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1 Introduction

The origin of D-modules is in the work of the Japanese school of Mikio Sato in the mid-twentieth
century on algebraic analysis. The aim of this program was to understand systems of linear partial
differential equations on manifolds, and their generalisations, using the techniques of algebraic geom-
etry and sheaf theory. One approach that proved very fruitful not only for the study of analysis, but
also for algebraic geometry, Hodge theory and representation theory was the notion of a D-module.
Essentially, we define a sheaf of differential operators on a complex manifold or smooth algebraic
variety, and consider modules over that sheaf. Systems of linear PDEs arise as an example when the
variety is affine n-space.

The derived category of D-modules on a smooth algebraic variety has a rich structure. If f : X → Y is
a morphism of smooth varieties, we can push forward and pull back a D-module along the morphism.
There are also a number of other natural functors between categories of D-modules which together
make up a version of the so-called “six operations formalism” of Grothendieck.

The Riemann-Hilbert correspondence is the most important result presented in this essay. As the 21st

of his famous problems, Hilbert proposed the classical question “Can one always produce a Fuchsian
differential operator with prescribed singularities and monodromy?” The Riemann-Hilbert correspon-
dence as proved by Kashiwara and Mebkhout uses the concept of D-modules to answer and vastly
generalise this. Indeed, we first introduce the category of holonomic D-modules. Although the so-
lution space of a system of ordinary equations is always finite dimensional, when we pass to higher
dimensions this is no longer necessarily true. Holonomic D-modules give the right generalisation of
this notion of finite dimensional solution space.

With an extra regularity condition governing the growth behaviour near singularities, we produce the
full subcategory of the derived category consisting of complexes of D-modules with regular holonomic
cohomology. The Riemann-Hilbert correspondence says that this category is equivalent to the derived
category of complexes of C-modules with constructible cohomology, in a way that is compatible with
many natural functors we can define on the two categories. This gives us a relationship between
the geometric category of D-modules and the topological category of constructible sheaves. In par-
ticular, there is a subcategory of the constructible derived category consisting of so-called perverse
sheaves, which are extremely interesting when understanding the topology of a space. The Riemann-
Hilbert correspondence gives us a deep relationship between perverse sheaves and regular holonomic
D-modules.

The main application of D-modules explained in this essay is to Hodge theory. There is a result of
Griffiths which says that if we have a one-parameter family of smooth varieties f : X → C \ Σ for
Σ a finite set, then the cohomology of the fibres Hw(Xλ) forms firstly a local system on C \ Σ, but
even more so, a variation of Hodge structure, which roughly means a family of Hodge structures on
the points, varying continuously and compatibly with the usual Hodge structures on each Hw(Xλ).
The theory of D-modules can be used to help us generalise this to explain what happens at singular
fibres. We can introduce the notion of the Kashiwara-Malgrange filtration on a D-module along a
subvariety. This is a way of understanding this singular behaviour, and is intimately related to the
vanishing cycles of Deligne. This helps us understand the topology, but to understand the Hodge
theory along the singular fibres an even more sophisticated method had to be developed: the mixed
Hodge modules invented and studied by Saito. The definition of these objects is rather elaborate, and
will only be touched on in this essay.

Another important application of this theory is to the representation theory of semisimple Lie algebras.
Although this will not be covered in this essay, I give a brief summary here. Let g be a semisimple
Lie algebra. Let M(λ) be the Verma module for g of weight λ, and let L(λ) be its unique irreducible
proper quotient. What is the character of L(λ)? Alternatively, what is the multiplicity [M(λ) : L(λ)]?
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A conjectural answer to these question was given by Kazhdan and Lusztig, but it was only after
work of Beilinson and Bernstein that progress could be made. They proved that there exist certain
regular holonomic D-modules whose rings of global sections (given natural g-module structures) were
isomorphic to M(λ) and L(λ). Not only that, but under the Riemann-Hilbert correspondence, these
D-modules correspond to particularly nice perverse sheaves, understandable and amenable to compu-
tation. With this, one can convert difficult questions about infinite-dimensional representations of Lie
algebras to much more tractable questions about perverse sheaves. It was using this machinery that
the Kazhdan-Lusztig conjecture was proved. For details on this, see [16], [12] and the second half of [8].

For the first part of this essay, I essentially follow the methods of the recent book [8] by Hotta, Takeuchi
and Tanisaki, with frequent reference to the unpublished notes [3] of Bernstein. When considering
the Kashiwara-Malgrange filtration and applications to Hodge theory, I referred extensively to the
book [15] of Peters and Steenbrink, and the notes [17] of Sabbah.

2 D-module fundamentals

In this section we will present the elementary definitions of the sheaf DX and modules over it, and the
elementary operations that can be performed, namely inverse and direct images and tensor product.
The key theorem of this section is Kashiwara’s theorem (2.26), which explains how the category of
coherent D-modules on a variety behaves under closed embeddings. All algebraic varieties are over
the field of complex numbers. Although in this chapter the results will also be true for a general
algebraically closed field of characteristic zero, later on we will use the fact that smooth complex
varieties can be given the structure of complex manifolds. Although there is a rich theory of D-
modules in characteristic p, we will not touch on this at all in this essay.

2.1 DX and DX-modules

Definition 2.1. Let X be a smooth algebraic variety (over C). We define several sheaves of a natural
geometric origin that will be important in what follows. Firstly, let End(OX) denote the sheaf of
endomorphisms of OX . We can naturally identify the structure sheaf OX with a subsheaf of End(OX)
by

f ∈ OX  (g 7→ fg).

Define the (pre)sheaf of derivations of X on an open set U by

End(OX)(U) ⊇ Der(OX)(U) = {θ ∈ End(OX) : θ(fg) = fθ(g) + θ(f)g ∀f, g ∈ OX(U)}.

In fact, this presheaf is a coherent sheaf of OX -modules, which we more commonly denote ΘX , the
tangent sheaf or sheaf of vector fields on X. Dually, we define the cotangent sheaf or sheaf of 1-forms
to be the OX -module HomOX (ΘX ,OX), denoted Ω1

X . We will often need to refer to the top exterior
power of Ω1

X , i.e.
∧n Ω1

X where n is the dimension of X. We call this the canonical sheaf, and denote
it ωX .

Definition 2.2. Let X be a smooth algebraic variety. The sheaf of differential operators on X,
denoted DX , is defined to be the subsheaf of End(OX) generated by OX and ΘX as a C-algebra.

We will often refer to the following motivating example when seeking geometric intuition:

Example 2.3. Let X = Cn, affine n-space. What does DX look like in this case? OX = C[x1, . . . , xn],
the polynomial algebra in n variables, and the derivations of this algebra are precisely those generated
by the formal differential operators

∂i(x
a1
1 · · ·x

an
n ) = aix

a1
1 · · ·x

ai−1
i · · ·xann for i = 1, . . . n
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extended linearly to endomorphisms of all of C[x1 . . . , xn]. Thus the ring DX is the ring

C[x1, . . . xn; ∂1, . . . , ∂n],

a subring of the endomorphism ring. We can describe this formally as the ring generated over C by
elements x1, . . . , xn and ∂1, . . . , ∂n with commutation relations

[xi, xj ] = 0 = [∂i, ∂j ], [xi, ∂j ] = δij .

The algebra DCn is usually written Dn, and called the nth Weyl algebra.

This allows us to describe DX locally for a general smooth complex variety X. Indeed, consider a
point x ∈ X. Then we can always find some affine open neighbourhood U on which we have local
coordinates x1, . . . , xn ∈ OX(U) and ∂1, . . . , ∂n ∈ ΘX(U). That is, sections such that

[xi, xj ] = [∂i, ∂j ] = 0 and ∂i(xj) = δij .

Furthermore, we can choose them so that the ∂i generate ΘX(U) and the xi generate the maximal
ideal mx of OX,x ( [8] A.5.2).

Remark 2.4. This description leads to a natural filtration F on the sheaf DX . On a neighbourhood
V with local coordinates {xi, ∂j} as described above one can write

DV =
⊕
α∈Nn

OV ∂α

where ∂α = ∂α1
1 · · · ∂αnn is multi-index notation. Let U be an open subset of X. Then define

FiDX(U) =

P ∈ DX(U) : P ∈
⊕
|α|≤i

OV ∂α for all V ⊆ U with local coordinates

 .

In the affine case this is just the order filtration by order of a differential operator. F is an increasing
exhaustive filtration (i.e. FiDX ⊆ Fi+1DX , and

⋃
FiDX = DX), and (FiDX)(FjDX) ⊆ (Fi+jDX).

Remark 2.5. We can form the associated graded module grF (DX) with respect to this filtration:

grF (DX) =
∞⊕
i=1

FiDX/Fi−1DX .

This is naturally isomorphic to the sheaf π∗OT ∗X , where π : T ∗X → X is the cotangent bundle. To
see this we simply look in local co-ordinates.

Example 2.6. grF (Dn) ∼= C[ξ1, . . . , ξ2n], the polynomial ring in 2n variables.

Definition 2.7. A (left) D-module M on a smooth complex variety X (our fundamental object of
study) is a sheaf of (left) DX -modules.

Examples 2.8. Let X = Cn, so DX = Dn. Then we have the following examples:

1. M = OX with the natural action of xi, and trivial action of ∂i.

2. M = DX with the natural action of both xi and ∂i.

3. On X = {pt}, D{pt} ∼= C, so the D-modules on {pt} are simply the complex vector spaces.
Similarly, if X is now a general variety, p ∈ X, and V is a complex vector space, we can consider
the skyscraper sheaf of V at p as a DX -module with the trivial action. We will see in section
2.3 that these are the direct image of D{pt}-modules under the inclusion pt 7→ p.
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4. Let P1 . . . Pm be a set of differential operators in Dn (i.e. a system of linear PDEs in n variables).
Then the quotient

Dn/
m∑
i=1

DnPm

is naturally a Dn-module. We will see when we study the solution functor that this is the module
we must consider when applying the theory of D-modules to the classical theory of linear PDEs.

A very natural way of interpreting D-modules is as O-modules with additional structure. Written out
explicitly this has the following form:

Proposition 2.9. Let M be a sheaf of OX -modules. Giving M the structure of a DX -module is
equivalent to describing a C-linear morphism ∇ : ΘX → End(M) such that

1. ∇fθ(m) = f∇θ(m)

2. ∇θ(fm) = θ(f)m+ f∇θ(m)

3. (∇[θ1,θ2] − [∇θ1 ,∇θ2 ])(m) = 0

for all f ∈ OX , θ and θi ∈ ΘX , and m ∈M

Proof. A DX -module structure on M is an action of ΘX on M compatible with the OX -action. Let
U be an affine open subset. On U , DX(U) is generated by OX(U) and ΘX(U) with the relation
[θ, f ] = θ(f) for θ ∈ ΘX(U), f ∈ OX(U). But this is precisely the condition (2) above. Interpreting
∇θ(m) as the action θm, the result is then trivial.

Remark 2.10. The choice of notation above is deliberately evocative. Indeed, consider the case when
M is locally free of finite rank as an OX -module, i.e. equivalent to the sheaf of sections of a vector
bundle on X. Then the proposition tells us that a D-module structure on M is precisely a flat or
integrable connection on the bundle.

We could equally well have chosen to consider right DX -modules. There is an important example of
a right DX -module to consider.

Example 2.11. The canonical sheaf ωX has a well-known right DX -module structure, via the Lie
derivative:

Lieθ(η)(θ1, . . . , θn) = θ(η(θ1, . . . , θn))−
n∑
i=1

η(θ1, . . . , [θ, θi], . . . , θn).

That this defines a right DX -module is a simple check by the obvious right module analogue of
proposition 2.9.

As the following construction shows, we can pass between the settings of left and right DX -modules
freely:

Proposition 2.12. Let X be a smooth variety. Then there is an equivalence of categories

Mod(DX)→ Mod(Dop
X )

(where Mod(Dop
X ) is naturally identified with the category of right DX modules), given by

ωX ⊗OX (−)

with quasi-inverse
ω∨X ⊗OX (−).

Here we use the notation ω∨X to denote the dual OX -module HomOX (ωX ,OX).
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Remark 2.13. In a neighbourhood U with local co-ordinates, this is just the fact that specifying
a left DU -module structure on some OU -module M is equivalent to specifying a right DU -module
structure via the formal adjoint. Explicitly, if P ∈ DU is a differential operator, we form its formal
adjoint via xi 7→ xi, ∂i 7→ −∂i, so∑

(fα(x1, . . . , xn)∂α) 7→
∑

(−∂)αfα(x1, . . . xn).

Then it is easy to check that P acting on the left is equivalent to the formal adjoint of P acting on
the right.

The reason the global version of this statement needs to appeal to the canonical sheaf is that in general
the formal adjoint of a differential operator acts naturally on ωX .

Proof. Let M be a left DX -module and N be a right DX -module. Observe first that ωX ⊗OX M is a
right DX -module via the action

(η ⊗m)θ = Lieθ η ⊗m− η ⊗ θm θ ∈ ΘX .

A similar result holds for ω∨X ⊗OX N ∼= HomOX (ωX , N), i.e. it has left DX -module structure via

θ(φ)(η) = φ(η)θ + φ(Lieθ η) θ ∈ DX , φ ∈ HomOX (ωX , N), η ∈ ωX .

Now, by associativity of the tensor product, there is an isomorphism

ω∨X ⊗OX ωX ⊗OX M ∼= M

as required.

2.2 Inverse images

Let f : X → Y be a morphism of smooth varieties, and let M be a DY -module. We’d like to pull
M back under f to a DX -module f∗M , analogously to the inverse image of O-modules. For inverse
images this will work rather simply: we can give a D-module structure to the O-module inverse image.

Define f∗M to be the O-module inverse image

OX ⊗f−1OY f
−1M.

We must introduce a D-module structure to this O-module. First, we describe the action of some
θ ∈ ΘX on a typical element φ⊗ f−1(m) for φ ∈ OX , m ∈M in a set of local co-ordinates (yi, ∂i) for
Y . Put

θ(φ⊗ f−1(m)) = θ(φ)⊗ f−1(m) + φ
n∑
i=1

θ(f−1(yi)⊗ ∂im).

Indeed, by 2.9 this defines a local DX -module structure. Essentially, if we stare at this we can convince
ourselves that this is just a form of the chain rule. It suffices to describe the action of θ ∈ ΘX locally
to give a DX -module structure, so we have produced the D-module inverse image.

Define the transfer module DX→Y to be the module

f∗DY = OX ⊗f−1OY f
−1DY .

