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Let g be a semisimple Lie algebra over a field k. One is normally interested
in representation of g, i.e. g-modules. If g were commutative, one could use
the tools of algebraic geometry. More precisely, for A a commutative ring,
one has the equivalence of categories:

{A-modules} ↔ {quasi-coherent sheaves over Spec(A)} .

However, the interesting cases of Lie algebras are noncommutative, so how
is one going to build an algebro-geometric which captures the representation
theory of g-modules? The answer is given in the work of Beilinson-Bernstein
on localisation1, and has essentially three parts.

(i) The first part is the definition of algebraic-geometric object associated
to the Lie algebra of G called the flag variety X. This parametrises
the Borel subalgebras, and to which weight of G we can construct G-
equivariant line bundles over X.

(ii) The second is that one can consider differential operators on the above
line bundle. These form a sheaf of so-called twisted differential operators
over the flag variety. One can then using previous work due to Konstant
describe the global section of these sheaves.

(iii) Finally, the flag variety is A-affine, which means that to understand
the category of sheaves of A-modules is equivalent to understanding
the category of modules for the ring DA ≡ Γ(X,A), where A will be
the kind of t.d.o.s obtained in item (ii).

1One of the functors which realises the equivalence of categories above is called lo-
calisation. Namely, to an A-module M we associate the quasi-coherent sheaf M̃ , also
denoted by M ⊗A OSpec(A), over Spec(A) and conversely to any quasi-coherent sheaf F

over Spec(A), the glocal sections Γ(Spec(A),F ) form an A-module.
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In these notes I will present the emphasised objects in the three items
above. Then I’ll explain Beilinson-Berstein result with some sketch proofs.
To keep it relatively short I will not treat the applications which are very
briefly sketched in their paper. I hope the material presented can give some
familiarity of how to work with all the objects introduced. The reason for
this choice is that probably the applications will appear very heavily in other
talks in this seminar.

1 Flag variety

In [BB81], they consider G a connected reductive algebraic group over an
algebraically closed field k of characteristic 0. For simplicity we will consider
G to be a connected semisimple algebraic group2. Recall that a Borel sub-
group is defined as a maximally closed connected solvable subgroups of G,
or equivalently, they are the minimal parabolic subgroups P of G3. We have
the following results about Borel subgroups.

Proposition 1. (1) Any two Borel subgroups B1, B2 are conjugate by an
element g ∈ G.

(2) The normalizer of B is B itself.

Let X denote the set of all Borel subgroups. From the above we can
identify the set X with G/B, for B a fixed Borel subgroup of G. Since it is a
general result that the quotient of an algebraic group G by a closed subgroup
B is an algebraic variety, we obtain that X has the structure of an algebraic
variety.

We list some of its properties without proof. For that we fix some nota-
tion. Let N (resp. N−) denote the unipotent radical of B (resp. B−, the
conjugate Borel subgroup to B), B/N = H is a maximal torus in G, and let
h = Lie(H), b = Lie(B) and n = Lie(N) be the corresponding Lie algebras.
Let ∆ be the root system associated to B, and ∆+ the set of positive roots4.
Denote by W the Weyl group corresponding to this root data.

(i) The flag variety X has a cover by the affine open sets gN−B/B, for
g ∈ G. Each of these open subsets is isomorphic to k|∆

+|.

2Any reductive group can be realised as the product of a semisimple group and a torus.
3We say a subgroup P of G is parabolic if G/P is a complete variety.
4Recall ∆ ≡ {λ ∈ h∗|gλ 6= 0} \0 and ∆+ ⊂ ∆ is the subset of λ s.t. gλ ⊂ b.
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(ii) X is a projective variety

(iii) Let Xw ≡ BwB, for w ∈ W . We have a decomposition X = twBwB.
And each Xw

5 is a closed submanifold of X, isomorphic to k`(w), where
`(w) is the length of w. Moreover X̄w = ∪y≤wXy, where we use the
Bruhat ordering.

We will be interested in G-equivariant sheaves on X.

Definition 1. A sheaf F over X is G-equivariant if we are given a morphism
of sheaves

ϕ : p∗F → σ∗F ,

where p : G ×X → X is the natural projection and σ : G ×X → X is the
action by conjugation. This is asked to satisfy some usual cocycle condition,
i.e. that the two maps one can form, using p, σ and the multiplication of G,
between sheaves over G×G×X agree.

The sheaf morphism ϕ induces a map on sections from p∗F to σ∗F ,
that is a map between k[G] ⊗ Γ(X,F ) → k[G] ⊗ Γ(X,F ). If restricted to
elements of the form 1⊗ f , for f ∈ Γ(X,F ) we obtain a map

ϕ̃ : Γ(X,F )→ k[G]⊗ Γ(X,F ).

