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1 Introduction

The affine Grassmannian is an important object that comes up when one studies moduli spaces of the form
BunG(X), where X is an algebraic curve and G is an algebraic group. There is a sense in which it describes the local
geometry of such moduli spaces. I’ll describe the affine Grassmannian as a moduli space, and construct it concretely
for some concrete groups. References, including the construction of perverse sheaves on affine Grassmannians,
include the papers [4], [1], the book [5] and set of seminar notes [3] by Gaitsgory.

2 Informal Description

Let’s first try to understand what the affine Grassmannian should be. We work over a field k, which we’ll later
specialise to the complex numbers, but for now it could be anything. Let G be a (connected reductive) algebraic
group over k. The affine Grassmannian describes

{
trivialisable G-bundles on the formal punctured disc

}
{

trivialisable G-bundles on the formal disc

} .

This object comes up naturally when one is studying G-bundles on a curve. For instance, if k = C, any G-bundle
over a Riemann surface becomes trivialisable after puncturing the curve finitely many times. The bundle can then
be described by taking the punctured curve and a small disc around each puncture as a trivialising cover, and
specifying a transition function on each punctured disc. However these small discs can be made arbitrarily small,
so only germs of such transition functions are required. These are precisely trivialisable G-bundles on the formal
punctured disc, and the affine Grassmannian describes such transition functions modulo change of trivialisation on
the formal disc (i.e. trivialisable bundles that extend across the puncture).

Let K = k((t)), and let O = k[[t]]. The formal disc and formal punctured disc over k are the affine schemes
D = SpecO and D× = SpecK respectively. How do we describe the moduli of G-bundles over these schemes?
I’ll give an informal description first, then later say something more precise. Informally, the set of trivialisable
G-bundles on an affine scheme SpecA (where A is a k-algebra) is the same as the set of trivialisations of a trivial
bundle, i.e. the set of G-valued functions

Maps(SpecA,G) = G(A),

the set of A-points of G. The set of trivialisable G-bundles on D× is precisely the set of G-bundles that extend
across the puncture, so this tells us that our affine Grassmannian should be modelled on the quotient

GrG = G(K)/G(O).
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Another way of describing this is as the group of formal loops in G modulo the subgroup of formal arcs, i.e. formal
loops that one can “fill in” to formal discs.

3 Some Algebraic Geometry

Since this talk is about the geometry of the affine Grassmannian, we’ll certainly need to describe some structure
on it beyond that of a set. This will require a bit of care, because the affine Grassmannian is not a scheme, but
something more general.

In order to construct GrG as an algebro-geometric object (one arising from a moduli problem), we’ll describe the
functor that it’s supposed to represent:

GrG : (Commutative k-algebras)→ (Sets)

sending an algebra A to the set of pairs (E, γ), where E is an A-family of G-bundles over D, and γ is an isomorphism
from E|D× to the trivial A family of G-bundles over D×. Notice that if A = Spec k that this is just a G-bundle on
D and a trivialisation away from the origin. We’ll see below that this is the same data as we described before (as a
set).

To make sense of this, I’d should say what exactly an A-family of G-bundles is, but to keep things reasonably
simple, I’ll just describe an A-family of vector bundles over D and D×. Recall the notion of a vector bundle from
commutative algebra:

Definition 3.1. The rank of a finitely generated projective A-module M at a point p ∈ SpecA is the rank of the
free Ap module Mp. We say M is rank n if rkM (p) = n for all points p.

Definition 3.2. • An A-family of rank n vector bundles on D is a rank n finitely generated projective module
over the ring A[[t]].

• Similarly, an A-family of rank n vector bundles on D× is a rank n finitely generated projective module over
the ring A((t)).

One can modify this definition directly to work for groups other than GLn, but more generally and indirectly one
can define G-bundles in the following way:

Definition 3.3. An A-family of G-bundles on D is an exact tensor functor Rep(G)→ Vect(D), where VectA(D) is
the tensor category of A-families of vector bundles (of any rank) as above. Similarly for D×.