This is a left DX module as described above, but also a right f−1DY -module via right multiplication
on the second multiplicand. This gives an alternative description of the inverse image: namely

f∗M = OX ⊗f−1OY f
−1M

= OX ⊗f−1OY (f−1DY ⊗f−1DY f
−1M)

= DX→Y ⊗f−1DY f
−1M.
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Thus we have defined a right exact functor

f∗ : Mod(DY )→ Mod(DX).

Remark 2.14. Notationally I am not distinguishing between the inverse image functor for O-modules
and the inverse image functor for D-modules, but this will not cause any ambiguity.

Lemma 2.15. As in the O-module case, if f : X → Y and g : Y → Z are morphisms of smooth
varieties, then (fg)∗ = g∗f∗.

The proof is an easy manipulation from the definitions, and is omitted.

Example 2.16. We compute the transfer module DX→Y locally in the case of ι : X → Y a closed
embedding. By taking local co-ordinates (yi, ∂i) on Y , we must calculate the transfer module under
the standard embedding ι : Cn → CN . Split up the ring DN as

DN
∼=

⊕
m1,...,mn

OCn∂m1
1 · · · ∂

mn
n ⊗C C[∂n+1, . . . , ∂N ]

= D′ ⊗C C[∂n+1, . . . , ∂N ]

where the isomorphism is in the category of left D′-modules. Then

Dn→N = On ⊗ι−1ON ι
−1DN

∼= On ⊗ι−1ON ι
−1(D′ ⊗C C[∂n+1, . . . , ∂N ]

∼= (On ⊗ι−1ON ι
−1D′)⊗C C[∂n+1, . . . , ∂N ]

∼= Dn ⊗C C[∂n+1, . . . , ∂N ]

where Dn→N denotes DCn→CN and On denotes OCn . The left module structure is given by multi-
plication on the left component Dn

∼= On ⊗ι−1ON ι−1D′. The right module structure is defined by
considering P ∈ ι−1DN as living in ι−1(D′)⊗C C[∂n+1, . . . , ∂N ].

2.3 Direct images

Let f : X → Y be a morphism of smooth varieties as before. Motivated by the above, we might first
try to define the D-module direct image f∗ in the following way: let M be a right DX -module. The
transfer module DX→Y is a right f−1DY -module, so we can produce a right DY -module via

f∗(M ⊗DX DX→Y ),

where f∗ here is the sheaf theoretic direct image. Using the side-changing operations defined in 2.12
we can even convert this into a functor from left DX -modules to left DY -modules. Indeed, define the
transfer module

DY←X = ωX ⊗OX DX→Y ⊗f−1OY f
−1ω∨Y ,

a (f−1DY , DX)-bimodule. Then we produce a left DY -module via

f∗(DY←X ⊗DX M).

However, this definition is not the right one. In order to do homological algebra with our direct
image we’d like a left exact functor. However, due to the mixture between the left exact functor f∗
and the right exact functor ⊗DX , the näıve direct image defined above is not exact on either side.
An example of the resulting bad behaviour is the failure of the analogue of lemma 2.15 for this functor.

To remedy this, we work in the derived category of chain complexes of DX -modules, which we will
denote D(DX). Usually we will be interested in the bounded derived category Db(DX), or the bounded
derived category with coherent cohomology Db

coh(DX). Recall that the bounded derived category is
the category obtained from the homotopy category Kb(DX) of bounded complexes of DX -modules by
formally inverting the quasi-isomorphisms. We quickly review these notions, which are explained fully
in [11].
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Definition 2.17. Let X be a smooth variety, and let A be a sheaf of rings on X, usually DX or
CX . Define K(A) to be the homotopy category of complexes of A-modules. It has full subcategories
K+(A), K−(A) and Kb(X) of complexes bounded below, bounded above, and bounded on both sides.
We can form the derived category of any of these categories by formally localising with respect to
the system of quasi-isomorphisms, as described in [11] sections 1.6 and 1.7. We denote these derived
categories D(A), D+(A), D−(A) and Db(A) respectively.

Note that all these categories possess the structure of a triangulated category. From now on I will
assume familiarity with the language of triangulated categories, as in [11] 1.5.

We will also refer to the full subcategories D]
qcoh(A) and D]

coh(A) of complexes with quasicoherent or
coherent cohomology respectively, where ] is any of +,−, b or nothing.

Definition 2.18. We define truncation functors τ≤k, τ≥k for each k by

τ≤k(· · · → F k−1 → F k
∂k→ F k+1 → · · · ) = (· · · → F k−1 → F k → im(∂k)→ 0)

τ≥k(· · · → F k−1
∂k−1

→ F k → F k+1 → · · · ) = (0→ ker(∂k−1)→ F k → F k+1 → · · · ).

We may also refer to τ<k = τ≤k−1 or τ>k = τ≥k+1. The truncation functors τ≤0, τ≥0 define a t-
structure on the triangulated category Db

coh(DX). See for instance [8] chapter 8 or [11] chapter 10 for
details.

Definition 2.19. For f : X → Y a morphism of smooth varieties, the D-module direct image functor

f∗ : Db(DX)→ Db(DY )

is defined by
f∗M

• = Rf∗(DY←X ⊗LDX M
•)

for M• ∈ Db(DX).

We can also produce derived versions of the inverse image functor, namely

f∗N• = DX→Y ⊗Lf−1DY
f−1N•

and the shifted version
f †N• = f∗N•[dimX − dimY ]

which will often simplify notation. I am deliberately overloading the notation f∗ and f∗. From now
on, unless otherwise specified, these notations will refer to the functors between derived categories
just defined.

To produce actual D-modules rather than complexes, we can take the cohomology of these complexes.

Example 2.20. Consider the closed embedding ι : Cn → CN . In example 2.16, we computed the
transfer module Dn→N to be Dn ⊗C C[∂n+1, . . . , ∂N ]. Similarly, DN←n can be calculated by an
analogous procedure to give

DN←n ∼= C[∂n+1, . . . , ∂N ]⊗C Dn

with (ι−1DN , Dn)-bimodule structure given by right multiplication on the right component and left
action via the isomorphism

DN←n ∼= ι−1(DN ⊗ON ω
∨
CN )⊗ι−1ON ωCn
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which holds more generally than this specific case. This gives a local description of a general closed
embedding ι : X → Y . Indeed, we can go further. Let M be a DX -module. We can describe H0ι∗M
locally using this:

H0ι∗M ∼= ι∗(C[∂n + 1, . . . , ∂N ]⊗C Dn ⊗Dn M)
∼= C[∂n + 1, . . . , ∂N ]⊗C ι∗(M).

For j > 0, Hjι∗M = 0 locally, and hence globally.

Recall that a sheaf of OX -modules F on X is called coherent if it is locally finitely generated, and for
any open U ⊆ X, and any locally finitely generated submodule of F |U , is locally finitely presented.

Example 2.21. In general coherence is not preserved under either direct or inverse images of D-
modules. Indeed consider the closed embedding ι : {pt} → C. We calculated that as a C-algebra,

ι∗D1 = D0→1
∼= C[x]⊗C C[y]

which is not finitely generated. For direct images, even coherence as O-modules is not in general
preserved, as (for instance) there exist varieties whose structure sheaves have infinitely generated
rings of global sections [20].

Remark 2.22. For certain classes of morphisms the subcategory of coherent D-modules is preserved
under direct and inverse images. For example:

• Suppose f : X → Y is a proper morphism of smooth varieties, and suppose M• is a coherent
complex of DX -modules. Then f∗M

• is a coherent complex of DY -modules. Essentially, this is
proved in the quasi-projective case by factoring f as the composite of a closed embedding and a
projection, and checking the result locally in both cases (see [8] theorem 2.5.1). In particular,
for ι : X → Y a closed embedding, ι∗ preserves coherence.

• Now, suppose f : X → Y is a smooth morphism of smooth varieties. Then the functor f∗

preserves coherence.

2.4 Tensor products

We will still need a few more functors on categories of D-modules. Here we introduce the notion of a
tensor product of D-modules.

Recall the exterior tensor product of O-modules. This is a bifunctor

•� • : Mod(OX)×Mod(OY )→ Mod(OX×Y )

defined by
M �N = OX×Y ⊗π−1

1 OX⊗π
−1
2 OY

(π−11 M ⊗C π−12 N),

where π1 and π2 are the projections from X×Y to its two factors. We’d like to define a similar notion
for a tensor product of D-modules.

For M a DX -module, N a DY -module, we can form the exterior tensor product of D-modules analo-
gously:

M �N = DX×Y ⊗π−1
1 DX⊗π−1

2 DY
(π−11 M ⊗C π−12 N).

Indeed, as an OX×Y -module this is isomorphic to the exterior tensor product of O-modules defined
above, but it comes equipped with a natural DX×Y -module structure via DX×Y ∼= DX �DY . Thus
we have defined a functor

•� • : Mod(DX)×Mod(DY )→ Mod(DX×Y ).

In fact, this is exact on both factors ( [8] pp38-9), so extends to a functor on derived categories

•� • : Db(DX)×Db(DY )→ Db(DX×Y ).
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2.5 Coherent DX-modules

For most of the rest of this report we will study the full subcategory of coherent DX -modules. From
this point on, we assume for simplicity that all varieties are quasi-projective.

Proposition 2.23. DX is coherent as a sheaf of rings.

Proof. We will actually prove a stronger statement

Claim. If M is a locally finitely generated DX -module which is quasicoherent over OX then it is
coherent over DX .

To see this, let U be an affine open subset of X. Let f : Dm
U →M |U be any homomorphism. We must

prove that K = ker f is finitely generated, i.e. there exists an exact sequence

Dn
U → Dm

U
f→M |U .

But the functor Γ(U,−) is exact, so this exact sequence exists if and only if an exact sequence of the
form

DX(U)n → DX(U)m
f(U)→ M(U)

exists, with f(U) the induced map. This however is immediate, as DX(U) is a (left) Noetherian ring,
so the kernel of f(U) is finitely generated.

We already encountered in 2.10 a special subcategory of ModDX , namely the full subcategory of
integrable connections, denoted Conn(X). These are the DX modules with are locally free of finite
rank as OX -modules, i.e. essentially vector bundles on X equipped with flat connections. We can now
give an alternative characterisation of this subcategory:

Proposition 2.24. A DX -module M is coherent over OX if and only if it is an integrable connection.

Proof (following [8] 1.4.10). Clearly integrable connections are coherent, so let M be an O-coherent
DX -module. Take a point x ∈ X. It suffices to prove that for every such x, the stalk Mx is free
over the local ring OX,x, as then M is locally free over OX as required. Let m be the maximal ideal
of O = OX,x. We can find generators P1, . . . , Pk for Mx over O such that their images Pi in the
quotient Mx/mMx generate the quotient over C = O/m. Indeed, take any basis for the C-vector space
Mx/mMx and apply Nakayama’s lemma to it.

Suppose for contradiction that P1, . . . Pk are linearly dependent. We will produce a non-trivial depen-
dence relation among the Pi, which is a contradiction. For a set F = {f1, . . . fk} ∈ Ok, define

ord(F ) = min
i

(max{p : fi ∈ mp})

so if ord(F ) = 0 then some fi is not in m. Take a dependence relation

k∑
i=1

fiPi = 0

and put F = {f1, . . . fk}. If we can always reduce ord(F ) then we’re done, as we can reduce ord(F )
down to zero, and then reducing mod m gives us a non-trivial dependence relation in the Pi as required.
We do this by applying the operators ∂j to get

k∑
i=1

(∂jfi)Pi + fi(∂jPi) = 0

which is a new dependence relation. We can always pick some j such that ord(F ) decreases, because
ord(f + g) = min{ord(f), ord(g)}, and there is always some ∂j that reduces the order of a given single
f ∈ O.

Remark 2.25. This immediately implies that Conn(X) is an abelian category, since kernels and
cokernels of morphisms of D-modules coherent over O are themselves coherent over O.



12 Section 2 D-module fundamentals

2.6 Kashiwara’s theorem

One can check (e.g. [8] 1.5.25) that for ι : X → Y , the functor ι† is right adjoint to the functor ι∗.
Obviously the pair do not in general describe an equivalence of categories, but in fact if we restrict to
an appropriate subcategory of Db

coh(DY ) then the functors do restrict to an equivalence. This result
of Kashiwara could fairly be described as the first major result of the theory of D-modules.

We will use the notation ModX(DY ) for the full subcategory ofDY -modules whose support is contained
in the image of X. Likewise, we have a derived version, DX(DY ).

Theorem 2.26 (Kashiwara). Let ι : X → Y be a closed embedding of varieties. Then there is an
equivalence of categories:

ι∗ : Db
coh(DX)� Db,X

coh (DY ) : ι†

and hence in particular
H0ι∗ : Modcoh(DX)� ModXcoh(DY ) : H0ι†

Remark 2.27. Firstly, note that the functors above do indeed preserve coherence, by the remark 2.22.
We should note that this result is somewhat surprising. Indeed, the analogous result for O-modules
is completely false. Take for example the closed embedding ι : {pt} → C. Then the O-modules on
{pt} are just complex vector spaces, and their direct images are just skyscraper sheaves of such vector
spaces. However, there are many more OC modules supported only at the origin, for example

C[x]/xk for any k ∈ N.

Of course, in general these are not D-modules under the standard action of ∂.

Proof. We prove the latter statement first, and then induct on cohomological length, i.e.

`(M•) = max{i ∈ Z : H i(M•) 6= 0} −min{i ∈ Z : H i(M•) 6= 0}.

To prove this latter statement, we show that the unit and counit of the adjunction are isomorphisms.
Since the problem is local, and by induction on the codimension of X in Y it suffices to prove the
statement for the standard embedding of a hypersurface

ι : Cn−1 → Cn via (x1, . . . , xn) 7→ (x1, . . . , xn, 0).

That is, we must prove that the morphisms

M 7→ H0ι†(C[∂]⊗C ι∗M) and C[∂]⊗C ι∗H0ι†N 7→ N

are isomorphisms for M ∈ Modcoh(Dn), N ∈ ModC
n

coh(Dn+1), where ∂ denotes ∂n+1.

Define the operator ξ = y∂, where y = yn+1, ∂ = ∂n+1. For N ∈ ModC
n

coh(Dn+1) we consider the
eigenspaces

N j = {m ∈ N : ξm = jm}.

