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In this talk I’ll review the geometric meaning of the affine GrassmannianG(K)/G(O) and its quotientG(O) \G(K)/G(O),
and compare them to spaces of conformal blocks arising in conformal field theory. There will be a bit of overlap
with Aron’s talk last week, which I hope will be useful for people that aren’t already familiar with these sorts of
constructions. The main reference is the paper [BL94] of Beauville and Laszlo, but I’ll also refer extensively to a
later paper [Bea94] of Beauville. Another good reference with many details on spaces of conformal blocks and the
Verlinde formula is the master’s thesis [Muk10] of Mukhopadhyay.

The first section of these notes has overlap with some longer notes I wrote on the geometry of affine Grassmannians,
available at http://www.math.northwestern.edu/~celliott/Affine_Grassmannian.pdf.

1 The Affine Grassmannian and Related Constructions

I’ll work over C throughout (though all results should immediately generalise to any algebraically closed field of
characteristic zero, and most of the definitions still make sense over much more general base rings). Write K for the
field C((t)) of Laurent series, and O for the subring C[[t]] of power series. The formal disc and formal punctured
disc over C are the affine schemes D = SpecO and D× = SpecK respectively. The formal bubble is my name for
the fibre product of schemes B = D ×D× D, so-called because I like to think of it as an infinitesimal version of P1

but remembering that the transition function is given by z1 = z2 rather than z1 = z−1
2 .

The geometric objects we will study in this talk will be moduli spaces of G-bundles over such schemes, where G is
a complex reductive group. One has to be a little careful, because we’ll be working with functors that are almost
but not quite representable by schemes, that is, representable only by colimits of schemes, so called ind-schemes
(in the category of complex algebraic spaces say, which admits appropriate colimits).

Let’s first give some informal definitions, then make them more precise by describing a functor-of-points.

Definition 1.1. 1. The formal loop group G(K) is the space of morphisms D× → G. Likewise, the formal arc
group G(O) is the space of morphisms D→ G.

2. The affine Grassmannian GrG is the moduli space of G-bundles P on D with trivialisations of the restriction
P |D× to D×.

3. The moduli space BunG(B) is the moduli space of G-bundles on the formal bubble B, or equivalently pairs of
G-bundles P1, P2 on D with isomorphic trivialisations of their restrictions to D×.

Interpreted correctly, we have isomorphisms GrG ∼= G(K)/G(O) and BunG(B) ∼= G(O) \G(K)/G(O), since GK)
describes maps D× → G, or trivialised G-bundles on the punctured formal disc D×, and G(O) likewise describes
trivialised G-bundles on D.

To make this precise, we’ll describe the functors these objects represent, and at least hint at why they are repre-
sentable by colimits of schemes (in the first case), or stacks (in the second case).
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1.1 The Affine Grassmannian

In order to construct GrG as an algebro-geometric object (one arising from a moduli problem), we’ll describe the
functor that it’s supposed to represent:

GrG : (Commutative C-algebras)→ (Sets)

sending an algebra A to the set of pairs (E, γ), where E is an A-family of G-bundles over D, and γ is an isomorphism
from E|D× to the trivial A family of G-bundles over D×. Notice that if A = SpecC that this is just a G-bundle on
D and a trivialisation away from the origin. We’ll see below that this is the same data as we described before (as a
set).

To make sense of this, I’d should say what exactly an A-family of G-bundles is, but to keep things reasonably
simple, I’ll just describe an A-family of vector bundles over D and D×. Recall the notion of a vector bundle from
commutative algebra:

Definition 1.2. The rank of a finitely generated projective A-module M at a point p ∈ SpecA is the rank of the
free Ap module Mp. We say M is rank n if rkM (p) = n for all points p.

Definition 1.3. � An A-family of rank n vector bundles on D is a rank n finitely generated projective module
over the ring A[[t]].

� Similarly, an A-family of rank n vector bundles on D× is a rank n finitely generated projective module over
the ring A((t)).

One can modify this definition directly to work for groups other than GLn, but more generally and indirectly one
can define G-bundles in the following way:

Definition 1.4. An A-family of G-bundles on D is an exact tensor functor Rep(G)→ Vect(D), where VectA(D) is
the tensor category of A-families of vector bundles (of any rank) as above. Similarly for D×.

That is, we define the associated vector bundle in every representation of G.

Now we must investigate what kind of object might represent the affine Grassmannian functor. The first thing to
note is that it is not represented by a scheme. Indeed, consider the example of G = Ga. Even Ga(K) = C((t))
cannot be represented by a scheme: it sits inside the scheme C[[t, t−1]] ∼=

∏∞
i=1 A1, but the condition that only

finitely many negative coefficients are non-zero cannot be expressed by polynomials.

