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1 Setup

Let G be a complex reductive Lie group with Lie algebra g. The paper [BM83] relates two kinds of object:

� Parabolic subgroups P ⊆ G. Recall that a subgroup P is parabolic if it contains a Borel subgroup, or
equivalently if the quotient space G/P is a projective variety.

� Partial resolutions π : Ñ → N , where N ⊆ g is the nilpotent cone: the set of elements X ∈ g such that the
endomorphism [X,−] is nilpotent (which implies that ρ(X) is nilpotent in all representations ρ of g). A partial
resolution is a surjective smooth map which restricts to an isomorphism on the preimage of the smooth locus
in N .

From a parabolic subgroup P we’ll construct a partial resolution πP : ÑP → N , prove some nice properties of πP ,
then study the geometry of its singularities and its fibres. If P = B is a Borel then this recovers the Springer
resolution of N , which is a bona fide resolution of singularities with total space isomorphic to T ∗(G/B).

Unless I say otherwise, all proofs are those given in [BM83].

2 The Partial Resolutions

We fix a parabolic subgroup P containing a Borel B once and for all with Lie algebra p. The quotient space G/P
can be viewed as the space of parabolic subgroups P ′ ⊆ G conjugate to P , or equivalently parabolic subalgebras
p′ ⊆ g conjugate to p.

Definition 2.1. The partial resolution ÑP is the space of pairs

{(X, p′) : p′ ∈ G/P and X ∈ p′ ∩N} ⊆ N ×G/P

This maps to N by the natural projection. Call this map πP .

We can likewise define a resolution πB : Ñ → N associated to the Borel subgroup B: the so-called Springer
resolution. This map factors through the partial resolution πP . We should check that πB really is a resolution of
singularities. To do so, we first study the geometry of the total space Ñ .

Let π2 be the projection map Ñ → G/B. The fibre of π2 over a Borel subalgebra b′ is the set of nilpotent elements
of b′. We can understand this by decomposing b′ ∼= h ⊕ n where h is the Cartan subalgebra and n = [b′, b′] is the
nilradical. The nilpotent elements are those elements in {0} ⊕ n ⊆ b′, so the projection π2 is a vector bundle.
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Proposition 2.2. The Springer resolution Ñ is isomorphic to T ∗(G/B) as a vector bundle over the flag variety.

Proof. [CG97] First, note that our description above identifies Ñ as the vector bundle

G/B ×b n ∼= G×B n,

where on the left-hand side b is the tautological b-bundle over G/B, and on the right-hand side B acts on n by
the adjoint action. We can identify n as the annihilator of b in g with respect to the Killing form B(X,Y ) =

Tr(ad(X)ad(Y ). Thus we’ve identified Ñ with G×B b⊥, where b⊥ ⊆ g∗ is the annihilator of b, acted on by B by
the coadjoint action.

To see that this recovers the cotangent bundle of the flag variety, we consider the dual vector bundle G×B (g/b).
This can be viewed as the quotient of the trivial g bundle on G/B by the tautological b-bundle. However, the
tautological b-bundle is also the kernel of the bundle map

G/B × g→ T (G/B)

given by the infinitesimal G-action. Thus G×B (g/b) ∼= T (G/B) or dually G×B b⊥ ∼= T ∗(G/B) as required.

Now, this proves that Ñ is smooth. To see it forms a resolution, we just observe that πB is an isomorphism away
from the singularities of N . We’ll need a description of this smooth locus: it will consist of the regular elements of
N .

Definition 2.3. An element X ∈ g is called regular if the characteristic polynomial of ad(X) has degree rk(g)
(recall that the rank of g is the maximal degree of such a characteristic polynomial, or equivalently the dimension
of any Cartan). The regular elements are dense in g.

Remark 2.4. For G = GL(n), the regular elements of g are just those matrices all of whose eigenvalues are distinct.

Theorem 2.5. For X ∈ N , the Springer fibre π−1B (X) has dimension

dX =
1

2
(dim(g)− dim(OX))

where OX is the orbit of X under the adjoint action. In particular, the Springer fibre is zero-dimensional if and
only if X is regular. In this case it consists of a single point.

This is a theorem of Steinberg proven in [Ste76]. Much of the proof holds for more general parabolic subgroups
than just Borels. In particular we notice that the Springer resolution πB , hence all the πP , are semismall maps
with respect to the stratification of N by adjoint orbits. In general a map π : Y → X is semismall with respect to
a stratification of X if for every stratum S ⊆ X, and for every point x ∈ S, one has

2 dim(π−1(x) ≤ dim(X)− dim(S).