We’d like to show that
N =

⊕
j∈N

N−j ∼= C[∂]⊗C N−1

since then clearly H0ι†N = ker(i−1N
y→ i−1N) = i−1N−1, which implies the result we want. To prove

the direct sum decomposition we use an induction argument on k: firstly, notice that it suffices to
prove that for each k

ker(N
yk→ N) ⊆ N−1 ⊕ · · · ⊕N−k
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because N is coherent and supported in Cn, so any m ∈ N is annihilated by some yk. If ym = 0 then
ξm = ∂ym−m = −m, so m ∈ N−1. For the induction step,

ykm = 0 =⇒ ym ∈ N−1 ⊕ · · · ⊕N−(k−1)

=⇒ ∂ym = ξm+m ∈ N−1 ⊕ · · · ⊕N−k

but yk−1(ξm+ km) = yk∂m+ kyk−1m = 0

so ξm+ km ∈ N−1 ⊕ · · · ⊕N−(k−1)

=⇒ km−m ∈ N−1 ⊕ · · · ⊕N−k

=⇒ m ∈ N−1 ⊕ · · · ⊕N−k for k > 1

which is what we wanted.

The induction on `(M) step is now rather easy. We have proven the case `(M•) = 0, so suppose
`(M•) > 0. We then split M• into two pieces; that is, we pick k such that the truncation functors
τ≤k and τ>k both reduce cohomological length. Now consider the diagram

τ≤k(M•) //

α1

��

M• //

α2

��

τ>k(M•)
+1

//

α3

��

ι†ι∗τ
≤k(M•) // ι†ι∗M

• // ι†ι∗τ
>k(M•)

+1
//

whose rows are distinguished triangles. The induction hypothesis implies α1 and α3 are isomorphisms,
hence so is α2. Thus the unit is an isomorphism. An analogous argument shows the counit is also an
isomorphism.

Remark 2.28. This allows us to make sense of the notion of ‘D-modules on a general variety X,
not necessarily smooth’. Indeed, we can realise X as a closed subvariety of a smooth variety X ′, and
define Mod(DX) to be ModX(DX′). Then by Kashiwara’s theorem we feel reassured that this is the
right generalisation of the smooth case.

3 Holonomic D-modules

For a coherent DX -module M we can introduce an associated geometric invariant called the char-
acteristic variety associated to M . This is inspired by the classical case in the following way. If P
is a linear differential operator on C, we can consider the graded module grF (D1/D1P ) with respect
to F • a so-called good filtration. The annihilator of this module cuts out a subvariety in C2, called
the characteristic variety of the module D1/D1P . The important issue is whether this variety is
one-dimensional, or all of C2. If it is one-dimensional, we say the D-module is holonomic, which in
this classical case essentially corresponds to the differential equation being maximally overdetermined.
Holonomic D-modules in general form a particularly well-behaved subcategory of coherent D-modules.

We will define good filtrations on D-modules and the characteristic variety, and prove it is independent
of the choice of good filtration. We compute the characteristic variety in a number of examples.
The main result of this section is that holonomicity of D-modules is invariant under all the natural
operations so far defined, but to prove this we will need to understand the machinery of duality of
D-modules. On the way we prove the key lemma of Bernstein on b-functions, which is of considerable
independent interest.
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3.1 Good filtrations

Let M be a quasi-coherent DX -module. This aim of this section is to define a filtration on M that
has some of the nice properties of the order filtration on DX itself defined in 2.4. Given an exhaustive
increasing filtration F• on M , we can form the associated graded module

grF (M) =

∞⊕
i=1

FiM/Fi−1M.

This is a module over the sheaf grF (DX) ∼= π∗OT ∗X as noted in 2.5.

Definition 3.1. Let (Fi)i∈N on M be an exhaustive increasing filtration on M such that

(FiDX)(FjM) ⊆ Fi+jM.

F• is called good if the associated graded module grF (M) is coherent.

Proposition 3.2. A quasi-coherent DX -module M if coherent if and only if it admits a good filtration
F•.

Proof. First, suppose M is coherent. Then M is generated by a submodule N which is coherent
over OX (this follows from standard algebro-geometric results, e.g. [8] 1.4.17). Define an exhaustive
increasing filtration by

Gi(M) = (F iDX)(N)

where F i is the standard filtration. This filtration is clearly good.

Conversely, suppose M is quasi-coherent, but not coherent. Find an open set U such that the ring
M |U is not finitely-generated over DX |U . Let F • be any increasing exhaustive filtration on M |U .
Suppose grF (M |U ) is finitely generated. Then there exists a finite set {mi ∈ F iM |U : i = 0, . . . , k}
such that {mi/F

i−1M |U} generates grF (M |U ). But then, by induction on j,

F jM |U =
∑
i≤j

F j−1M |Umi

which is a contradiction of M |U finitely generated.

3.2 Characteristic Varieties

Let X be a smooth variety. Let M be a coherent DX -module equipped with a good filtration F . We
can associate to M an algebraic subset of the cotangent bundle T ∗X called the characteristic variety
as follows. Let

grF M =
⊕
i∈Z

F iM/F i−1M

be the graded module over grF DX = π∗OT ∗X , where π : T ∗X → X is the canonical projection map.
We can produce a coherent OT ∗X -module by

g̃rF M = OT ∗X ⊗π−1π∗OT∗X π
−1(grF M).

Then the characteristic variety Ch(M) is the support of ˜grF (M), sometimes also called the singular
support of M .

Remark 3.3. For affine D-modules, we can compute the characteristic variety in a more concrete way.
If M ∈ Modcoh(Dn), then its graded version is a module over the polynomial ring C[x1, . . . , x2n]. To
calculate its characteristic variety we take the annihilator of gr(M), which is an ideal in the polynomial
ring, and compute the variety in C2n defined by this ideal.
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Lemma 3.4. The characteristic variety of M is independent of the choice of good filtration F .

Proof. Following the method in [8] D.3.1, we prove this in two steps. Let Fi and F ′i be two good
filtrations on M . We say F and F ′ are adjacent if for all i,

FiM ⊆ F ′iM ⊆ Fi+1M.

We connect any two good filtrations by a finite chain of adjacent pairs of good filtrations, then prove
the assertion for an adjacent pair.

Define a chain of good filtrations F (k) by

F
(k)
i M = FiM + F ′i+kM.

Then for k large and negative F (k) = F , and for k large and positive F (k) = F ′ up to a shift. Also,
F (k) and F (k+1) are adjacent for every k, (see e.g. [8] D.1.3).

With this out of the way, consider the adjacent case. By definition we have natural homomorphisms
θi : FiM/Fi−1M → F ′iM/F ′i−1M for each i, and hence θ : grF M → grF

′
M . Consider the exact

sequence

0 // ker θ // grF M
θ // grF

′
M // coker θ // 0 .

For each i, ker θi ∼= F ′i−1M/i−1M ∼= coker θi−1 by the definition of adjacency. hence ker θ ∼= coker θ,
and so taking supports in the exact sequence above,

supp(grF M) = supp(ker θ) ∪ supp(im θ)

= supp(coker θ) ∪ supp(im θ)

= supp(grF
′
M)

which implies the characteristic varieties are isomorphic.

Examples 3.5. 1. Ch(OX) = X (the zero section) for any smooth variety X.

2. Ch(DX) = T ∗X.

3. Let ι : Cn → Cn+1 be the inclusion map. Let N be a coherent Dn-module, and let M be a
coherent Dn+1-module. We can investigate how the characteristic varieties of these modules
change under application of ι∗. Indeed, take M to be ι∗N . Then we know from example 2.20
that

M ∼= C[∂n+1]⊗C ι•N

where the ι• is the O-module direct image. Take a good filtration Fi on N , and produce a new
filtration F ′i on M by

F ′iM =

i∑
j=0

j∑
k=0

C∂kn+1 ⊗C ι•Fi−jN.

Since Fi good, certainly F ′i is also good. The associated graded module with respect to this
filtration is then

grF
′
(M) = C[∂n+1]⊗C grF (N)

which has the same annihilator as grF (N) (naturally embedded in gr(Dn+1)). Thus we can see

Ch(M) = {(x, ξ) ∈ T ∗Cn+1 : x ∈ Cn, (x, π(ξ)) ∈ Ch(N)}

where π : T ∗Cn+1 → T ∗Cn is the projection. In particular, dim Ch(M) = dim Ch(N) + 1.
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4. Let M ∈ Mod(DX), N ∈ Mod(DY ). Then we can calculate the characteristic variety of M �N ,
namely

Ch(M �N) = Ch(M)× Ch(N).

5. Let π : X × Y → Y be the projection morphism. Then if M ∈ Mod(DY ) then it is immediate
from the definitions that

π∗M ∼= OZ �M,

and hence Ch(π∗M) = Z × Ch(M).

We have the following crucial theorem:

Theorem 3.6 (Bernstein’s inequality). dim Ch(M) ≥ dimX for any DX -module M 6= 0.

Proof. Induct on dimX. dimX = 0 is trivial, so suppose dimX > 0. Without loss of generality we

may assume suppM is contained in a smooth hypersurface S
ι
↪→ X. Indeed, if suppM = X then

Ch(M) is just the zero-section on T ∗X, and so has dimension dimX. Pass to suppM ⊆ S by replacing
X with a suitable open subset (to ensure S is non-singular).

Now, Kashiwara’s theorem implies that M = H0ι∗N for some coherent DS-module N . We want to
use this to apply this induction hypothesis. But example 3.5 (3) tells us that

dim Ch(M) = dim Ch(N) + 1 ≥ dim(S) + 1 = dim(X)

as required.

Remark 3.7. There is an alternative proof of this fact due to Kashiwara, Kawai and Sato [19]
by proving that for a coherent DX -module M , the characteristic variety Ch(M) is involutive with
respect to the symplectic structure of T ∗X. That is, for any p ∈ X, the tangent space TpX satisfies
TpX ⊇ (TpX)⊥ in Tp(T

∗X) (we say T pX is an involutive subspace). Here •⊥ is defined in terms of
the standard symplectic form on T ∗X. Since in general

dim(X) = dim(TpX) = 2n− dim((TpX)⊥),

this immediately implies dim(X) ≥ n.

Definition 3.8. In the special case where dim Ch(M) = dimX we say M is holonomic. We denote
the full subcategory of holonomic DX -modules Modh(DX), and the derived category of complexes of
DX -modules with holonomic cohomology Dh(DX).

Example (4) of 3.5 has the following immediate corollary:

Corollary 3.9. If M and N are holonomic then so is M �N .

Remark 3.10. In many situations, the category of holonomic D-modules is the right category to
think about. In a sense that will be made precise later, the holonomic D-modules correspond to
systems of PDEs with finite-dimensional spaces of solutions.

Lemma 3.11. Let
0→ N →M → L→ 0

be a short exact sequence of coherent DX -modules. Then M is coherent if and only if N and L
are both coherent. In particular the full subcategory of holonomic DX -modules is preserved under
subobjects and quotients.

Proof. Pick a good filtration F for M on an open set. Under the induced filtrations for N and L we
have a short exact sequence (on an open set)

0→ grF N → grF M → grF L→ 0.

So locally, and hence globally, Ch(M) = Ch(N) ∪ Ch(L). This implies the result immediately.
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We have the following criterion for holonomicity:

Lemma 3.12. Let M• ∈ Db(DX). Then M• is holonomic if and only if M• is coherent, and all the
fibres i∗x(M•) are finite dimensional. Here ix is the inclusion of the point x ∈ X.

Proof. We’ll prove the direction ⇐=, which is the only way we will need. Let M be coherent with
finite dimensional fibres. Without loss of generality supp(M•) = X. We will induct on dim(X). Take

Y
j
↪→ X open, such that dim(X \ Y ) < dim(X). Consider the complex j†M•. We show this complex

is holonomic. Take an open dense subset such that the ith cohomology is locally free over O. The fibres
are finite-dimensional since those for M• are, so H i(j†M•) is coherent over O, and hence holonomic
for every i as required.

Now, produce the distinguished triangle

N• →M• → j∗j
†M•

+1→ ,

so N• is the cocone. N• is supported on X \ Y , is coherent and has finite dimensional fibres, so by
the induction hypothesis it is holonomic. as j∗ preserves holonomicity 1, j∗j

†M• is holonomic, so M•

is holonomic as required.

Let f be a section of OX . There is an affine open subvariety of X associated to f by taking the
complement of the zero locus:

U = Xf = {x ∈ X : f(x) 6= 0}.

If u is a section of DU then the DU -module generated by u is clearly holonomic. We can actually show
something much stronger than this.

Lemma 3.13 (Bernstein’s Lemma on b-functions). Let σ be any section of OX , and u be any section
of DXσ . Then there exist polynomials p ∈ DX(X)[x] and b 6= 0 ∈ C[x] such that

p(n)σn+1u = b(n)σnu

for all n ∈ N.

This lemma will be crucial when we prove that direct and inverse image functor preserve holonomicity
in section 3.23. To prove it however, we will need a little more machinery: namely the notion of duality
for D-modules.

3.3 Duality for D-modules

Definition 3.14. Define the duality functor for D-modules to be

D : Db
coh(DX)→ Db

coh(DX)op

M• 7→ (RHomDX (M•, DX)⊗OX ω
∨
X)[dimX].

Lemma 3.15. D2 ∼= id.

The proof is technical, and omitted. See [3] page 24, or [8] proposition 2.6.5.

Remark 3.16. This definition needs some justification. In particular, why the degree shift by dimX?
Suppose M is a holonomic DX -module. Then the complex RHom(M,DX) has non-zero homology
precisely in degree dimX. In fact, for coherent modules the converse is also true. This will follow
from the following theorem of Roos:

1This uses the key result 3.23 for open embeddings below. This is not cheating, as the proof of that specific case does
not use this lemma.
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Theorem 3.17 (Roos). let M ∈ Mod(DX) be coherent. Then

codim Ch(ExtiDX (F,DX ⊗OX ω
∨
X)) ≥ i ∀ i.

In particular we have
ExtiDX (F,DX ⊗OX ω

∨
X) = 0

for all i > codim(Ch(M)).

We will not prove this here. See [3] for a proof sketch.

Corollary 3.18. Let M ∈ Mod(DX) be coherent. Then M is holonomic if and only if DM ∈
Mod(DX), i.e. H i(DM) = 0 for all i 6= 0. In particular, D preserves the full subcategory of holonomic
DX -modules.

Proof. First suppose M is holonomic. Roos’s theorem implies that H i(DM) = 0 for all i < 0. But
H i(DM) = 0 for all i > 0 always. Conversely, if DM is a module N say, then M = DN . So

M = ExtdimX
DX

(N,DX)⊗OX ω
∨
X 6= 0,

so codim(Ch(M)) ≥ dimX by Roos’s theorem and M is holonomic.