This is equivalent to an action of G on Γ(X,F ). The same reasoning also
gives an action of G on all cohomology H i(X,F ). This construction of rep-
resentation via sections of equivariant sheaves is very important in geometric
representation theory.

Now let V be a G-equivariant vector bundle over X. The fiber VB of V at
B ∈ X is a B-module6. Conversely, given a B-module U consider the action
of B on G× U given as:

b · (g, u) = (gb−1, bu) b ∈ B, g ∈ G, u ∈ U.

Then V = B\ (G× U) is a G-equivariant bundle with VB = U .

5This is called a Schubert cell and will come up in other articles in this seminar. Its
closure is known as Schubert variety.

6Indeed, one has a map for every g ∈ G from VB to Vg·B , if g ∈ B, we know that
g ·B = B so it actually gives a map from B to GL(VB).
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Remark. In particular, G-equivariant line bundles over X correspond to
1-dimensional representations of B. Moreover, N (the unipotent radical
of B) acts trivially on 1-dimensional representations, i.e. a 1-dimensional
representation of any unipontent element is trivial. So the representation
corresponding to a G-equivariant line bundles is actually induced from a
representation of B/N , since N acts trivially. Since H = B/N is abelian, its
representations are given by a character λ ∈ Hom(H,Gm), so for any λ we
get a G-equivariant line bundle on X which we denote L (λ).

The above should be enough to understand the construction used in
[BB81]. We now will describe a little of how D-modules allow to manage
the noncommutativity of Lie algebras.

2 Twisted Differential Operators

We will define D-modules in a particular way such that the case we are
interested in sits naturally in this definition.

Definition 2. For an algebraic variety X, with structure sheaf O consider
the sheaves Dn defined inductively on an open set U by

Dn(U) ≡
{
ϕ ∈ End (O(U)) |[ϕ, f ] ∈ Dn−1(U), f ∈ O(U)

}
,

where we pose D0(U) = O(U). The sheaf DX , which we will abreviate as D ,
on an open set U is then just D(U) ≡ ∪n≥0Dn. A D-module M is a sheaf
of O-modules with a map of sheaves D → End(M )7.

Remark. This definition gives a natural filtration to D , which will be used
later on. More importantly, to any locally free O-module F , replacing O
by F 8 in the above construction we obtain a sheaf DF which is evidently a
D-module.

Remark. In particular, for line bundles L the sheaf DL obtained is an
example of twisted differential operators. One can check this agrees with
[BB81], as O sits naturally inside it, i.e. they are the elements of degree 0
with respect to the natural filtration.

7Here End(M ) is the sheaf of internal hom from M to itself.
8Still taking D0 = O, just change where the endomorphisms take place.
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Example. For any λ ∈ Hom(H,Gm) let L (λ) be the associated line bundle,
we call Dλ = DL (λ). More generally [BB81] define Dλ for any weight λ ∈ P 9

the Dλ module as follows. Let U ≡ U ⊗k O and Jλ be the ideal generated
by ξ − λ(ξ) where we still denote by λ : b ⊗k O → k the map induced by λ
on the subsheaf b⊗k O, and ξ is a local section of U . Hence Dλ ≡ U /Jλ.

3 Global sections of Dλ

Since we want to study the representation theory of G, a good first step is
to study the representation theory of g. The latter is actually equivalent to
the representation theory of U(g), which henceforth we denote only by U .

The important result which makes the generalisation of the geometric
idea of localisation possible is a relation between certain U -modules and
Γ(X,Dλ)-modules. To describe it we first need a map from U to Γ(X,Dλ),
this is obtained as follows.

From the action of G on X, we have an induced map g → TX , from the
Lie algebra to the tangent bundle of X. One also has a map g → Γ(X,Dλ)
constructed in the same way one does the induced map. Namely, given a ∈ g
we consider ∂a ∈ Dλ defined on a section s ∈ Γ(X,L (λ)) by

ϕ
(
(a⊗ 1) · ϕ−1(σ∗s)

)
= σ∗(∂as).

Actually this formula makes sense for a any differential operator on G, not
only right-invariant vector fields, hence the map extends to U , remember
that U can be seen as the right-invariant differential operators on G.

We call this map Φλ : U → Γ(X,Dλ). One of the main results which
allows Beilinson-Berstein ideas to work is the following, according to Dixmier
due to Konstant.