That is, we define the associated vector bundle in every representation of G.

Now we must investigate what kind of object might represent the affine Grassmannian functor. The first thing to
note is that it is not represented by a scheme. Indeed, consider the example of G = Ga. Even Ga(K) = k((t))
cannot be represented by a scheme: it sits inside the scheme k[[t, t−1]] ∼=

∏∞
i=1 A1, but the condition that only

finitely many negative coefficients are non-zero cannot be expressed by polynomials.

However, it is very close to being representable by a scheme. Specifically, we have the following:

Proposition 3.4. There are a sequence of finite-type projective schemes GriG for i ∈ N, and closed immersions
GriG ↪→ Gri+1

G such that GrG = lim−→Gr
i
G, i.e.

GrG(A) ∼= lim−→Hom(SpecA,GriG).

A functor which is isomorphic to a direct limit of schemes of this form is called a (strict) ind-scheme, and is almost
as nice to work with as a scheme (some details on the theory of ind-schemes can be found in [3] and the appendix
to [2]). In particular we can define categories of (e.g. constructible) sheaves on an ind-scheme, where every object is
in fact supported on a finite subscheme. Furthermore we can do things like investigate the topology of the C-points
of an ind-scheme over C. We’ll do this in some examples later.
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3.1 Construction

So let’s describe the schemes GriG. In doing so we’ll start to make a connection with the description of the k-points
of GrG as G(K)/G(O) from the previous section. We’ll concentrate on the example G = GLn.

Let E0(A) denote the trivial A-family of rank n vector bundles on D, i.e. the module (A[[t]])n. Define Grin(A) to
be the set of all finitely generated projective A[[t]]-submodules E(A) ⊆ E0(A)⊗A[[t]] A((t)) such that

tiE0(A) ⊆ E(A) ⊆ t−iE0(A).

If we take the direct limit i→∞ we recover the affine Grassmannian functor for GLn as described above. Indeed,
any E(A) in Grin(A) for some i is a rank n vector bundle on D, and the restriction E(A)⊗A[[t]] A((t)) to D× comes
with an isomorphism to the trivial bundle E0(A)⊗A[[t]] A((t)) via

tiE0(A)⊗A[[t]] A((t)) ↪→ E(A)⊗A[[t]] A((t)) ↪→ t−iE0(A)⊗A[[t]] A((t)).

All points in Grn(A) arise in this way for some i: given a finitely generated projective module we can view it as a
submodule of (A((t)))n by embedding (A[[t]])mn ↪→ (A((t)))n as a submodule for each m. If the submodule fails to
meet any of these finiteness conditions then it cannot be isomorphic to the trivial bundle on D×.

We’ll use this description of vector bundles later. Such A[[t]]-submodules of (A((t)))n are sometimes called lattices,
and E0(A) is referred to as the standard lattice. This approach is described in [5].

Remark 3.5. If we restrict ourselves to lattices such that the determinant lattice
∧n

E(A) = (A[[t]])n is the
standard lattice O ⊆ K, then we find a description of the A-points of the affine Grassmannian for SLn. If we
quotient the space of lattices by the diagonal action of k[t] on (A((t)))n then we find a description of the A-points
of the affine Grassmannian for PGLn.

Now, in order to see that the functors Grin are representable by (projective finite-type) schemes, we’ll describe an
isomorphic functor. Namely we define

Zi
n(A) = {projective finite-generated quotients of the A[t]/t2i-module t−iE0(A)/tiE0(A)},

which is isomorphic to Grin by the map which sends E(A) to

t−iE0(A)/E(A),

with inverse the map that sends a quotient module N to the vector bundle which is the pre-image of N under

t−iE0(A)→ t−iE0(A)/tiE0(A).