Corollary 3.19. Suppose M is a DX -module, and U ⊆ X is an open subset such that some submodule
N ≤M |U is holonomic as a DU -module. Then we can find a holonomic DX -submodule M ′ ≤M such
that M ′|U = N .

Proof. Without loss of generality M is coherent, and N = M |U ( [?]). Consider the complex DM .
Define M ′ to be DH0(DM). By the previous corollary, to show M ′ is a holonomic DX -module we
need only check H0(DM) is a holonomic DX -module. But it is certainly non-zero, so by Roos’s
theorem codim(Ch(H0(DM))) ≥ dimX and so it is holonomic also. Now we only need to show that
M ′|U = M |U . But

M ′|U = DH0(DM |U ) = DDM |U ∼= M |U .

We can use the techniques of duality to neatly prove the following proposition on holonomicD-modules:

Proposition 3.20. Holonomic D-modules have finite length, i.e. if M is a holonomic DX -module,
there exists some n ∈ N such that any chain of DX -submodules

M0 �M1 � · · · �Mm = M

has m ≤ n. Equivalently, M is both Artinian and Noetherian.

Proof. First note that since D : Modh(DX) → Modh(DX)op gives a contravariant duality, it is only
necessary to prove M is Noetherian, (i.e. DM Noetherian =⇒ M Artinian). The problem is local
since we can cover X by finitely many affine subsets with local co-ordinates. But certainly Dn is
a (left) Noetherian ring, and since M is coherent it is locally finitely generated, and hence locally
Noetherian.

Proof of 3.13. Write Y for Xσ. The crucial idea of the proof is to extend scalars C→ C(λ), the field of
rational functions. Then we have extended varieties ι : Ŷ → X̂. The reason we do this is that because
global sections of the extended sheaf DX̂ are precisely quotients of polynomials DX(X)[λ]/C[λ]. Thus
it suffices to produce some P ∈ DX̂ such that

P (σλ+1u) = σλu

and then put P = d/b.
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How can we produce such a P? The section u generates a holonomic DY -module M , and this extends
to a holonomic DŶ -module M̂ via the construction

M̂ = σλ(C[λ]⊗CM)

with θ ∈ ΘŶ acting by

θ(σλm) =
λ(θ(σ))

σ
σλm+ σλθ(m).

We observe that M̂ is still holonomic (as the construction clearly does not change the dimension of
the characteristic variety), Thus we can apply 3.19 to the direct image ι∗(M̂) to produce a submodule
N ≤ ι∗(M̂) which restricts to M̂ on Ŷ .

Now, this has a natural interpretation, namely that the quotient ι∗(M̂)/N is zero on the affine piece
Y ⊆ X. Hence the image of the section u of DY is zero in this quotient, i.e. if û = σλu in M̂ , then by
Kashiwara’s theorem ι∗û is supported on Ŷ , so is a section of N . We now use the fact that holonomic
D-modules have finite length to produce a section P ∈ DX̂ such that

P (σn+1û) = σnû.

But this is exactly what we need! Simply change variables by λ 7→ λ + n, and we see this condition
on P is precisely the condition

P (σλ+1u) = σλu

that we were looking for.

Definition 3.21. For a morphism f : X → Y , we introduce two new functors on D-modules:

f! = Df∗D and f ! = Df †D,

the exceptional direct and inverse image functors. These are produced by analogy with the functors
crucial for Verdier duality, which we will introduce in section 4.5. By a routine check, we can see that
f! is left adjoint to f †, and f ! is left adjoint to f∗. Furthermore, for any f one can produce a canonical
natural transformation of functors

f! → f∗

(see [8] 3.2.16 for details). We will use this to classify the simple holonomic D-modules in 5.18.

Remark 3.22. We have now defined six functors on D-modules, namely f∗, f
†, f!, f

!,D,�. This is an
example of the six operations formalism of Grothendieck. I will deliberately avoid being too explicit
about this means, but this terminology is widely used, e.g. in the monograph [14] of Mebkhout.

In section 4 we will introduce an analogous set of six operations on the derived category of complexes
of CX -modules with constructible cohomology, and explain how the two families relate together via
the de Rham functor.

3.4 Preservation of holonomicity

Theorem 3.23. Let f : X → Y be a morphism of smooth varieties. Then the functors f∗ and f∗

preserve the full derived subcategories of holonomic D-modules; i.e.

f∗Dh(DX) ⊆ Dh(DY ) and f∗Dh(DY ) ⊆ Dh(DX).

Remark 3.24. 1. Notice how different this is from the coherent case. We remarked before in 2.22
that only certain special classes of morphisms preserve coherence of D-modules when we take
direct and inverse images. Thus this theorem is telling us – in a sense – that the full subcategory
of holonomic D-modules is easier to work with than the whole category of coherent D-modules.
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2. We’ve already proven that D and � preserve holonomicity in 3.18 and 3.9 respectively. Thus
holonomicity is preserved by all of the six operations we mentioned in remark 3.22.

Proof. We proceed by reducing the problem to a few special cases which will follow from calculations
we’ve already done. Indeed, first we reduce to the direct image case, i.e. show that the theorem for
f∗ implies the theorem for f∗. We can always decompose f as a product π ◦ ι where π : Z × Y → Y is
a projection and ι : X → W (= Z × Y ) is a closed embedding, so it suffices to check these two cases
(since we’re assuming X is quasi-projective throughout). The projection follows from calculations
we’ve already done. Indeed, π∗ is exact, so π∗M ∈ Mod(DZ×Y ) for M ∈ Modh(DY ). Furthermore,
by example 3.5 (5),

Ch(π∗M) = Ch(OZ �M)

= Ch(OZ)× Ch(M)

which has dimension dim(Z) + dim(Y ) = dim(X × Y ). Thus π∗M is holonomic.

The closed embedding now follows from the direct image case by homological algebra. Take j : U →W
to be the complementary open embedding to ι. There is in general a distinguished triangle ( [8] 1.7)

ι∗ι
†M →M → j∗j

†M
+1→ .

If j∗j
†M is holonomic then so is ι∗ι

†M , and hence ι∗M by the computation in example 3.5. But
j∗j
†M ∼= j∗M |U which is holonomic by the direct image case.

Now, to deduce the statement for direct images we again split up f into a product of familiar
morphisms. This time let f = π ◦ ι with π : Y × Z → Y a projection with Z complete, and
ι : X →W (= Z×Y ) a locally closed embedding. We check the theorem for π first. If M ∈ ModY×Z ,
we check the holonomicity of π∗M using the criterion 3.12 (thus this case follows from the open em-
bedding case). Certainly π∗M is coherent because π is proper (see the remark 2.22). To see it has
finite dimensional fibres,

i∗yπ∗M = πy∗i
∗
ZyM

for iZy the inclusion of the fibre above y ∈ Y , and πy the projection from the fibre Zy to the point y.
This is a kind of base change (see [3] 2.3) which is not used anywhere else, so for brevity the proof is
omitted. Thus i∗yπ∗M is a direct image under a proper map of a coherent complex, hence coherent,
i.e. finite dimensional.

Finally, we must check the case of a locally closed embedding. We’ve already checked closed em-
beddings in example 3.5, so we must check the case where ι is an open embedding to complete the
proof. This will follow from the lemma on b-functions. Indeed, let M be a holonomic DX -module.
To reduce to the case where we can apply the lemma, we need ι to be of the form Y = Xσ ↪→ X,
but we can always do this by covering by finitely many affines, and replacing M by its Čech resolution.

Now, take M a holonomic DY -module generated by u. Then ι∗M is generated by σnu for n ∈ Z.
By the lemma on b-functions, we actually only need a finite set of such σnu, so ι∗M is coherent.
Furthermore, following through the proof of the lemma, we actually showed that the D-module with
extended scalars M̂ was holonomic, generated by σλu. We want to pass from this statement for DX̂
to one for DX . Since finitely many σnu generate M it suffices to prove that almost all σnu lie in a
holonomic submodule. The ideas is to look at M̂ and set λ = n.

More precisely, M̂ holonomic means there exist P1, . . . , Pk ∈ DX̂ such that their images Q1, . . . Qk
in the graded module cut out by a variety of dimension ≤ dimX. Set λ = n to get operators
P ′1, . . . , P

′
k ∈ DX , and for all but finitely many n their images in the graded module still cut out

a variety of dimension ≤ dimX. Furthermore Pn(σnu) = 0 for all n, so σnu lies in a holonomic
submodule as required.
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4 The de Rham functor

In this section we introduce the analytic setting for D-modules. Although they often behave very
differently, it is useful for our purposes to consider D-modules on complex manifolds, rather than
smooth varieties. Every smooth complex variety can be considered as a complex manifold, so no
information is lost, however in some settings complex manifolds are easier to deal with. Most crucially,
we will define the de Rham functor for aDX -module, which will relateD-modules to topological objects
called constructible and perverse sheaves. Precisely how they relate is one of the main topics of interest
in the next few chapters.

4.1 Analytic D-modules

Let X be a complex manifold. X comes equipped with a sheaf OX of holomorphic functions, and
a sheaf ΘX of holomorphic vector fields, so we can define D-modules on X in a similar way to the
algebraic case. We will frequently want to consider the complex manifold topology on smooth algebraic
varieties. If we want to make this explicit, we will use the notation Xan to denote a smooth variety
considered with the induced topology from Cn.

Definition 4.1. Define the sheaf DX of holomorphic differential operators to be the sheaf generated
by OX and ΘX in End(OX). A D-module is a (left) DX -module.

Remark 4.2. Most of the key facts and results about algebraic D-modules also hold in the analytic
case. In particular

• The properties of DX described in section 2.1 still hold as before. We have an analogue of side-
changing as in 2.12, and we can define the notion of an integrable connection as in 2.9. These
form an abelian category.

• A DX -modules is coherent over OX if and only if it is an integrable connection, as in 2.5.

• We define inverse images, direct images and tensor products of D-modules under holomorphic
maps in the analytic setting exactly as we did in the algebraic setting, by defining transfer
modules.

• Kashiwara’s theorem 2.26 still holds for closed embeddings of complex manifolds.

• We can define good filtrations at least locally, and this allows us to define the characteristic
variety of a coherent DX -module M to be the unique closed subvariety Ch(M) ⊆ T ∗X such that
for any open set U ⊆ X equipped with a good filtration Fi, we have

T ∗U ∩ Ch(M) = supp(grF (M |U )).

(See e.g. [8] p100.) Given this, the characteristic variety behaves similarly to the algebraic case.
Most importantly, Bernstein’s inequality 3.6 still holds, so we can define a holonomic DX -module
to be one whose characteristic variety has dimension exactly dimX as before.

• We can define duality functors DX for coherent D-modules as before, and holonomicity is pre-
served by dualising.

Example 4.3. Although in the analytic setting theorem 3.23 remains true for inverse images, it fails
for direct images. Indeed, consider the open embedding j : C× ↪→ C, considered as a morphism of
complex manifolds. Let OC× be the sheaf of holomorphic functions, a holonomic DC×-module. If we
apply j∗ to this module, we produce the DC-module of functions holomorphic away from 0. This is not
coherent, because the behaviour at 0 can be arbitrarily bad: i.e. we may have an essential singularity
at 0.

In the algebraic setting, things were far more rigid, which is why this problem didn’t arise. The direct
image in the algebraic category was simply OC[x−1].
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Remark 4.4. The analytic techniques we are about to introduce will help us even in the algebraic
setting. Given X a smooth quasi-projective variety, over C, we can associate to X a complex manifold
Xan. This is a consequence of the fact that quasi-projective complex varieties can be naturally
topologised by the subspace topology in PnC, making them – in the smooth case – into complex
manifolds.

4.2 DR and Sol

We remain in the analytic category, i.e. M• ∈ Db(DX) for X a complex manifold. We define two
crucial functors: the de Rham functor

DRX : Db(DX)→ Db(CX)

M• 7→ ωX ⊗LDX M
•

and the solution functor

SolX : Db(DX)→ Db(CX)op

M• 7→ RHomDX (M•,OX).

Lemma 4.5. The two functors relate to one another in the following way:

DRX(M•) ∼= SolX(DXM•)[dim(X)],

so we only need consider one functor to understand the properties of both.

Proof. First notice that

SolX(DXM•) ∼= RHomDX (OX ,M•)
∼= RHomDX (OX , DX)⊗LDX M

•.

So we simply resolve OX as follows:

RHomDX (OX , DX) ∼= HomDX (DX ⊗OX ∧
0ΘX , DX)→ · · ·HomDX (DX ⊗OX ∧

dimXΘX , DX)

∼= HomOX (∧0ΘX , DX)→ · · ·HomOX (∧dimXΘX , DX)

∼= Ω0
X ⊗OX DX → · · · → ΩdimX

X ⊗OX DX

∼= ωX [−dim(X)]

in the derived category. Finally, applying ⊗LM• gives the result.

Example 4.6. Let us demonstrate the behaviour of these functors in the classical setting of linear
PDEs. Take M = Dn/

∑N
i=1DnPi, where Pi are differential operators in Dn. Then the solution

functor is just HomDn(M,On). Hence it fits into an exact sequence

0→ Sol(M)→ On
∑
Pi→ ONn

justifying its role as the space of solutions of the system of linear differential operators.

Recall that a local system on a complex (or smooth) manifold X (or even a more general topologi-
cal space) is a locally constant sheaf of CX -modules with finite-dimensional stalks. Assuming X is
connected these stalks all have the same dimension, called the rank of the local system.

Examples 4.7. 1. The constant sheaf CnX is a rank n local system.

2. If X is a smooth manifold, the orientation sheaf is defined to be Lor = Hn(X,CX)∨. This is a
rank one local system which is constant if and only if X is orientable.
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3. Let X = C×. There is a bijective correspondence between rank one local systems on X and
numbers 0 6= λ ∈ C. Given a rank one local system L, let γ be a loop in X around 0. We can
cover the loop by open sets on which L is trivial, so by composing the isomorphisms on overlaps

we produce an isomorphism C ×λ−−→ C.
This is an example of the more general phenomenon of monodromy. We can interpret the λ above
as one-dimensional representations of the fundamental group of C×. In general, for X a well-behaved
topological space (e.g. any smooth manifold), there is an equivalence of categories{

rank m local systems
on X

}
↔
{
m dimensional representations

of π1(X)

}
.

In section 4.3 we will introduce a generalisation of local systems: constructible sheaves. For basic facts
on local systems see e.g. [16] or [6].

Theorem 4.8 (de Rham). Let X be a complex manifold of dimension n. The de Rham functor gives
an equivalence of categories

H−n ◦DRX : Conn(X)→ Loc(X).

