstein, according to the work of Kapustin
and Witten.

References

I More details are available in
I Chris Elliott, Abelian Duality for Generalised Maxwell Theories, arxiv:1402.0890.

I Other references:
I Kevin Costello and Owen Gwilliam, Factorization Algebras in Quantum Field Theory, 2013. book in progress.
I Daniel Freed, Dirac Charge Quantization and Generalized Differential Cohomology, Surveys in Differential

Geometry, VII:129194, 2000
I Owen Gwilliam, Factorization Algebras and Free Field Theory, PhD thesis, Northwestern University, 2012
I Erik Verlinde, Global aspects of Electric-Magnetic Duality. Nuclear Physics B, 455(1):211-225, 1995
I Edward Witten, on S -duality in Abelian Gauge Theory, Selecta Mathematica, (2):383-410, 1995

celliott@math.northwestern.edu http:/www.math.northwestern.edu/~celliott