However, it is very close to being representable by a scheme. Specifically, we have the following:

Proposition 1.5. There are a sequence of finite-type projective schemes GriG for i ∈ N, and closed immersions
GriG ↪→ Gri+1

G such that GrG = lim−→Gr
i
G, i.e.

GrG(A) ∼= lim−→Hom(SpecA,GriG).

A functor which is isomorphic to a direct limit of schemes of this form is called a (strict) ind-scheme, and is almost
as nice to work with as a scheme (some details on the theory of ind-schemes can be found in [Gai09] and the
appendix to [Gai00]). In particular we can define categories of (e.g. constructible) sheaves on an ind-scheme, where
every object is in fact supported on a finite subscheme. Furthermore we can do things like investigate the topology
of the C-points of an ind-scheme over C.

For the sake of time, I won’t describe the construction of the GriG, but the idea – for G = GLn – is to define GriG(A)
to be the set of all finitely generated projective A[[t]]-submodules E(A) ⊆ E0(A)⊗A[[t]] A((t)) such that

tiE0(A) ⊆ E(A) ⊆ t−iE0(A).
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This is sometimes called the lattice description of the affine Grassmannian: the modules E(A) are called lattices.
For instance, the C points of GriGLn consist of the set of all O-submodules M of Kn such that tiOn ⊆M ⊆ t−iOn.

It remains to generalise this construction to more general groups G, to prove that the GriG are representable by
schemes (indeed, by projective schemes of finite type) and to prove that the colimit of the GriG agrees with the
description of GrG given above. We refer to [Gai09] for details.

1.2 Moduli stacks of G-bundles

Now, let’s describe BunG(B) = G(O) \ GrG = G(O) \G(K)/G(O). The arc group G(O) is a genuine affine group
scheme, not just an ind-group, so our moduli space is the quotient of an ind-scheme by a group. We might use
abstract theory to describe the quotient as an algebraic stack, but instead we’ll use a different, global approach
which is special to SLn and which will mesh nicely with the subsequent parts of the talk.

Let X be a Riemann surface, and let x ∈ X be a point. Let X× = X \ {x}. Let Ax be the ring of algebraic
functions on X×. The space BunG(B) is an example of the following sort of stack.

Definition 1.6. Let GrG,X be the space of G-bundles P on X equipped with a trivialisation of the restriction P |X× .
That is, the functor associating to a C algebra A the set of principal G-bundles on X × Spec(A) with trivialisation
on X× × Spec(A). This is a global version of the affine Grassmannian, and is isomorphic to GrG [BL95], [Gai09].

Let BunxG(X) be the quotient stack G(Ax) \GrG,X . That is, the functor associating to a C algebra A the groupoid
of principal G-bundles on X × Spec(A) which are trivialisable on X× × Spec(A). We’ve forgotten the data of the
trivialisation.

In the case where G = SLn, this is isomorphic to the full moduli stack. That is BunxG(X) ∼= BunG(X). This is
proposition 3.4 in [BL94], and should be interpreted as the fact that all vector bundles on a non-compact complex
algebraic curve are algebraically trivialisable. Points can be viewed as vector bundles with trivialisable determinant,
where the determinant is the top exterior power of a line bundle. Although B is not a Riemann surface, the stack
BunG(B) is very similar to BunG(P1). For instance, the categories of coherent or constructible sheaves on these two
stacks are (non-canonically) equivalent [Laf09].

We can define a canonical line bundle on BunSLn(X) called the determinant line bundle, whose fibre is not just the
determinant of the corresponding line bundle, but rather the determinant of its cohomology.

Definition 1.7. To define the line bundle det → BunSLn(X), we must associate to each SLn-bundle E on X ×
Spec(A) a line bundle on Spec(A), i.e. a rank one projective A-module. Define such a line bundle by

det(π∗(E)0)⊗ det(π∗(E)1)∨

where π : X × Spec(A) → Spec(A) is the projection, and noting that the pushforward π∗(E) is a complex concen-
trated in degrees 0 and 1.

We’ll come back to the study of sections of this bundle and its tensor powers in section 3.

2 Conformal Blocks

Now we’ll introduce the other main object of study in this talk, and give an idea of its origin in conformal field theory
(though only briefly; I don’t want to assume any familiarity with quantum field theory). As well as [BL94], I referred
to a later descriptions of Beauville given in [Bea94]. One can more generally describe spaces of conformal blocks
associated to a vertex algebra [FBZ01], or a chiral algebra [BD04]; we’re just considering the space of conformal
blocks associated to a Kac-Moody vertex algebra for SLr.
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Let G be a simple complex Lie group. We’ll construct a central extension Ĝ of the loop group G(K) which will act
on the bundles π∗(det⊗`) over GrG.