Proof. Let M be a rank m integrable connection on X. Firstly, we must check that H−n(DRX(M)) is
a rank m local system on X. In the derived category, we have a nice representative for DRX(M)[−n],
namely

Ω0
X ⊗OX M → · · · → Ωn

X ⊗OX M

with differentials induced from the differentials in the de Rham complex. This is because we can
resolve the right DX -module ωX ( [8] 1.5.27) by

0→ Ω0
X ⊗OX DX → · · · → Ωn

X ⊗OX DX → ωX → 0

where

d(η ⊗ P ) = dη ⊗ P +
n∑
i=1

dxi ∧ η ⊗ ∂iP

for (xi, ∂i) local coordinates. When we look at the zeroth cohomology (since we’ve shifted by −n), we
find that it is just

ker(∇ : M → Ω1
X ⊗OX M)

∇(m) =
∑
i

(xi ⊗ ∂im).

This is nothing but the ∇ arising when M is thought of as a connection on an O-module. Thus

H0(DRX(M)) = {m ∈M : ∇m = 0}

is the sheaf of horizontal sections of M . To see it is locally free over CX , we use Frobenius’s theorem.
See [21] 9.11 and 9.12 for full details.

We can explicitly produce a quasi-inverse for this functor as follows: let L be a rank m local system.
Let M = OX ⊗CX L, with integrable connection defined by the composite

∇ : Ω0
X ⊗OX M

∼ // OX ⊗CX L
d⊗1L // Ω1

X ⊗CX L
∼ // Ω1

X ⊗OX M .

To check these functors give an equivalence, we first observe that if M is an integrable connection then
OX ⊗CX M∇ ∼= M . Similarly, if L is a local system, then (OX ⊗CX L)∇ ∼= L for the given connection.

Example 4.9. Let L be the trivial local system on C. The proof of 4.8 gives us a recipe for computing
the integrable connection associated to this sheaf. Indeed, we can see what the result must be in this
case: OC with the standard connection ∇ : f 7→ df . This has horizontal sections precisely the constant
functions.
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4.3 Constructible sheaves

Essentially, a constructible sheaf is one that can be built up from local systems, in a way we will make
precise.

Definition 4.10. Let X be a complex manifold. A stratification of X is a decomposition of X as a
disjoint union

X =
∐
i

Xi

of non-empty connected sets (the strata) such that for each i, the boundary ∂Xi is a union of strata,
and both Xi and ∂Xi are complex manifolds.

Definition 4.11. A CX -module M is called constructible if there exists some stratification
∐
Xi of X

such that for each stratum Xi, the restriction M |Xi is a local system. In the derived category D(CX),
we say a complex M• is constructible if all of its cohomology sheaves are constructible. We denote
the full subcategory of such complexes Dc(CX).

If X is instead a smooth variety, then a CX -module M is called constructible if there exists a strati-
fication of X by algebraic varieties such that M is a constructible CXan-module with respect to this
stratification. We have an analogous notion in the derived category to the analytic case.

Remark 4.12. One can define the notion of a stratification in more generality than described above.
However, since we are working in a special case, we can actually impose extra conditions on our strat-
ifications. For X a complex manifold (or more generally any ‘analytic space’), a Whitney stratification
is a stratification by submanifolds such that, for any two strata Y and Y ′, and for any sequences (yi)
in Y and (y′i) in Y ′

• If yi → y′ ∈ Y ′ and the tangent spaces Ti to Y at yi converge to T , then T ⊆ Ty′Y ′. (Whitney’s
condition A)

• If (yi) is as above, and y′i → y′ also, and the secant lines Li from yi to y′i converge to a line L,
then L ⊆ T . (Whitney’s condition B)

In fact, such stratifications exist for any complex manifold X. Not only that, but given a stratification
of X, there always exists a refinement that satisfies the Whitney conditions. For more details, see
Appendix 1. of [13].

4.4 Kashiwara’s constructibility theorem

In this section we explain the statement in remark 3.10 about holonomic D-modules being those with
finite-dimensional solutions. What we will in fact show is that applying the solution functor to a
holonomic D-module yields a constructible complex, i.e. SolX(M) is constructible for holonomic M .

Theorem 4.13. Let M ∈ Modh(X) for a complex manifold X. Then both SolX(M) and DRX(M)
have constructible cohomology, i.e. are objects of Db

c(X).

Remark 4.14. First, note that by lemma 4.5, we need only show this for DRX to prove the result
in general.

For the proof we’ll need the following technical lemma, which I won’t prove. See for example [8]
4.4.6. Unfortunately, the proof of the theorem will require the lemma in its full, rather complicated,
generality.

Lemma 4.15. Let X be a complex manifold, x ∈ X. Let M be a coherent DX -module. Let Ut,
t ∈ (0, 1] be an increasing family of open, relatively compact subsets of X, whose boundaries are real
smooth hypersurfaces in X. If we also require
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• Every Ut is holomorphically separable and convex 2

•
⋃
t<s Ut = Us

•
⋂
t>s (Ut \ Us) = ∂Us , and

• Ch(M) ∩ T ∗∂Ut(XR) ⊆ the zero section in T ∗X

then we conclude that there is are isomorphisms

RΓ(
⋃
t

Ut, RHomDX (M,OX))
∼→ RΓ(Us, RHomDX (M,OX)) ∀ s ∈ (0, 1].

In particular, for any 0 < ε1 < ε2 small enough, there is an isomorphism

RΓ(Bε2(x), RHomDX (M,OX))
∼→ RΓ(Bε1(x), RHomDX (M,OX))

where Bε(x) denotes the ε-ball about x.

Sketch proof of theorem 4.13. We do this in three steps. First, we construct an appropriate Whitney
stratification of X. Secondly, we prove that H i(SolX(M)) is locally constant on strata for every i,
and finally we prove that these cohomology sheaves have finite-dimensional stalks everywhere.

Step 1: We produce a Whitney stratification of X such that Ch(M) ⊆
∐
j T
∗Xj in T ∗X. For

this, we must use the fact that Ch(M) is a Lagrangian submanifold of T ∗X stable under the action of
C× on the fibres (a conic Lagrangian submanifold). This diversion into symplectic geometry is outside
the scope of this essay, so the interested reader is referred to [8] E.3.6 and E.3.9.

Step 2: This proceeds by induction on i. Write SolX(M) = N•, so we are looking at the sheaves
H i(N•). First consider the case i = 0. For a fixed stratum Xα ⊆ X, since we are working locally we
may assume that

Xα = {x1 = · · · = xk = 0} ⊆ Cn = X.

Pick some x ∈ Xα. To prove the sheaf is locally constant at x, we must prove that ∃ ε > 0 such
that the restriction map onto the stalk at x′ ∈ Bε(x) is an isomorphism for all such x′. Now, for
this we will use the lemma. Indeed, we take a collection of open sets Ut as in the lemma indexed by
t ∈ (0, 1] such that U1 = U and

⋂
Ut = {x}. We can satisfy the conditions of the lemma because of

the way we chose our stratification . Hence we have an open U ⊇ Bε(x) such that for fixed x′ there
is a quasi-isomorphism

RΓ(U,N•)→ N•x′

=⇒ H0(Γ(U,N•)) ∼= H0(N•)x′

=⇒ Γ(U,H0(N•)) ∼= H0(N•)x′

=⇒ lim←−
U⊇Bε(x)

Γ(U,H0(N•)) ∼= H0(N•)x′

=⇒ Γ(Bε(x), H0(N•)) ∼= H0(N•)x′

as required.

For the induction step, we use homological algebra. Indeed, for fixed i we consider the following
diagram whose rows are distinguished triangles. Take an ε such that there is a quasi-isomorphism

2i.e. for any two points in Ut, there exists a holomorphic function separating them, and Ut is equal to its holomorphic
convex hull.
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φ : RΓ(Bε(x), N•)→ N•x′ for all x′ ∈ Bε(x). Extend this to the diagram

RΓ(Bε(x), H i(N•)) //

��

RΓ(Bε(x), N•) //

φ

��

RΓ(Bε(x), τ>i(N•))
+1

//

��

H i(N•)x′ // N•x′
// τ>iN•x′

+1
//

.

Now, if H i(N•)|Xα is locally constant then for small enough ε the leftmost arrow is certainly a quasi-
isomorphism. Hence the rightmost arrow is also a quasi-isomorphism, and so by an argument similar
to the case i = 0 above, H i+1(N•)|Xα is locally constant, completing the step.

Step 3: The proof of this step is essentially another application of the lemma (although this time
we can get away with the weaker statement about open balls), but requires some rather technical
functional analysis so is omitted. All the details are included in [8] 4.6.2, or in the original paper [10]
of Kashiwara (where the slightly different Theorems 1.2 and 1.6 plays the role of our technical lemma
above).

Notice that this is a much stronger result than the condition eluded to in 3.10.

Remark 4.16. A concept whose importance will become clear later is that of a perverse sheaf. Recall
we mentioned in 2.18 the standard t-structure on a derived category such as D(Mod(CX)). There
is an alternative t-structure available for Db

c(X) called the perverse t-structure. Indeed, define full
subcategories pD≤0c (X) and pD≥0c (X) by

F • ∈ pD≤0c if Hj(ι−1XiF
•) = 0 ∀ j > dim(X) and for all strata

F • ∈ pD≥0c if Hj(ι!XiF
•) = 0 ∀ j < dim(X) and for all strata

where
∐
Xi is a stratification of X, and ιXi denotes the inclusion of the stratum. Here ι! is the de-

rived exceptional inverse image functor, which we will discuss in the section on Verdier duality below.
Denote the associated truncation functors by pτ≤0 and pτ≥0. We will note in the next section that
the perverse sheaves comprise the subcategory of Db

c(X) preserved by Verdier duality.

If F • is in the heart of this t-structure, we say F • is a perverse sheaf. The category Perv(X) of
such complexes is then an abelian sub-category of the triangulated category D(Mod(CX)). Under the
Riemann-Hilbert correspondence (5.22), the category of perverse sheaves will correspond to the full
subcategory

Modrh(DX) ⊆ Db
rh(DX)

of regular holonomic DX -modules.

For example, if X = {pt}, the perverse sheaves on X are simply complex vector spaces. Indeed
Db
c(X) = Db(X) = Kb(X), the category of complexes of vector spaces up to homotopy. Such a

complex is in the heart of the perverse t-structure if and only if it has cohomology only in degree 0,
i.e. if it is homotopic to a complex supported only in degree 0.

4.5 Verdier duality

The category Db(CX) admits a number of functors analogous to those defined in chapter 1. In this
section, we will describe them, and how they relate to one another. When we study the Riemann-
Hilbert correspondence in chapter 5, , we will see that these structures are not merely analogous, but
actually the same, under an equivalence of categories given by the de Rham functor.

Throughout this section, we will consider certain continuous maps f : X → Y of topological spaces.
The theory of Verdier duality works in great generality, but for our purposes we need only know that
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the results hold for holomorphic maps between complex manifolds, or morphisms between algebraic
varieties over C. We will work with sheaves of CX -modules, but if we were working in full generality
we could replace C with a more general class of rings. For a complete exposition of the theory of
Verdier duality, see [6], or [11].

Definition 4.17. Let f : X → Y be a map as above. Then we can define functors on sheaves of
C-vector spaces

f∗ : Mod(CX)→ Mod(CY )

f−1 : Mod(CY )→ Mod(CX)

and their derived functors

Rf∗ : D(CX)→ D(CY )

f−1 : D(CY )→ D(CX)

Where, of course, D(CX) means D(Mod(CX)). The functor f−1 is exact. These functors send bounded
complexes to bounded complexes in the derived category.

Definition 4.18. For spaces X and Y , we can define an exterior tensor product

•� • : D(CX)×D(CY )→ D(CX×Y )

analogously to the exterior tensor product of D-modules defined in 2.4 in the obvious way. (As in,
e.g. [11] p97).

Definition 4.19. For f : X → Y as above, we define a functor on sheaves of C-vector spaces

f! : Mod(CX)→ Mod(CY ),

the direct image with compact supports, by

(f!F )(U) = {s ∈ Γ(f−1(U), F ) : f |supp(s) is proper }.

This functor is left exact, so we will also consider its derived functor

Rf! : D(CX)→ D(CY ).

The slightly subtle issue is how to define duality. There is an extremely powerful result of Verdier,
generalising the classical duality theorems of Poincaré which will show us the way.

Theorem 4.20 (Verdier duality). Let f : X → Y . There exists an additive functor

f ! : D+(CY )→ D+(CX)

of triangulated categories: the exceptional inverse image, such that there is a natural isomorphism

RHom(Rf!F
•, G•) ∼= Rf∗RHom(F •f !G•)

for any complexes F • ∈ Db(CX) and G• ∈ Db(CY ).

See [6] 2.3.21 or [11] 3.1.5.

Remark 4.21. By applying the 0th hypercohomology H0 to the above isomorphism, we produce
exactly the statement that f! is right adjoint to Rf!.

Definition 4.22. Let aX be the unique morphism from X to the one point space {pt}. We define the
dualising complex for X to be

∆X = a!XC{pt} ∈ Db(CX).
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Example 4.23. Let X be a complex manifold. Then the dualising complex is simply CX [2 dim(X)].
Indeed, for general real topological manifolds, the dualising complex has cohomology H i(∆X) ∼= Lor if
i = −dimX, and 0 otherwise. Since complex manifolds are orientable the result is a shifted constant
sheaf. ( [9] VI.2.5 and 3.2).

Definition 4.24. With all this in mind, define the Verdier dual of a complex F • ∈ Db(CX) to be

DX(F •) = RHom(F •,∆X).

One consequence of this definition of the dual of a complex is that, by 4.20, we can relate the standard
and exceptional push-forwards and pull-backs by isomorphisms

(DX ◦Rf∗)(F •) ∼= (Rf! ◦DX)(F •) and (DX ◦ f−1)(G•) ∼= (f ! ◦DX)(G•)

for any F • ∈ Db(CX) and G• ∈ Db(CY ) . For f!, f
! for D-modules, this was given as the defini-

tion of those functors. These relationships and their correspondences under the Riemann-Hilbert
correspondence gives a powerful method for understanding the behaviour of D-modules.

Example 4.25. Many classical forms of duality arise as special cases of this, for example, we recover
classical Poincaré duality for a topological n-manifold Xby applying the methods of Verdier duality
to the sheaf AX [k] of smooth functions on X with a shift in homological degree. See [6] theorem 3.3.1.