Before enoucing the theorem we need some notation. Let Z ⊂ U be the
center of the universal enveloping algebra. We call χλ the central character
of Z associated to λ. We recall this construction. Any λ ∈ P induces a
map λ : h → k. Then by the Poincaré-Birkhoff-Witt theorem, the universal
enveloping algebra of g = n− ⊕ h ⊕ n splits as U(g) = U(h) ⊕W , for some
subalgebra W . Hence the map λ gives a map χλ : U(h) → k, because h is
commutative, so U(h) ' Sym(h). The central character comes from noting

9We denote by P the weight lattice, i.e. P = {λ ∈ h∗|λ(α∨) α ∈ ∆ ∈ Z}, and we
denote by α∨ the coroot associated to α.
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that Z = UG (?), the invariant element of the universal algebra under the
adjoint action of G, and composing χλ with the map UG → U(h) (?). We
still use the same notation for the map χλ : Z → k.

Theorem 1. The map Φλ is surjective. Moreover, for any z ∈ Z ⊂ U
Φ(z) = χλ(z)id and ker Φλ = U · (kerχλ).

We will not fully prove this result as it is a little bit technical we will try
however to give an insight of why this is true by looking at the commutative
part of the statement.

Sketch. The associated graded to U is just the symmetric algebra over g.
It is not hard using the canonical filtration of Dλ to see that the map Φλ

actually descends to a map between the associated graded parts

grΦλ : Sym(g)→ Γ(X, gr(Dλ)).

Remark that Γ(X, gr(Dλ)) ' Γ(X, gr(D)) ' Γ(T ∗X,OT ∗X). So composing

with these isomorphisms we get a map Φ̃λ : Sym(g)→ Γ(T ∗X,OT ∗X).
Now recall, by a theorem of Chevalley k[g]G ' k[h]W which gives a map

σ : g/G → h/W , where G acts on g by the adjoint action and W acts
on h as usual. Hence one can define the nilpotent cone inside N ⊂ g by
precomposing σ with g → g/G and taking the inverse image of 0̄, the orbit
through 0. Then the celebrated theorem by Konstant says that N is a
normal reduced subvariety of g. Nevertheless, N is singular. However, one
has a nice resolution of singularities by the algebraic variety T ∗X10. One
then has a map

γ : T ∗X
γ′→ N

γ′′→ g ' g∗,

where the last identification is using the Killing form. It is not hard to see
as well that this corresponds to the moment map, induced from the action
of G on X. 11

10This is the Springer resolution, cf. Chris talk.
11Indeed, we can view a point of the cotangent bundle of the flag variety T ∗X to be

(b, λ), where b is a Borel subalgebra and λ ∈ b∗. There is an action of G on T ∗X, by
the adjoint action on the first element and the coadjoint action on the second. This is
an action compatible with the canonical symplectic structure of T ∗X and the associated
moment map µ : T ∗X → g∗ is µ(b, λ) = λ. The nilpotent cone N is just the image of this
morphism. Post composing with the Killing map we get the map γ we had in the text.
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The crucial observation is that the map on the algebra of functions in-
duced by γ coincides with the map Φλ, for χ = χλ. Now the fact that γ is
surjective follows from: (i) γ′∗ is an isomorphism on the algebra of functions,
since γ′ is a resolution of singularities; and (ii) γ′′∗ is a surjection, since N
is a closed subvariety of g.

To indentify the kernel of this map one has to look more closely to how
Konstant’s result is proved. In this commutative part it should be given by
Sym(g)G+, i.e. the non-constant elements of symmetric algebra of g invariant
under G.

The extension of the result for the whole associative algebras is an argu-
ment inducing on the filtrations.

We will not prove why the elements z ∈ Z are mapped to χλid, we refer
the reader to [THT07] for a clear and detailed account of this calculation.

The important corollary we get from the above theorem is that the cate-
gory of U -modules which act by the central character χλ is equivalent to the
category of Γ(X,Dλ)-modules.

4 X is Dλ-affine

The map we obtained in Konstant’s theorem relates to Γ(X,Dλ) not of Dλ

itself. So to U -modules one associates Γ(X,Dλ)-modules and not sheaves
over X. However for the flag variety these turn out to determine each other.
To make this precise we define D-affine varieties.

Definition 3. Let A be a twisted differential operator on a variety X. We
say X is A-affine if for every O-quasi-coherent A-module F

1. F is generated by the global sections Γ(X,F );

2. the cohomology sheaves H i(X,F ) vanish, for all i > 0.

The above gives an analogous result to the localisation we have with
quasi-coherent O-modules. The following theorem is sometimes called Morita
theorem.

Theorem 2. Denote by Mod(A) the category of O-quasi-coherent A-modules.
If X is A-affine, then Mod(A) is equivalent to Mod(A), where A ≡ Γ(X,A).
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Proof. The functors that realise the equivalence above are: Γ : Mod(A) →
Mod(A), Γ(X,N ) = N taking global sections and ∆(N) = A ⊗A N called
the localisation functor.