One has to check that these maps are well-defined, i.e. that their images are finitely-generated projective (this
check is done in [3], but I’ll omit it for brevity).

Finally, note that Zi
n is a closed subscheme of a usual Grassmannian of subspaces in the finite-dimensional k-vector

space t−iOn/tiOn, therefore representable by a finite-type projective scheme. So Grin also has this property as
required.

Remark 3.6. If we look at the k-points of Grn, we can interpret the filtration Grin as a filtration on the group
GLn(K)/GLn(O). The group GLn(K) acts on the vector space Kn in the usual way. The subgroup GLn(O) fixes
the standard lattice On ⊆ Kn, so a coset in GLn(K)/GLn(O) is characterised by the image of the standard lattice.
The subset Grin is then precisely the set of cosets αGLn(O) such that

tiOn ⊆ αOn ⊆ t−iOn.

4 Examples

We now have the machinery necessary to compute the geometric structure of some examples of affine Grassmannians
for some specific groups. From now on we’ll focus on the special case k = C.
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4.1 Stratification of Gr2(C)

We’ll use the lattice description from the previous section to understand the complex geometry of the C-points of
the affine Grassmannian for some small groups. We’ll try to find representative elements in each filtered piece in
order to stratify the affine Grassmannian by affine subvarieties.

So for the moment let G = GL2. Following remark 3.6 above, we identify C-points in the affine Grassmannian with
lattices of the form αO2, where α ∈ GL2(K). Some natural choices for α are diagonal matrices of the form

αa,b =

(
ta 0
0 tb

)
for a, b ∈ Z. The lattice αa,bO2 lies inside the filtered piece Grd2(C) where d = max(|a|, |b|). We think of it as
follows: we have a natural basis for K2 as a C-vector space consisting of elements tix1 and tjx2 with i, j ∈ Z, where
x1 and x2 are a K-basis for K2. Then αa,bO2 is the subspace

spanC{tix1, tjx2 : i ≥ a and j ≥ b}

Now, this suggests a more refined decomposition of Gr2(C). Specifically, we decompose the affine Grassmannian as
a disjoint union

Gr2(C) =
∐

b≤a∈Z
Sa,b

where Sa,b is the collection of lattices L in K2 such that taO2 ⊆ L ⊆ tbO2, and such that this is the tightest possible
such restriction on L. That is, ta−1O2 * L and L * tb+1O2. So each Gri2(C) decomposes as a finite union of such
strata:

Gri2(C) =
∐

−i≤b≤a≤i

Sa,b.

We’ll refer to this as a stratification of the space Gr2(C). In each stratum we’ve already found a representative
element, namely the lattice αa,bO2 ∈ §a,b. An important thing to understand will be the gluing properties of the
strata, so first let’s compute which strata lie in the boundaries of other strata.

Proposition 4.1. The closure of the stratum Sa,b is the union of all Sa−i,b+i for 0 ≤ i ≤ 1
2 |a− b|.

Proof. Choose a lattice αO2 in Sa−i,b+i as in the hypothesis. We’ll construct a sequence of lattices αnO2 in Sa,b

converging to αO2. Let x1, x2 denote the standard O-basis for O2. The group GL2(O) acts on Gr2(C) on the left
transitively on the strata, so we can find β so that βαO2 is the lattice αa−i,b+iO2 spanned by tb+ix1 and ta−ix2.
It suffices to find lattices converging to this standard element, then multiplying them on the left by β−1.

Now, this lattice is certainly in the closure of Sa,b: a sequence of lattices converging to it is given by the lattices
spanned by tb+ix1 and 1

n t
bx1 + ta−ix2: this lattice is certainly contained in tbO2, and a little arithmetic shows it

also contains taO2.

So we’ve shown that the closure Sa,b is contained in the required union as a dense subspace, so it remains to show
that the union is closed. We do this via the determinant map

∧2 : Gr2(C)→ Gr1(C).