Remark 4.26. One of the reasons perverse sheaves were initially introduced is that they comprise
the largest subcategory of Db

c(CX) which is preserved by Verdier duality. Essentially, the perverse t-
structure is reversed by dualising, so only its heart is preserved. This is an analogue for constructible
sheaves of our result 3.18 that duality for D-modules preserves the full subcategory of holonomic
complexes of D-modules.

Remark 4.27. Thus, we have produced a collection of functors between derived categories

Rf∗, Lf
∗, Rf!, f

!, �, DX

for a morphism f : X → Y of complex manifolds or algebraic varieties. This is very similar to the
situation in 3.22 for holonomic DX -modules. In 5.6, we will see that these so-called “six operations”
correspond exactly under an equivalence of categories given by the de Rham functor.

5 Regular Singularities and the Riemann-Hilbert Correspondence

In this section we begin by reviewing the classical theory of regular singularities of systems of dif-
ferential equations, following the article [7] of Haefliger. The work we’ve already done allows us to
extend this concept to D-modules on general complex manifolds and smooth algebraic varieties, and
hence to introduce the category of regular holonomic D-modules. Along the way we will study the
case of D-modules on the complex line with singularities, as understood by analysts such as Fuchs in
the 19th century. This gives us the motivation to introduce definitions for more general behaviour of
D-modules with singularities. The highlight of the chapter is the Riemann-Hilbert correspondence, as
requiring holonomicity and regular behaviour on singularities are precisely the conditions we need for
an equivalence of categories with the derived category of constructible sheaves on a variety.

5.1 Fuchs Theory

This subsection will essentially consist of a single worked example: linear differential equations on C
whose coefficients have at worst a pole at 0, and are holomorphic elsewhere.

Definition 5.1. Throughout this section, let K denote the field of meromorphic functions holomorphic
away from zero, i.e. K is the field of fractions of the stalk O = (OC)0. More concretely, K ∼=
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C{{x}}[x−1] where C{{x}} denotes the ring of convergent power series at x = 0. We will use the
notation Õ for the ring of stalks of multivalued holomorphic functions on C at 0, i.e.

Õ = lim−→
ε→0

(O(D̃•ε)

where O(D̃•ε) is the ring of holomorphic functions on the universal cover of the punctured disc of
radius ε. These are, essentially, germs at 0 of holomorphic functions on the universal cover.

Consider a differential equation

P =
n∑
i=o

ai(x)

(
d

dx

)n−i
for ai ∈ K, a0 6= 0. This is equivalent to a system of linear first order equations, which we can express
in the form

d

dx
ui(x) =

n∑
j=0

aij(x)uj(x),

for i = 1, . . . , n, or equivalently

d

dx
u(x) = A(x)u(x) (1)

for A ∈ Matn(K). Two such systems d
dxu(x) = Ai(x)u(x), i = 1, 2 are called equivalent if there exists

a matrix T ∈ GLn(K) such that

A1 = TA2T
−1 − T d

dx
T−1

which is simply a change of variable condition: the result of setting v(x) = Tu(x).

We can view this in several different ways. Firstly, we can characterise such systems by the mon-
odromy of their solutions about the origin. Indeed, we consider multivalued solutions of the system

(1): solutions on the universal cover C̃× of C×, where we pass to the universal cover by the change of
variables x = e2πit. The space of such solutions is an n-dimensional C-vector space S of functions of
t, with basis (v1(t), . . . , vn(t)) say. But clearly (v1(t+ 1), . . . , vn(t+ 1)) are still linearly independent,
so t 7→ t + 1 gives an automorphism S → S, i.e. a matrix C ∈ GLn(C). This matrix is called the
monodromy matrix of the system (1). Two systems are equivalent if and only if they have the same
monodromy.

Alternatively, let us introduce the following notion, which will be the right concept to generalise to
other complex manifolds and smooth varieties:

Definition 5.2. A meromorphic connection on C at 0 is a finite dimensional vector space M over K
equipped with a C-linear map ∇ : M →M such that

∇(fm) =
df

dx
m+ f∇(m) ∀ f ∈ K, ∀ m ∈M.

Two such meromorphic connections (M1,∇1) and (M2,∇2) are isomorphic if there exists an isomor-
phism φ : M1 →M2 such that φ ◦ ∇1 = ∇2 ◦ φ.

Let us describe a correspondence between systems of linear differential equations of form (1), and
meromorphic connections. Let (M,∇) be a meromorphic connection. Pick a vector space basis
(e1, . . . , en) for M , and define a matrix A = (aij) ∈ Matn(K) by

∇ej =

n∑
i=1

aijei.
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Thus, for u ∈M ,

∇u = 0 ⇐⇒ ∇

(∑
i

uiei

)
= 0

⇐⇒
∑
i

dui
dx
−
∑
j

aijuj

 ei = 0

⇐⇒ dui
dx
−
∑
j

aijuj = 0 ∀ i

⇐⇒ d

dx
u(x) = A(x)u(x).

Conversely, given such a system of equations, characterised by A = (a)ij , we produce a meromorphic
connection by putting

∇ej =

n∑
i=1

aijei

where e1, . . . , en is a basis for an n-dimensional K-vector space. It is clear that under this correspon-
dence, equivalence classes of systems of differential equations correspond bijectively with isomorphism
classes of meromorphic connections.
We now introduce the notion of regularity, via moderate growth of solutions.

Definition 5.3. Consider a multivalued solution u ∈ Õ of the system d
dxu(x) = A(x)u(x). The

solution u is said to have moderate growth if for any sector of the form

S = {z = (r, θ) : 0 < r < ε, θ0 < θ < θ1},

there exists a constant c > 0 and an integer j ∈ N such that

|u(z)| < c

|z|j

for all z ∈ S. If the solutions of the system have moderate growth, we say the system is regular, or
has regular singularity at 0.

The following is a classical result on regularity.

Theorem 5.4. The following are equivalent:

1. The system

d

dx
u(x) = A(x)u(x) (2)

is regular.

2. The system (2) is equivalent to one of the form

d

dx
u(x) =

B(x)

x
u(x)

where B(z) is a matrix with holomorphic coefficients.

3. The system (2) is equivalent to one of the form

d

dx
u(x) =

C

x
u(x)

where C is a matrix with constant coefficients.
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For a proof see [7] 1.3.1 or [8] 5.1.4.

Using this, we produce the classical result of Fuchs.

Theorem 5.5. The system d
dxu(x) = A(x)u(x) is equivalent to a single equation

∑n
i=0 ai(x)

(
d
dx

)n−i
u =

Pu = 0. It is regular if and only if ai
a0

has a pole at 0 of order at most i, for i = 1, . . . , n.

Proof. One direction is now immediate. If the coefficients ai satisfy the given conditions (the “Fuchs
conditions”) then the system is regular by 5.4. Conversely, suppose the system is regular. We’d like
to proceed by induction on n, the order of P . To do this, first notice that by multiplying through by
xn

a0(x)
, the given equation is equivalent to one of the form

θnu+
n∑
i=1

bi(x)θn−iu = Qu = 0

where θ = x d
dx , and the Fuchs conditions are equivalent to requiring that all bi are holomorphic. We

need to reduce this to an equation of lower degree. We can always find some solution of the form
u(x) = xαh(x), where h ∈ K and e2πiα is an eigenvalue of the monodromy (as remarked in [7]). Take
any v ∈ Õ. When do we have

Q(uv) = 0?

Plugging it in, we see that this holds if and only if θv is a solution of a degree n− 1 equation of form

(θn−1 + c1θ
n−2 + · · ·+ cn−1)(θv) = 0

where the ci have the form

ci = bi + fi,i−1bi−1 + · · ·+ fi,1b1 fi,j holomorphic.

Then, by regularity, we observe that since the solution uv has moderate growth, so do the solutions
θv of this equation of lower degree! Thus we can apply our induction hypothesis to show that all the
coefficients ci must be holomorphic, and hence all the bi must be holomorphic also as required.

Let’s reinterpret this in terms of meromorphic connections.

Definition 5.6. Let (M,∇) be a meromorphic connection. We say the connection is regular (at 0) if
there exists a basis e1, . . . , en of M over K such that

∇ei = −
∑
j

bij(z)

z
ej bij ∈ O.

Equivalently, there exists a finitely generated submodule L of M such that x∇L ⊆ L, generating M
over K.

In view of the previous two theorems, we can see that this is equivalent to the regularity of the
associated system of linear differential equations. Indeed, the meromorphic connection corresponds to
the system

dui
dx

=
∑
j

bij(z)

z
uj

which, by 5.4, is regular precisely when we can choose bij ∈ O, i.e. when there exists a basis of the
above form for the associated meromorphic connection.
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5.2 Regularity on algebraic curves

Let X be a smooth algebraic curve. Let us generalise the notion of a meromorphic connection, and
regularity (5.6) to this setting. Fix a point x ∈ X. We replace O by the stalk OX,x, and K by its field
of fractions KX,x. In this setting we can make the following definition:

Definition 5.7. Let X and x be as above. A meromorphic connection on X at x is a pair (M,∇),
where M is a finite-dimensional KX,x-module, and ∇ is a C-linear map

∇ : M → Ω1
X,x ⊗OX,x M

such that
∇(fm) = df ⊗m+ f∇m ∀ f ∈ KX,x, u ∈M.

To generalise the notion of regularity of a meromorphic connection, we use the second phrasing given
in definition 5.6. This is naturally adaptable to out new situation:

Definition 5.8. Let (M,∇) be a meromorphic connection on the algebraic curve X at a point x. We
say the connection is regular if there exists a finitely generated submodule L of M such thatξ∇L ⊆
Ω1
X,x ⊗OX,x L for ξ a local parameter at x, with

KX,xL = M

(i.e. L generates M over KX,x.)

Now, since X is a curve, there exists a unique (up to isomorphism) smooth completion X of X. Take
M an integrable connection on X. We can use the notion we just introduced to say what it means for
M to be regular. Indeed, push forward M to j∗M , where j : X → X is the open embedding. At each
point x ∈ X \ X in turn, consider the stalk (j∗M)x. We can give this the structure of a meromorphic
connection at x by

∇(m) = dξ ⊗ ∂m m ∈ (j∗M)x,

where (ξ, ∂) are local coordinates for DX around the point x. So

Definition 5.9. An integrable connection M is called regular (or has regular singularities) if the
induced meromorphic connection ((j∗M)x,∇) is regular at every x ∈ X \ X.

Examples 5.10. 1. By considering C as an algebraic curve we recover some of the previous Fuch-
sian theory. Indeed, consider a D1-module

M = D1/D1P P a differential operator.

When is M regular? Certainly M is holonomic, because the annihilator of gr(M) is non-zero.
Consider the embedding j : C → P1. M is an integrable connection on C minus a finite set of
points: the singular points of P . To be regular at such a point means precisely for the solutions
of P to have moderate growth there, and likewise to be regular at ∞ means to have moderate
growth as |z| → ∞. Equivalently, if

P =
n∑
i=0

ai(x)

(
d

dx

)n−i
ai/a0 has a pole of order at most i at each singular point in P1. Such a P is said to be Fuchsian.

2. ( [8] 5.1.24) This approach does not work as nicely for Riemann surfaces as it does for algebraic
curves. The problem arises when we take an integrable connection on a Riemann surface U ,
and attempt to produce a meromorphic connection at x ∈ X \ U where X \ U is a finite set (a
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divisor). For example, consider j : C× → C. First consider C as an algebraic curve. Then take
two integrable connections on U

M = DU/DU∂

and N = DU/DU (x2∂ − 1).

Pushing forward under j to M ′ = j∗M , N ′ = j∗N , these are certainly not isomorphic. Even
M ′an and N ′an are not isomorphic since M ′an is regular at 0 but N ′an is not. However in the
analytic category Man ∼= Nan, via

P +D∂ ↔ P exp(1/x) +D(x2∂ − 1)

since P ∈ D∂ ⇐⇒ P exp(1/x) ∈ D(x2∂ − 1). Thus taking two different – näıve algebraic –
extensions to meromorphic connections may produce different results.

Proposition 5.11. Let M be a coherent DX -module for X any algebraic variety (not necessarily a
curve). Then M if is holonomic then there exists an open dense subvariety U ⊆ X such that M |U is
an integrable connection. For X a curve, the converse also holds.

Proof. First, notice that M is forced to be an integrable connection if and only if its characteristic
variety Ch(M) is precisely the zero section T ∗XX in T ∗X. Indeed, if M is an integrable connection
then we easily see this by noticing that

FiM =

{
M i ≥ 0

0 otherwise

defines a good filtration. Conversely, work in local coordinates, and let F be a good filtration. We
prove that for large i, FiM = Fi+1M = M , and so FiM coherent over OX =⇒ M coherent over OX .

To see this, recall that in local coordinates, we can define the ideal I ⊆ C[x1, . . . , x2n] = R2n by

I =
n∑
i=1

R2nxn+i.

This ideal is the radical of Ann(grF (M)) by the definition of the characteristic variety, since Ch(M) =
T ∗XX. It is Noetherian, so for some power m of I, Im ⊆ Ann(grF (M)). Hence for a multi-index
|α| = m,

∂αFjM ⊆ Fm+j−1M.

Now, this is what we need, because now for big enough j

F(m+j)M = (FmDX)(FjM) as F is a good filtration

=
∑
|α|≤m

C[x1, . . . , xn]∂αFjM

⊆ F(m+j)−1M

as required.

Given this, consider the set S = Ch(M)∩(T ∗X \ T ∗XX). It suffices to prove that dim(π(S)) < dim(X),
as then we can find an open dense subset contained in X \ π(S) as required. To see this, we observe
that the fibres of π over S have dimension bigger than 0. This is always true for points in the char-
acteristic variety (since the characteristic variety is conic. See the proof of 4.13 and [8] appendix E.)
Thus the result follows.

Conversely, if M is generically an integrable connection on a set U then it is certainly holonomic by
3.12, as it is forced to have finite-dimensional fibres on X \ U .
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With this result in mind, we make the following definition:

Definition 5.12. Let X be a smooth algebraic curve. A holonomic DX -module M is called regular
if there exists open dense U ⊆ X such that M |U is a regular integrable connection.

5.3 Regularity on algebraic varieties

Generalising these notions to higher dimensions is not so easy. At this point the algebraic and analytic
paths diverge. Although there is an interesting body of theory in the analytic case (as described in
chapter 5 of [8]), from now on we will focus attention on the algebraic case. We begin by introducing
regularity for integrable connections on a smooth variety X, then digress to a classification theorem for
simple holonomic D-modules before returning and using this to define regularity for general holonomic
D-modules.