Definition 2.1. The affine Kac-Moody algebra associated to a simple Lie algebra g is the Lie algebra with underlying
vector space ĝ = (g⊗ C((t)))⊕ c · C, where c is a central element and the bracket of other elements is given by

[X ⊗ f, Y ⊗ g]c = [X,Y ]⊗ fg + c〈X,Y 〉 res(fdg)

where 〈−,−〉 is the Killing form.

This algebra arises as the Lie algebra of a central extension of the loop group G(K) by Gm: the Kac Moody group

Ĝ. However, in what follows it should mostly suffice to consider only the Lie algebra.

Remark 2.2. Why does this algebra act on the bundle π∗(det⊗`) rather than the loop algebra itself? Beauville
and Laszlo prove that the pullback line bundle admits a description closely related to the Kac-Moody algebra.
Specifically, they prove (corollary 5.5 of [BL94]) that the Weil divisor corresponding to π∗(det⊗`) arises as the

image of the divisor of zeroes and poles of a meromorphic function τ on Ĝ under a natural projection map

Ĝ→ GrG.

This description yields a natural action of the Kac-Moody algebra ĝ, projected from the infinitesimal action of ĝ
on functions on Ĝ.

We’ll describe representations of ĝ associated to integer levels ` ≥ 0. That is, the central charge c should act as
multiplication by the level `. These are built from highest weight representations Lλ for g, where λ is a dominant
weight such that 〈λ, θ∨〉 ≤ `, where θ is a highest root and θ∨ is the corresponding coroot. Such a representation
is constructed as follows (following [Bea94]):

� Split ĝ as ĝ− ⊕ g⊕ c ·C⊕ ĝ+ where ĝ± are the spaces spanned by only the positive or negative powers of the
parameter t. Consider the subalgebra p = g⊕ c · C⊕ ĝ+.

� Consider Lλ as a representation of p by letting g act as normal, ĝ+ act trivially, and c act as multiplication
by `.

� Induce to a representation V`,λ = Lλ ⊗U(p) ⊗U(ĝ).

� Take the quotient H`,λ of V`,λ by the unique maximal ĝ subrepresentation (the existence of such a thing uses
the constraint on λ mentioned above).

The resulting representation is uniquely characterised by the action of c and the property that Lλ ⊗ 1 is precisely
the subspace annihilated by ĝ+.

Now, let X be a Riemann surface, and let x ∈ X be a point (we’ll eventually compare our constructions to the
spaces considered in remark 1.6 with the same setup). Let Ax be the ring of algebraic functions on X× = X \ {x},
and let g(Ax) = g ⊗C Ax. There’s a ring homomorphism Ax → K by taking the Laurent expansion at x (that
is, pulling back under the inclusion D× ↪→ X×, or taking the germ). This induces a Lie algebra homomorphism
g(Ax)→ ĝ.

Definition 2.3. The space B†`,λ of covacua for G of central charge ` and weight λ is the space of coinvariants for
this Lie algebra

B†`,λ = (H`,λ)g(Ax) .

Write B`,λ for the dual vector space, the space of vacua or conformal blocks.

Remark 2.4. This definition naturally extends to a finite set of points xi ∈ X and dominant weights λi, i = 1, . . . n.
Varying these points (and keeping the weights fixed) preserves the space of conformal blocks up to isomorphism, so
gives a vector bundle on the configuration space of n points in X, and varying the complex structure also gives a
vector bundle on the moduli space Mg,n of punctured curves.
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The motivation for this definition comes from conformal field theory on the Riemann surface X. The local ob-
servables in such a theory are described by a vertex algebra (for instance, the affine Kac-Moody algebra described
above induced a Kac-Moody vertex algebra by an enveloping algebra construction [Gwi12], which is the algebra of
observables in a WZW model). The Hilbert space of the WZW model at level ` is the sum⊕

λ∈P`

(
H`,λ ⊕H`,λ

)
where P` is the set of dominant roots satisfying the constraint 〈λ, θ∨〉 ≤ `. The H`,λ and H`,λ are just two copies
of the highest weight representation; the bar is just a label. To a state in the Hilbert space we associate a local
observable on a disc by the state-operator correspondence, thus local operators admit a weight decomposition.

If we look at a set of points x1, . . . , xn, and the local observables of weights λ1, . . . , λn in a small neighbourhood
of this finite set, we find they satisfy the chiral and antichiral Ward identities. That is, they are invariant under
a certain Lie algebra describing conformal transformations of the complex structure on X. Thus, in order to
construct physical observables we might look at all functionals on a tensor product of the Hilbert space (or the
weight λ piece) which are invariant under the Ward identities. The resulting space is precisely a copy of the space
of conformal blocks plus its complex conjugate, because the algebra encoding the Ward identities is precisely the
algebra g(Ax1,...,xn). This description is given, for instance, in [Fre07].