The space Gr1(C) is just Z, with points given by rank 1 lattices tiO ⊆ K. The pre-image of such a lattice tiO is
the set of lattices in Sa,b such that a + b = i (as before we need only compute this for αa,bO2, where it is clear).
These sets are precisely the sets that we are trying to show are closed.

This argument has also shown us that the connected components in Gr2(C) are precisely the unions⋃
i≥0

Sa+i,a−i and
⋃
i≥0

Sa+1+i,a−i

for a ∈ Z. The affine Grassmannian for SL2 consists of those lattices whose determinant is the standard lattice,
which is precisely the component

⋃
Si,−i.
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4.2 Geometry of the strata in GrPGL2(C)

Now, let’s pass to the group PGL2 instead of GL2. In that case, things simplify in an important way: we now
identify lattices that are rescalings of one another, so in particular the strata Sa,b and Sa+n,b+n are identified for
every n ∈ Z, but multiplying the lattices by the diagonal matrix(

tn 0
0 tn

)
.

We may as well rescale all out lattices so that they contain O2, but not t−1O2, and label the resulting strata
S0,−b = Sb for b ≥ 0. We’ll compute the geometry of the strata starting from some small examples.

b = 0: The stratum S0 contains the single lattice O2 itself only: S0 = pt.

b = 1: The stratum S1 consists of lattices L such that O2 ⊆ L ⊆ t−1O2, apart from the lattice O2 itself, nor the
lattice t−1O2, which is equal to O2 in the affine Grassmannian for PGL2. So if x1, x2 is the standard O-basis
for O2, the lattices L must be generated by O2 and a single non-zero element in 〈t−1x1, t−1x2〉. There are a
P1 worth of such lattices, so S1

∼= P1.

b = 2: In order to understand the points of S2, first choose a lattice L0 ∈ S1. We’ll study the lattices L ∈ S2 such
that L0 ⊆ L. Without loss of generality we choose L0 to be the O-module spanned by t−1x1 and x2. Lattices
in S2 containing L0 are spanned as an O-module by O2 itself, t−1x1 and some non-zero at−2x1 + bt−1x2,
where a 6= 0 (note that there can be no t−2x2 coefficient, or L would contain t−1O2). Since we can rescale a
to 1, we see that the fibre in S2 over L0 is a copy of A1. If we allowed a to tend to zero, the lattice would
converge to O2, so S0 lies in the closure of each fibre. Since every point in S2 contains a unique lattice in S1

we have proven that S2 is the total space of a line bundle over S1
∼= P1. A little more work allows us to check

that the line bundle in question is O(−1).

This stratum is not closed: its closure is a singular complex surface with an additional point at infinity
adjoined. In other words, it’s the result of blowing down the zero-section in the Hirzebruch surface Σ1.

For general strata, we can use a similar method: every lattice in Sb contains a unique sublattice in Sb−1. The fibre
in Sb over such a sublattice is the affine line A1. Thus, by induction, Sb is b-dimensional, consisting of the total
space of a b − 1-times iterated line bundle over P1. What’s more, it admits a decomposition into Ab ∪ Ab−1 from
the decomposition P1 = A1 ∪ A0 (for b > 0). Thus we have proven the following:

Proposition 4.2. The affine Grassmannian for PGL2 has two connected components: Gr|even =
⋃
Seven and

Gr|odd =
⋃
Sodd. Each of these has cohomology

Hi(Gr|even) = Hi(Gr|odd) =

{
Z i even

0 i odd
.

Proof. The statement about the connected components follows from the argument about closures of strata: 4.1
above. The cohomology calculation follows because each component is built as a union of cells in even real dimen-
sions, one in each dimension.

Remark 4.3. A similar calculation works for GL2 and SL2 also: one finds only one connected component for SL2,
and one connected component for each integer in the case of GL2, and the cohomology of each component is the
same as in the PGL2 example.
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