Definition 5.13. Let M be an integrable connection on X. We say M is regular if for every morphism
f : C → X where C is a smooth algebraic curve, the inverse image f∗M is a regular integrable
connection on C.

Remark 5.14. Let Y be a smooth algebraic variety, and let D be a divisor on Y arising as the
complement of an open subvariety j : X ↪→ Y . We define meromorphic connections along D to be
DY -modules which are isomorphic over OY to coherent j∗OX modules. There is an equivalence of
categories

{meromorphic connections along D} ↔ Conn(X).

We will not use these meromorphic connections, but they can be used to demonstrate the uniqueness
of meromorphic extensions in the algebraic setting. That is, nothing like 5.10 example 2. can go wrong
here.

5.4 Classification of simple holonomic D-modules

Definition 5.15. Let M be a coherent DX -module. We say M is simple if M 6= 0 and M has no
non-zero proper DX -submodules (i.e. the only DX -submodules are 0 and M).

Proposition 5.16. Let M be a holonomic DX -module. Then there exists a finite composition series
of submodules

0 = M0 ≤M1 ≤ · · · ≤Mr = M

such that each Mi is holonomic and Mi/Mi−1 is simple for every i. We call the quotients Mi/Mi−1
the composition factors.

Proof. Immediate from the fact that submodules and quotients of holonomicD-modules are holonomic,
and the fact that holonomic D-modules have finite length (3.20).

The aim of this section is to classify simple holonomic D-modules by showing they are all isomorphic
to minimal extensions of the following form:

Definition 5.17. Let j : Y → X be a locally closed affine embedding of smooth varieties. Let M be a
holonomic DY -module. We already know that j∗M and j!M are holonomic DX -modules (the fact that
the map is affine ensures that they are bona fide modules, rather than simply complexes of modules).
In fact, as we already mentioned (see definition 3.21 and [8] 3.2.16) there is a natural transformation
j! → j∗. Call the image of j!M → j∗M the minimal extension of M ∈ Modh(DY ), denoted L(Y,M).

Theorem 5.18. Let j : Y → X be as above, and N ∈ Modh(DY ). If N is simple then so is L(Y,N),
and furthermore, any simple holonomic DX -module M is isomorphic to L(Y,N) for some such Y and
N .
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Proof. The second assertion follows from the first. Indeed, let M be a simple holonomic DX -module.
By 5.11 there exists an open dense j : Y ↪→ X such that j†M is an integrable connection. The module
j†M is simple by 3.19. If L(Y, j†M) is simple then we’re done, as

HomDX (j!j
†M,M) ∼= HomDY (j†M, j†M),

so there exists a non-zero surjective morphism j!j
†M → M , so M is a quotient of j!j

†M , so M is a
non-zero submodule of L(Y, j†M).

Now we prove the first assertion, i.e. that L(Y,N) is simple. First, we notice that j∗M has a unique
simple holonomic submodule L. Indeed, suppose there exist two such, L1 6= L2. Then

j†(L1 ⊕ L2) = j†L1 ⊕ J†L2.

But this is a contradiction, since for any submodule N ≤ j∗M , we have j†N ∼= M . This is a little bit
fiddly to see. Factor j as j2 ◦ j1 for j1 closed, j2 open. j† is exact (this is a consequence of Kashiwara’s
theorem) so j†N → j†j∗M ∼= M is injective. By the adjunction j!2 a j2∗, the inclusion N → j∗M gives

a non-zero morphism j!2N
∼= j†2N → j1∗M , which is surjective because the righthand side is simple

holonomic. Hence we get a surjective morphism

j†N ∼= j†1j
†
2N → j†1j1∗M

∼= M.

Thus we have the required isomorphism.

Given this L a unique simple submodule, it suffices to factor the canonical morphism j!M → j∗M
through L. This is now easy by the adjunction i! a i†:

Hom(i!M, i∗M) ∼= Hom(M, i†i∗M) ∼= Hom(M,M) ∼= Hom(M, i†L) ∼= Hom(i!M,L).

Thus L ∼= L(Y,M) is simple as required.

5.5 Preservation of regularity

Definition 5.19. We can now define what it means for a holonomic DX -module M to be regular. Let
M be such a DX -module. By 5.18 we know that its composition factors Fi are isomorphic to minimal
extensions L(Yi, Ni). We say M is regular if each Ni is a regular integrable connection on Yi.

We denote the full subcategory of Mod(DX) consisting of regular holonomicDX -modules by Modrh(DX),
and we denote the full subcategory of Db(DX) consisting of complexes with regular holonomic coho-
mology by Db

rh(DX).

Remark 5.20. There is an alternative characterisation of regular holonomic DX -modules, similar
to definition 5.13: M• ∈ Db

h(X) is regular if and only if for any morphism f : C → X where C is
a smooth algebraic curve, f †(M•) has regular cohomology. The equivalence of these two notions is
fairly tricky to prove, and I will not do so here. See, for example, [8] 6.1.6 for a full proof.

The following is the crucial theorem of this section: an analogue of 3.23 for Modrh(DX):

Theorem 5.21. Let f : X → Y be a morphism of smooth varieties. Then the functors f∗ and f∗

preserve the full derived subcategories of regular holonomic D-modules. i.e.

f∗Drh(DX) ⊆ Drh(DY ) and f∗Drh(DY ) ⊆ Drh(DX).

Again, we will not prove this here. There are full accounts in [3] and in [8].
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5.6 The Riemann-Hilbert correspondence

As already mentioned, we have now described two categories: Db
rh(DX) and Db

c(CX) for a smooth
variety X. In each, we have a family of operations, enumerated in 3.22 and 4.27 respectively. We also
have a functor

DRX : Db
rh(DX)→ Db

c(CX)

by Kashiwara’s constructibility theorem 4.13. The following result is probably the most important
theorem in the classical theory of D-modules, describing how these families relate.

Theorem 5.22. Let X be a smooth algebraic variety. Then there is an equivalence of categories

Db
rh(DX)

∼→ Db
c(CX)

given by the de Rham functor. Furthermore, if f : X → Y is a morphism of smooth varieties, the
de Rham functor is compatible with the functors described in 3.22. That is, the following squares
commute:

Db
rh(DX)

f∗
��

DRX // Db
c(CX)

f∗
��

Db
rh(DX)

DRX // Db
c(CX)

Db
rh(DY )

DRY // Db
c(CY ) Db

rh(DY )

f∗

OO

DRY // Db
c(CY )

f∗

OO

for all morphisms f : X → Y , and

DX ◦DRX = DRX ◦ DX ,

which implies similar compatibility relations for f! and f !.

Remark 5.23. We can immediately see that the de Rham theorem 4.8 is a very special case of
this result. If we restrict to constructible sheaves on a single stratum (i.e. local systems), then the
corresponding regular holonomic D-modules are simply the integrable connections on X.

Example 5.24. Let’s consider the classical problem from which the Riemann-Hilbert correspondence
gets its name. Let P be a linear differential operator on X = C \ S for S a finite set, and suppose
P is regular at each s ∈ S. That is to say P ∈ Modrh(DX). Then we can produce a representation
of π1(X,x) (the monodromy) by an analogous procedure to the single singularity case described in
section 5.1. The twenty-first Hilbert problem asked: given a set S of singularities and a monodromy
representation ρ, can one always produce a differential operator P with this monodromy?

By the above theorem, we can answer this question affirmatively. More interestingly, one can view
the correspondence as a vast generalisation of this situation to n dimensions and n variables, with
the local systems on the punctured plane (or equivalently on a Riemann surface) replaced by perverse
sheaves, and the ordinary differential operators replaced with regular holonomic D-modules.

Remark 5.25. The Riemann-Hilbert correspondence gives another natural interpretation of the cat-
egory of perverse sheaves. Namely, they are the image of the full subcategory Modrh(DX) ⊆ Db

rh(DX)
under the de Rham functor DRX . To see this corresponds to our previous definition, notice that the
de Rham functor is t-exact with respect to the standard t-structure on Db

rh(DX) and the perverse
t-structure on Db

c(CX), and thus sends the heart of the former t-structure (i.e. Modrh(DX)) to the
heart of the latter (i.e. perverse sheaves). Historically, it was in this context that perverse sheaves
were first explicitly considered.

6 Vanishing Cycles and the Kashiwara-Malgrange Filtration

6.1 Nearby and vanishing cycles

The notions of nearby and vanishing cycles functors go back to the classical case of Milnor fibrations. If
one wishes to understand a one-parameter degeneration of complex manifolds, one can investigate what
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happens to the (co)homology of the fibres when passing from the (homotopy equivalent) non-singular
fibres to a singular fibre at zero. Deligne came up with a formal algebraic way of formalising and gen-
eralising this idea to a wider setting, as described originally in the SGA seminar, and published in [5].

The situation we want to understand is the following. Let f : X → C be a morphism of smooth
varieties. The fibre X0 at 0 may be singular, but suppose the fibres Xt for t in the punctured disc
D0
ε(0) are not singular. We aim to understand the singular fibre, first by the behaviour of the fibres

(‘nearby cycles’), then by analysing what is lost when passing from the nearby fibres to the singular
fibre (‘vanishing cycles’). More concretely, consider the following example:

Example 6.1. Consider the family of curves

Xλ : y2 = x(x− 1)(x− λ)

paramterised by λ ∈ C. Xλ is an elliptic curve when λ 6= 0, 1. Let f : X → C be the morphism of
smooth varieties whose fibre over λ is Xλ. Let L be a local system on the smooth fibre, characterised by
monodromies (g1, g2), gi ∈ GLn(C) about the two generators of the fundamental group of Xλ. When
the local system degenerates at the singular fibres X0, X1, heuristically we “lose” the information
about some of the monodromy, but not all of it. This is what we hope to understand via nearby and
vanishing cycles. We will consider this example in more detail in the next chapter, in section 7.2.

In the following definition we assume X0 is the only singular fibre. We can do this by working in a
small open disc around 0, and considering the neighbourhood f−1(D0

ε(0)) of the punctured disc in X.
For simplicity of notation this is suppressed in the definitions to follow, where I will simply talk about
X \ X0.

Definition 6.2. Suppose f : X → C is as above. We first construct the nearby cycle functor

ψ : Db
c(CX)→ Db

c(CX0)

as follows. Consider the diagram

E
π̃ //

��

X \ X0

f

��

j
// X X0

ιoo

C̃×
π // C×

where E is the pullback of f by π. Then define ψ to be the composite

ψ = ι∗ ◦R(j ◦ π̃)∗(j ◦ π̃)∗ : Db
c(CX)→ Db

c(CX0).

(Of course, the inverse image functors are exact, so only the direct image needs to be replaced with the
derived functor). The idea is to pull back to a generic fibre (E, which is homotopic to any non-singular
Xλ) and then retract to the singular fibre X0. See for example the exposition in [15] section 11.2.

Heuristically, when we pass to the singular fibre we should define the vanishing cycles to be “everything
that is not a nearby cycle” in some sense. We do this via a distinguished triangle in Db

c(X0).

Definition 6.3. Since (j◦π̃)∗ a R(j◦π̃)∗ is an adjunction, the unit of the adjunction gives a morphism

ι∗F • → ψF •.

We define the vanishing cycle functor

φ : Db
c(X)→ Db

c(X0)

via the mapping cone of this morphism:

ι∗F • → ψF •
can→ φF •

+1→ .

The morphism labeled can is called the canonical morphism.
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Remark 6.4. Both ψF • and φF • come equipped with natural monodromy actions. Indeed, let T

be the anticlockwise generator of π1(C×, ∗). Then T is an automorphism of E = (X \ X0) ×C× C̃×
satisfying

π̃ ◦ T = π̃,

so applying T to E induces an automorphism of ψF •.

What about vanishing cycles? Consider now the following commutative diagram with distinguished
rows:

ι∗F • //

��

ψF •
can //

T−1
��

φF •
+1

//

var

��
�
�
�

0 // ψF • ψF • // 0

The morphism var (the variation morphism) comes from completing the diagram to a morphism of
distinguished triangles. This means that in particular, we can describe a monodromy automorphism
on vanishing cycles by

T − 1 = can ◦ var.

The terminology of vanishing cycles comes from the classical theory of vanishing cycles for Milnor
fibrations, as described in [15] Appendix C.2.

6.2 Perverse sheaves in 1 dimension

In this section we compute the simplest non-trivial example: namely the case when

f = j : C× → C.

In general one can use the notion of nearby and vanishing cycles to classify the perverse sheaves on
X a Riemann surface, following [2] and [6] 5.2.26. For simplicity, lets look at X = C, P • ∈ Perv(C).
First note the following

Example 6.5. Let X = {pt}. Then Perv(X) = Vect(C). Indeed, sheaves of CX -modules are simply
C-vector spaces, and the derived category of such is simply the homotopy category of complexes of
vector spaces. Such a complex V • is perverse if and only if it has cohomology only in degree 0 as
remarked in 4.16, i.e. if and only if it is homotopic to a complex supported only in degree 0.

We will use without proof the following highly non-trivial result of Gabber ( [15] proposition 13.29, [6]
theorem 5.2.21):

Theorem 6.6. Write pψ and pφ for ψ[−1] and φ[−1] respectively, functors from Db
c(X) → Db

c(X0).
Then both pψ and pφ preserve the full subcategory of perverse sheaves, i.e. restrict to functors

Perv(X)→ Perv(X0).

Thus, if P • ∈ Perv(C), then pψP • and pφP • are in Perv({pt}) = Vect(C). So we have a diagram of
vector spaces and linear maps

pψP •
can // pφP •
var

oo ,

i.e. a representation of the quiver

• // •oo . (3)

In fact, this is all the information we need to characterise P •. For simplicity of notation, write Perv(C)
for the category of perverse sheaves with respect to the specific stratification C× ∪{0}. Then we have
the following result:
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Proposition 6.7. There is an equivalence of categories between Perv(C) and the category of repre-
sentations of the quiver (3).

Proof. We have already described the functor from perverse sheaves to representations, so we will
describe a functor in the other direction and check they are quasi-inverse to one another. Indeed, let

Ψ
c //

Φ
v

oo

be a representation of the quiver (3). By calculation, we can see where the irreducible representations
must go, namely

C
//
0oo 7→ C0 (skyscraper sheaf)

0
//
Coo 7→ C[1] (constant sheaf)

C
×1

//
C

×λ
oo 7→ j∗Lλ+1[1]

where j : C× → C and Lλ is the rank one local system on C× with monodromy λ.