This will become important later on when we apply the decomposition theorem. A stratum is called relevant if
equality holds in the above inequality; for the Springer resolution all strata are relevant.

3 Intersection Cohomology and the Decomposition Theorem

The main tool we’re going to use to study the topology of N and its resolutions is the theory of intersection
cohomology, or more generally of perverse sheaves. These are sheaves of vector spaces well-suited for studying the
topology of singular spaces; they admit nice notions of push-forward and pull-back along functions between spaces,
and a natural notion of duality related to things like Poincaré and Alexander duality for smooth manifolds. Good
expository references for the theory of intersection cohomology include [Rie03] and [dCM09].
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To start, we should be more precise about what kind of spaces we’re talking about. The idea is to consider spaces that
admit stratifications, i.e. decompositions into a disjoint union of smaller spaces, where the strata look like smooth
complex manifolds. For instance, singular complex varieties should have this form. Not just any stratification will
do – one wants to avoid pathological examples – so we restrict to stratifications satisfying the Whitney conditions

Definition 3.1. A topological space X is called a stratified pseudomanifold if it can be decomposed as a finite
disjoint union X = S0 t · · · t Sn where

� The stratum Si is a smooth 2n− 2i-manifold.

� The stratum S0 is dense in X.

� For every x ∈ Si, there is an neighbourhood U such that the intersection of U with the strata makes U into a
stratified pseudomanifold, with strata U∩Sj ∼= R2n−2i×coneo(Λi), where ΛtΛi is a stratified pseudo-manifold
of dimension 2i called the link of x, and where coneo denotes the open cone.

The latter is the appropriate local triviality condition for stratified spaces. The stratification is called a Whitney
stratification if given two strata Si and Sj , and a sequence (xk) ∈ Si converging to y ∈ Sj , if the tangent spaces
Txk

Si converges to a tangent space T ⊆ TyX, then this space T contains the tangent space TySj .

From now on, we’ll use “ stratified space” to mean “Whitney stratified pseudomanifold”. Whitney proved that
every complex variety admits a Whitney stratification, so this includes many fundamental examples. Relevant to
our purposes, the nilpotent cone N admits a Whitney stratification by its adjoint orbits with dense stratum given
by the regular semisimple elements (this is proven in [CG97]).

Now, let’s explain what kind of sheaves we’ll be dealing with on these stratified spaces.

Definition 3.2. A local system on a space X is a locally constant sheaf of finite-dimensional (complex) vector
spaces. A sheaf F of vector spaces on X is called a constructible sheaf if X admits a stratification tSi so that
F|Si

is a local system for every i. We’ll deal with the bounded derived category Db
c(X) of constructible sheaves, so

objects are finite cochain complexes of constructible sheaves.

For a map f : X → Y of spaces there are natural (derived) pushforward and pullback functors f∗ : Db
c(X)→ Db

c(Y )
and f∗ : Db

c(Y )→ Db
c(X). I won’t go into detail about how to define these, but they satify the properties one would

expect from more familiar versions of sheaf theory (for instance f∗ is left adjoint to f∗). One also has exceptional
pullbacks and pushforwards f !, f!, Verdier dual to the functors above.

The intersection complexes we’ll study will be objects in this category which arise from a particularly nice topological
origin. I’ll give two constructions. Let X be a stratified space of real dimension 2n.

1. We can define a sheaf IC(LXX) purely sheaf-theoretically. Start with a local system C0 = LX on the open
stratum S0, placed in degree −n. For each i, inductively define

Ci = τ≤i−n(ji)∗Ci−1
where ji is the inclusion of Ci−1 into Ci, and where τ≤k are the truncation functors:

τ≤kF = (· · · → Fk−2 → Fk−1 → ker(dk)→ 0) .

The complex IC(LX) is the result of this procedure: IC(LX) = Cn. 1

2. We can also construct IC(CX) in a more explicit, topological way, in terms of singular cochains. For simplicity,
we’ll work with singular chains: one can dualise to produce a complex agreeing with the one produced above.
We say a p-chain C is allowable if, for every stratum Si, one has

dim(|C| ∩ Si) ≤ p− i
dim(|∂C| ∩ Si) ≤ p− i− 1

where |C|, |∂C| denote the supports of the chain and its boundary. The intersection complex IC∗(X) is the
subcomplex of the complex of singular chains (with C-coefficients) that are allowable.