We have to check that α = Γ ◦∆ is an isomorphism. Let M ∈ Mod(A),
the functor ∆ is right exact, and since X is A-affine, Γ is exact by condition
2. So the functor α is right exact. So let

AJ → AI →M → 0,

be an exact sequence. Applying α we obtain

AJ → AI → α(M)→ 0,

since α(A) ' A. This implies α(M) 'M .
We need to check the other direction, i.e. that β = ∆ ◦ Γ is an isomor-

phism. Let M0 be the image of β in M , M0 is an O-submodule of M , hence
we have the exact sequence

0→M0 →M →M /M0 → 0,

by taking global sections we get that Γ(M /M0) = 0, since all its higher
cohomology vanishes this gives M0 = M . Now let K be the kernel of the
map β(M )→M , i.e.

0→ K → β(M )→M → 0,

is an exact sequence, condition 1. says that β is surjective. We apply global
sections to obtain

0→ Γ(K )→ Γ(M )→ Γ(M )→ 0,

where in the middle we used that α is an isomorphism, we get Γ(K ) = 0,
thus β is an isomorphism and we are done.

Remark. Sometimes one define A-affine as the two categories being equiv-
alent and then the above definition becomes a criterion.

Hence if one can proof that X is Dλ-affine for all λ ∈ P then we got
a complete geometric characterisation of U -modules with a given central
character χλ, that is, they are equivalent to the category of Dλ-modules over
X.

Indeed that is the case and this is the third part of [BB81] work.
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Theorem 3. For λ ∈ P , such that

λ(α∨) /∈ N, for all α ∈ ∆+ (1)

the flag variety X is Dλ-affine.

Sketch. There are two things to check: (1) that the cohomology of any F ∈
Mod(Dλ) vanishes and (2) that F is generated by global sections.

We will first consider (1). The idea is as in any cohomological calculation
one needs to transform the arbitrary sheaf F in a more tractable one, i.e.
one for which the cohomology is known, and keep track of its cohomology
through this procedure.

Consider V any finite dimensional G-module, as we explained there is
an associated G-equivariant vector bundle V over X. We can filter it by
G-equivariant vector bundles {Vi}I the following way:

0 ⊂ V1 ⊂ · · · ⊂ Vk = V ,

such that Vi/Vi−1 ' L (νi) for some νi ∈ P , and moreover ν1 ≤ · · · ≤ νk.
Now let F be any Dλ-module one get a map

iF : F → V ⊗F (−ν1),

induced from O = V1(−ν1)→ V (−ν1). Here we denote F (µ) ≡ F ⊗L (µ).
The technical part is the following:

Claim. When λ is dominant, i.e. satisfy (1). Then iF has a right inverse
jF .

To finish the proof we consider G a quasi-coherent O-module, and let
ϕ : G → F be any O-module morphism. We can factor it through V ⊗
G (−ν1) → V ⊗ F (−ν1). This gives induced maps on cohomology, since
H i(X,V ⊗ G (−ν1)) ' V ⊗k H

i(X,G (−ν1)). Now since V was arbitrary,
we can choose it such that −ν1 is sufficiently large, then by Borel-Weil-Bott
theorem, i.e. for µ ∈ P (µ(α∨) < 0 for α ∈ ∆+) the associated line bundle
L (µ) is ample12, we have that H i(X,G ⊗L (−ν1)) = 0. As G was arbitrary
we obtain that H i(X,F ) should vanish for all i > 0.

12Recall that this means that its positive cohomology when tensored with any O-quasi-
coherent sheaf vanishes, if twisted enough times. And that L (µ)m ' L (mµ).
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Remark. We will just say a few words about how to prove the claim. Note
that

V1 ⊗F (µ) ' F (ν1 + µ),

is a Dλ+ν1+µ-module. One just need to check that there is a projection from
V ⊗F (µ) to V1 ⊗F (µ). This follows from the action of Z on V ⊗F (µ),
i.e., it acts by characters and V1 ⊗ F (µ) is an eigensheaf by the Harish-
Chandra isomorphism. Indeed if it were not, since Z ' U(h)W , ν1 could not
be fixed by W , but in our decomposition ν1 is the lowest weight, and since λ
is dominant w(λ) ≥ λ for any w ∈ W , which implies that λ+ ν1 + µ can not
be conjugate (related by an element of the Weyl group) to any λ+ νi +µ for
i 6= 1, when µ = −λ1 which was the case for iF .

One could write down what all these objects are for the case of SL2(C),
we refer to [THT07] where this is done throughout Chapters 9, 10 and 11.
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