3 Generalized Theta Functions

To conclude, we’ll say what Beauville and Laszlo mean by “generalized theta functions”, and describe their rela-
tionship with conformal blocks (the Verlinde formula). At this point, we once again restrict to G = SLn. Let’s
recall the most classical notion of a theta function, as described in [Bea13].

Definition 3.1. Let T = V/Γ be a complex torus, and let (eγ)γ∈Γ be a set of holomorphic functions on V satisfying
the cocycle condition

eγ+δ(z) = eγ(z + δ)eδ(z).

A theta function for this system is a holomorphic function on V such that

θ(z + γ) = eγ(z)θ(z) for all γ ∈ Γ, z ∈ V.

The complex tori we have in mind are the Picard varieties of Riemann surfaces. The systems eγ precisely describe
transition functions for line bundles on the torus, and a theta function for such a system is precisely a section of
such a line bundle. That is, there is a bijection

{θ functions on T for L} ↔ H0(T ;L).

Now, we’d like to generalise this by replacing a torus (i.e. BunGm(X)) by a non-abelian analogue: BunSLn(X).
The line bundles we’ll consider will be powers of the determinant line bundle, as defined in 1.7. The resulting space
of generalized theta functions (i.e. holomorphic sections of these line bundles) agrees with a space of conformal
blocks, by the main theorem of [BL94].

Theorem 3.2. There is a canonical isomorphism between the space of sections of det⊗` and the space of weight
zero conformal blocks. That is

H0(BunSLn(X); det⊗`) ∼= B`,0.

Remark 3.3. We might ask for an interpretation of the spaces of conformal blocks of higher weight, or associated
to more than one point in X. The case of additional points is described by a property called propagation of vacua.
There is always a canonical isomorphism

B`,λ1
(x1)⊗B`,λ2

(x2) ∼= B`,λ(x)
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where x = (x1, x2) and λ = (λ1, λ2). Propogation of vacua says that when x2 = x2 is a single point, and λ2 = 0
then there is also a canonical isomorphism

B`,λ1(x1) ∼= B`,(λ1,0)(x1, x2)

allowing us to freely introduce additional points with zero weight.

The introduction of non-zero weights corresponds to the introduction of parabolic structures – reduction of structure
group to particular parabolic subgroups at specified points – into our moduli space [Pau96].

Let’s say at least a few words about the proof of theorem 3.2. The main input is a theorem of Kumar [Kum87] and
Mathieu [Mat88] (independently) on the level of the affine Grassmannian.

Theorem 3.4. There is a canonical isomorphism of ŝln-representations

H0(GrSLn ;π∗ det⊗`) ∼= H∨`,0.

The Kac-Moody action on the left hand side was described above in 2.2. The theorem is proved by checking the
left hand side satisfies the properties uniquely characterising the right hand side, i.e. that the central element c
acts with weight ` and the subspace annihilated by ĝ+ is isomorphic to the trivial representation L0.

Passing from this theorem to 3.2 is mostly formal. Based purely on abstract properties of quotient stacks, there is
an isomorphism

H0(BunSLn(X); det⊗`) ∼= H0(GrSLn ;π∗ det⊗`)sln(Ax)

and taking sln(Ax)-invariants in the Kumar-Mathieu theorem give the desired result.

We conclude by mentioning a very famous result: the Verlinde formula. This is a formula for the dimensions of
the spaces of conformal blocks, and therefore for the spaces of sections of powers of the determinant line bundle
on moduli space. One proves the Verlinde formula using “fusion rules” (which allow for detailed analysis of the
representation rings of Kac-Moody algebras at level `), normalised by calculations of the dimensions for P1. We
include the formula for completeness; details are available in [Bea94].

Theorem 3.5. Suppose g is a simple Lie algebra of type A,B,C,D or G. Then

dimB`,λ(x) = |T`|g−1
∑
µ∈P`

TrVλ1⊗···⊗Vλn

(
e2πi µ+ρ

`+h∨
) ∏
α>0

∣∣∣∣2 sin

(
π
〈α, µ+ ρ〉
`+ h∨

)∣∣∣∣2−2g

where g is the genus of X, P` is the set of dominant roots satisfying the constraint 〈λ, θ∨〉 ≤ `, ρ is the half-sum
of the roots, and h∨ = ρ(θ) + 1, and T` is the set of elements t in the maximal torus such that χ(t) = 1 for all
characters χ in the lattice generated by `+ h∨ multiples of the long roots. The exponential map in the formula is
the map associating a character to a root.

Remark 3.6. Teleman and Woodward [TW09] proved a more general version of the Verlinde formula, allowing the
computation of the dimensions of any vector bundle on BunG(X),not just powers of the determinant line bundle.
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