1Here I’m defining intersection cohomology in the “middle perversity”, which is the version that gives something Poincaré self-dual.
One gets other versions by using harsher or less harsh truncations.
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For a proof that these two constructions give isomorphic complexes, see [Rie03] 4.9.

Remark 3.3. To really make sense of the latter definition we should choose a piecewise linear structure on X,
and only work with piecewise linear chains. The coincidence with the sheaf-theoretic construction proves that this
construction is independent of the choice of piecewise linear structure.

Given any locally closed stratified subspace i : Y ↪→ X, we’ll denote the sheaf i∗IC(LY ) ∈ Db
c(X) by ICY (LY ).

These intersection cohomology sheaves of subspaces form the building blocks for a special (abelian) subcategory
of Db(X), the category of perverse sheaves. These objects have another description. There is always a canonical
natural transformation of functors i! → i∗. The image of the map i!F → i∗F for F ∈ Db

c(Y ) is called the minimal
or IC extension of F , and denoted i!∗F . If F is a local system, this agrees with the IC sheaf ICY (LY ) defined
above. For more details, see [HT08] section 8.2.

3.1 The Decomposition Theorem

The decomposition theorem tells us, if we have a map π : Y → X between spaces, how to decompose the pushforward
π∗(CY ) into nice irreducible objects of the above form: objects built from IC sheaves of strata. The statement is a
little fiddly in general, but the theorem has a very nice form for semismall maps. Recall the definition.

Definition 3.4. A map π : Y → X is called semismall with respect to a stratification of X if for every stratum
S ⊆ X, and for every point x ∈ S, one has

2 dim(π−1(x) ≤ dim(X)− dim(S).

The map π is called small if equality only holds for the dense stratum. In general, a stratum is called relevant if
equality holds in the inequality above.

Theorem 3.5 (Decomposition theorem for semismall maps). Let π : Y → X be a semismall map with respect to
a stratification X = tSi of X. Then there is an isomorphism

π∗(CY ) ∼=
⊕

Si relevant

ICSi
(LSi)

where LSi
is the local system on Si induced from the monodromy action on the components of the fibres of π over

Si.

We can give a further decomposition according to irreducible representations of the fundamental groups π1(Si).
Specifically, for each such irreducible representation χ we get a local system Lχ on Si, and we can decompose LSi

according to isotypic components:

LSi
∼=

⊕
χ∈Irrep(π1(Si))

χ⊗ V χi .

This then gives a total decomposition

π∗(CY ) ∼=
⊕
Si,χ

ICSi
(Lχ)⊗ V χi

where the sum is over Si relevant strata and χ irreducible representations of π1(Si). In what follows we’ll apply
this to the nilpotent cone N of a Lie algebra, stratified by orbits for the adjoint action.

4 Applications to the Topology of N and its Springer fibres

We’ll conclude by returning to the nilpotent cone, and describing some applications of the decomposition theorem
to understanding its topology. Firstly, Borho and Macpherson prove the following:
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Theorem 4.1. The nilpotent cone N , and the partial Springer resolutions ÑP , are rational smooth.

Definition 4.2. An n-dimensional complex variety X is rationally smooth if for every x ∈ X we have

H∗(X,X \ {x};C) ∼= C[−2n].

This admits an equivalent description in terms of intersection cohomology:

Lemma 4.3. A stratified space X is rationally smooth if and only if there is a quasi-isomorphism IC(CX) ∼= p∗CX ,
where p is the map from X to a point.

Proof sketch. That rational smoothness implies this condition on IC(CX) is a Verdier duality calculation. The
relative homology H∗(X,X \ {x};C) is a definition of the stalk of the Borel Moore homology at x, which is to say
the Verdier dualising sheaf of X, which we’ll denote ωX . Rational smoothness is equivalent to the isomorphism of
the shifted dualising sheaf ωX [−2n] with the constant sheaf CX . Pushing forward:

p∗CX ∼= p∗ωX [−2n]
∼= (p!CX [−2n])∨

using Verdier duality. The map from the right to the left always factors through the IC sheaf, so since it is an
isomorphism, the map to the IC sheaf must be an isomorphism also.

The converse is a little harder. We proceed by simultaneous induction on the dimension of X and the codimension
of a stratum. The claim is clear for the dense stratum: points in such strata have smooth neighbourhoods. The
Borel-Moore homology (or stalk of the dualising sheaf) at a point x can be computed as the homology of the link
Λx of the stratum containing x, which is rationally smooth by the induction hypothesis. One then computes

Hi(Λx) ∼= IH2c−i−1(Λ) ∼= IH2c−i−1
x (X)

for c ≤ i < 2c, where c is the codimension of our stratum. This establishes our claim in this range of dimensions,
and Poincaré duality for the link (using the inductive hypothesis) completes the proof.

Thus to prove the theorem we need to compute the intersection complex of N and its partial resolutions. Let’s
discuss the nilpotent cone N only; one doesn’t need to do much more work to extend the calculation I’ll explain to
partial resolutions also. We can use the decomposition theorem for this calculation. To compute the stalk of the
IC complex at a point x, we observe

H∗((G/B)x;C) ∼= ((πB)∗CÑ )x

∼=
⊕
i,χ

(
ICSi

(Lχ)x ⊗ V χi
)

in the notation of the statement of the decomposition theorem above, where (G/B)x is the Springer fibre over x
and p is the map from N to a point. We have to investigate the isotypic component corresponding to the dense
stratum and the trivial representation.

There is a Weyl group action on the complex (πB)∗CÑ , due to Lusztig. To define this, we generalise the Springer
resolution to the so-called Grothendieck resolution of g:

ξ : g̃ = {(X, b′) ∈ g×G/B : X ∈ b′} → g.

When one restricts to regular semisimple elements, one finds that this map is a W -fold covering map, i.e. W acts
on g̃rs by deck transformations. Thus W acts on the sheaf ξ∗(Cg̃rs

). Now, the map ξ is small – semismall with the
dense stratum the only relevant one – so the decomposition theorem tells us

ξ∗(Cg̃) ∼= IC(ξ∗(Cg̃rs
))

and upon pulling back along the inclusion i : N → g (i.e. restricting to nilpotent elements), the Weyl group action
on the right gives a Weyl group action on i∗ξ∗(Cg̃) ∼= (πB)∗CÑ as required. Now we can use the following crucial
theorem, proven in [BM81].
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Theorem 4.4 (Springer Correspondence). The terms in the decomposition for ((πB)∗CÑ )x are in bijection to the
irreducible characters of the Weyl group, and the decomposition agrees with the decomposition as a Weyl group
representation.

Thus, we need to compute the piece corresponding to the trivial character, i.e. we must show thatH∗((G/B)x;C)W =
C.

To do so, let’s introduce a last piece of notation. We can factor a parabolic subgroup P as a product of its unipotent
radical U and a semisimple group L ∼= P/U . This group is called a Levi subgroup, and plays the same role inside
a parabolic subgroup as a Cartan plays inside a Borel. In particular we can take the Weyl group W (L) of L,
which sits inside the Weyl group W of G. For x ∈ N , denote by (G/P )x the fibre over x in the partial resolution

πP : ÑP → N .

Proposition 4.5. For the partial Springer fibre (G/P )x, its cohomology arises as W (L) invariants in the cohomol-
ogy of the full Springer fibre:

H∗((G/P )x;C) ∼= H∗((G/B)x;C)W (L)

where the W (L)-action is the restriction of the Weyl group action defined above, using rational smoothness for N
to identify this with the ordinary cohomology.

Proof. The proposition follows from a sheaf-theoretic statement by taking stalks over a nilpotent element x ∈ N ⊆ g.
We’ll prove that (ξP )∗Cg̃P

∼= (ξ∗Cg̃)W (L) for the Weyl group action described above. One checks that, on the regular
semisimple locus, the partial Grothendieck resolution g̃P → g is obtained from the full Grothendieck resolution by
taking the subcover associated to the quotient W/W (L). Therefore we have

(ξP )∗(Cg̃rs,P
) ∼= ξ∗(Cg̃rs

)W (L)

which gives the statement we want for all of g rather than just the dense stratum by applying the decomposition
theorem to the desired statement, and using that the maps ξ and ξP are small, so only the dense stratum contributes.

This allows us to complete the proof of 4.1, by plugging in P = G above. Proving the full theorem requires the
result for all P and a little more care with the Weyl group actions discussed above.
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