In general, we produce a perverse sheaf

P =
(

0→ P−1
0→ P 0 → 0

)
as follows. Define P−1 with respect to the given stratification by P−10 = ker(c), and P−1|C× = Ψ
with monodromy v ◦ c+ 1. Define P 0

0 = coker(c), P 0|C× = 0. These are both certainly constructible,
and the whole complex P is perverse because one can show (see [6] example 5.2.23) that the perverse
complexes with respect to this stratification are precisely those of form

0→ F−1 → F 0 → 0

with H0(F •) supported on {0} and Γ{0}(H
−1(F •)) = 0.

We must check that these functors define an equivalence. Firstly it is clear that for a representation
of the quiver, applying the two functors gives back precisely the original representation, because the
nearby and vanishing cycle complexes of these perverse sheaves are easy to calculate. We must check
the other direction, so let P • be a perverse sheaf on C with respect to the given stratification, without
loss of generality of the form

P = 0→ P−1
0→ P 0 → 0.

Then by computing the vanishing cycles of this complex the result follows readily.

6.3 The Kashiwara-Malgrange filtration

At this point, it is natural to ask how we might interpret these vanishing cycles in the category of
regular holonomic D-modules, under the Riemann-Hilbert correspondence. The answer is to introduce
the Kashiwara-Malgrange filtration on such a D-module. This filtration V q will relate to the vanishing
cycle functor according to the following result ( [18], 3.4.12).

Recall that for any invertible operator T on a finite-dimensional complex vector space, we can decom-
pose T uniquely as a product T = TsTu where Ts is semisimple, Tu is unipotent, and TuTs = TsTu.
By the semisimple part of the monodromy operator, we mean the semisimple Ts in this Jordan de-
composition.
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Theorem 6.8. let f : X → C be a regular function. Let M be a regular holonomic DX -module, and
let M̃ be its pushforward under the graph (1, f) : M →M × C. If the filtration V q exists, then there
are canonical isomorphisms

DRX0(grVq M̃) ∼= pφexp(2πiq)(DRX(M)) q ∈ (−1, 0]

where grVq = V q/V q+1, and pφexp(2πiq) means the exp(2πiq)-eigenspace of pφ with respect to the action
of the semisimple part of the monodromy T described in 6.14.

A good introduction to the Kashiwara-Malgrange filtration is [4]. There are also accounts in [2], [15]
and [14].

Definition 6.9. Let X be a smooth algebraic variety, Y ⊆ X a codimension one subvariety in X.
We first describe a filtration called the V -filtration on DX associated to Y . Then the Kashiwara-
Malgrange filtration on a holonomic DX -module M will be a filtration on M that is compatible with
the V -filtration in a natural way.

Let I be the sheaf of ideals corresponding to Y . Define an exhaustive decreasing filtration on OX first
by

V kOX =

{
Ik if k > 0

OX if k ≤ 0
.

This then defines a filtration on DX by putting

V kDX = {P ∈ DX : PIi ⊆ Ii+k ∀ i ∈ Z}.

This agrees with the notion just given on the subsheaf OX , and if locally X has coordinates
x1, . . . , xl, y1, . . . , ym, and Y = {y1 = · · · = ym = 0} we can view the filtration as

V kDX =
∑

|β|−|γ|≥k

fα,β,γ(x)∂αx y
β∂γy

with the natural multi-index notation.

Definition 6.10. Let M be a holonomic DX -module, and let V i be the V -filtration associated to a
codimension one subvariety Y in X. A V -filtration on M is a decreasing exhaustive rational filtration
(V qM)q∈Q by coherent V 0DX -modules such that

1. (V kDX)(V qM) ⊆ V q+kM . This is what is meant by compatibility with the filtration of 6.9.

2. If q > 0, then the inclusion (V 1DX)(V qM) ↪→ V q+1M is an equality.

3. The action of y∂ − q on grVq M is nilpotent.

Lemma 6.11. If such a V -filtration exists, it is unique, and is called the Kashiwara-Malgrange filtra-
tion.

Proof. Suppose V1 and V2 were two filtrations satisfying the conditions on a given M ∈ Modh(DX).
Then first of all, we can find rational numbers a and b such that

V q+a
1 M ⊇ V q

2M ⊇ V
q+b
1 M ∀ q ∈ Q.

Suppose for contradiction that we can pick such a, b such that b − a > 0 is minimal. Nilpotence of
y∂ − q on grV1q M implies that

grV2q grV1q′ M = 0 ∀ q 6= q′

=⇒ V q
2 grV1q+bM = 0 ∀ b > 0

=⇒ V q
2M ⊆ V

q+b−ε
1 for some ε > 0

which is a contradiction of the minimality of b− a, so in fact V1 = V2.
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Definition 6.12. What if Y is a codimension one subvariety which is not smooth? In this case, we
can still define the V -filtration along Y . Indeed, we have a morphism of locally constant OX -modules
OX ↪→ OX(Y ), with associated bundle morphism σ : X → E. Let E0 be the zero section of E. We say
that a rational filtration V qM is a V -filtration on M associated to Y ⊆ X if σ∗(V

qM) is a V -filtration
on σ∗M associated to E0 ⊆ E in the above sense.

Remark 6.13. For Y smooth, one can check that this definition agrees with the original definition,
so this does make sense.

Suppose X is fibred by f : X → C, and Y = X0 is a possibly singular fibre. Under what conditions
does the Kashiwara-Malgrange filtration exist for this Y ? For regular holonomic DX -modules M we
have a strong condition for the existence of the filtration, proven by Malgrange. ( [15] Theorem 14.23)

Theorem 6.14. We say M ∈ Modrh(DX) has quasi-unipotent monodromy along the fibre X0 if
the monodromy action T on ψ(DRX(M)) described in remark is quasi-unipotent : that is, if there
exists some n ∈ N such that Tn − 1 is nilpotent. If M has quasi-unipotent monodromy then then
Kashiwara-Malgrange filtration exists on M .

7 Applications to Hodge Theory

We conclude the essay by giving some applications of the theory of D-modules to problems of Hodge
theory. We introduce the classical language of Hodge theory: Hodge structures on vector spaces.
These can be viewed as local systems on a point, and so we can use the techniques introduced in
chapter 4 to give an integrable connection analogue on a more general variety: a variation of Hodge
structure. We then use the Kashiwara-Malgrange filtration to describe how one might understand
degenerations of Hodge structures near a singular fibre of a one-parameter family of curves. Finally
we remark on Saito’s work on Mixed Hodge Modules, which is a vast generalisation of the ideas in
this chapter.

The main sources for this material are the book [15] of Peters and Steenbrink, and the lecture notes [17]
of Sabbah.

7.1 Hodge structures and variations of Hodge structure

The classical result that inspired the development of Hodge theory was the following Hodge decompo-
sition for de Rham cohomology of a compact Kähler manifold:

Theorem 7.1. Let X be a compact Kähler manifold. Let Hp,q(X) be the spaces of cohomology
classes of type (p, q). Then there is a direct sum decomposition

Hm(X,CX) ∼=
⊕

p+q=m

Hp,q(X)

and Hp,q(X) ∼= Hp,q(X).

The idea is to consider in more generality modules with an analogous Hodge decomposition, defined
as follows:

Definition 7.2. Let VQ be a Q vector space. A Hodge structure of weight w on VQ is a direct sum
decomposition

V = VQ ⊗Q C ∼=
⊕

p+q=w

V p,q
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such that V p,q ∼= V p,q. Equivalently, we can define a Hodge structure via a filtration

FpVC =
⊕
p′≥p

V p′,w−p′

called the Hodge filtration, satisfying the condition that for any p ∈ Z,

FpV ∩ Fw−p+1 = {0}.

A morphism of Hodge structures is, unsurprisingly, a linear map between vector spaces that preserves
the Hodge filtration.

Remark 7.3. Here, we are considering Q-Hodge structures. We could equally well have taken VZ to
be a Z-module and made the same definition. Indeed this is the approach taken in [15]. However,
when we go on to talk about variations of Hodge structures, we’d like to use the analogy that a Q
vector space is a Q-local system at a point, for close analogy with our discussion of local systems in
chapter 4.

Example 7.4. We’ve already seen one example of a Hodge structure, namely cohomology groups.
Let’s introduce another example, via Tate twists. First we define the basic Hodge structures Z(k).
If k = 0, this is just the Hodge structure C with the standard underlying Q-vector space Q. If
k = 1, this is the Hodge structure C with underlying Q-vector space 2iπQ. Then for general k ∈ Z,
Z(k) = Z(1)⊗k, with weight −2k.

If V is a weight w Hodge structure, its kth Tate twist is a weight w − 2k Hodge structure with
underlying vector space V ⊗ Z(k), and Hodge structure V (k)p,q = V p−k,q−k. The name comes from
the similar notion of the Tate twist of a Galois module.

Definition 7.5. Let V be a Hodge structure of weight w. A polarization of the Hodge structure V is
a (−1)w-symmetric morphism of Hodge structures of weight w

Q : V ⊗ V → Z(−w)

such that the bilinear form
Q′(u, v) = (2iπ)wQ(Cu, v)

is positive definite. Here C is the operator that sends u ∈ V p,q to ip−qu, sometimes called the Weil
operator.

We can consider Hodge structures as vector bundles on a point, with some additional structure. The
right idea to generalise this to other varieties is the correspondence between integrable connections
and local systems (4.8).

Definition 7.6. Let X be a smooth variety. A variation of Hodge structure on X of weight w is a
local system VQ of QX -modules on X equipped with a finite increasing filtration

Fp(VQ ⊗Q OX)

of subbundles (the Hodge filtration) satisfying the following conditions:

1. At each point y ∈ Y , the filtered vector space (VQ,y ⊗Q C, F •) is a Hodge structure of weight w
on the stalk VQ,y.

2. (Griffiths Transversality) By theorem 4.8, the local system VQ induces an integrable connection
(V,∇) on X. This connection should satisfy the condition

∇(FiVQ) ⊆ Fi−1VQ ⊗ Ω1
X

for every i ∈ Z.
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Example 7.7. Let V be a Hodge structure of weight w, and let

ρ : π1(Y, ∗)→ Aut(V )

be a representation of π1, with corresponding local system Vρ. The Hodge structure on V gives a
natural Hodge filtration to Vρ which trivially satisfies Griffiths transversality. Thus ρ makes V into a
variation of Hodge structure. Denote V1 by VY .

Definition 7.8. let V be a variation of Hodge structure. A polarization of V is a morphism of
variations of Hodge structure

Q : V ⊗ V → Z(−k)Y

such that the induced morphisms on the fibres are themselves polarizations of Hodge structures.

Example 7.9 ( [15] 10.7). We have the following crucial example of a variation of Hodge structure:
let f : X → Y be a proper smooth morphism of smooth varieties. Then the kth cohomology of the
fibres Hk(Xλ,Q) defines a local system on S. In fact this local system underlies a variation of Hodge
structure of weight k such that the induced Hodge structures on the stalks are just the usual Hodge
structures on the cohomology of the fibres Hk(Xλ,C). This is because there exists a connection on
the relative de Rham cohomology

Hk
dR(X/Y ) = Rkf∗CX ⊗C OY

called the Gauss-Manin connection ∇GM , and a Hodge filtration satisfying Griffiths transversality.
Such examples are sometimes called geometric variations of Hodge structure.

Example 7.10. Let f : X → C have smooth fibres away from a finite set S ⊆ C. Then, as in the
above example, the cohomology groups Hk(Xλ) form a local system on C \ S, which can naturally
be viewed as the underlying local system of a variation of Hodge structure.

The above example illustrates how the theory of D-modules that we have developed may be helpful.
Suppose that rather than simply being interested in a local system on C \ S like the cohomology of the
smooth fibres, we want to understand a sheaf that also takes into account data on the singular fibres.
Such an object will then be a constructible complex with respect to the stratification (C \ S) ∪ S:
i.e. an object of Db

c(C). By the Riemann-Hilbert correspondence we may equivalently view this as
a complex of regular holonomic D-modules. In the previous chapter, we introduced a method for
understanding the behaviour of such objects, namely the Kashiwara-Malgrange filtration. We will
explain how this works with an extended example.

7.2 A one-parameter degeneration of elliptic curves

In this section we will study the example described in 6.1. That is, the smooth variety f : X → C
whose fibres Xλ are the curves

y2 = x(x− 1)(x− λ).

The fibres are smooth with the exception of the two singular fibres X0 and X1. We will consider
degenerations of Hodge structures on X at these singular fibres. Due to time constraints I will unfor-
tunately only lay out how the calculation might go, and will not actually perform the calculation.

Consider the sheaf on C whose stalks are the kth cohomology groups of the fibre Xλ, i.e. Hk(Xλ,Q).
This is constructible with respect to the obvious stratification (C \ {0, 1})∪{0, 1} , as in example 7.9,
so corresponds to a complex M• ∈ Db

rh(D1) by the Riemann-Hilbert correspondence. We would like
to compute the Kashiwara-Malgrange filtration on M• at the two singular fibres.

Equivalently, by 6.8, if we understand the graded structure of M• under the Kashiwara-Malgrange
filtration, then we know about the eigenspaces of the monodromy operator on vanishing cycles of this
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cohomology sheaf at the singular fibres.

How might we go about computing this filtration? Using the techniques of [14], we can reduce the
problem to another more tractable one. Indeed, if we have a holomorphic DX -module, by Kashiwara’s
theorem we can consider it as a holonomic D3 module with support contained in X. This allows us
to consider a local neighbourhood about the singular point of X at 0, with coordinates x, y and t.
Take M ∈ ModXh (D3), and let m be a local generator at this point. By proposition 4.2.1 in [14], the
existence of a V -filtration is equivalent to the existence of a b-function for m, i.e. a non-zero b ∈ C[s]
such that

b(x∂x + y∂y + t∂t)m ∈ (V −1D3)m

where the V -filtration is with respect to the hyperplane t = 0 say.

Take the constant DX -module, and let M be its direct image under the embedding ι : X → C3. Let
m be a local generator near the singularity at 0. We could aim to compute the b-function for m, as
M should correspond, under the de Rham functor and direct image along f , to the cohomology sheaf
we want to understand.

Thus we have produced a recipe for computing the vanishing cycles near the singularity, namely
consider the constant D-module on the total space of the family as a D3-module, compute the b-
function of a local generator near the singularity, compute the Kashiwara-Malgrange filtration by
techniques in [14], push down along f and apply the de Rham functor.

7.3 Remarks on mixed Hodge modules

I will now describe some of the generalisations of this theory developed by Saito, described in [15].
Let X be a general algebraic variety, not necessarily smooth. One can produce an analogue of the
Riemann-Hilbert correspondence in this setting. Essentially, Saito’s idea was to replace the filtered
integrable connection of a variation of Hodge structure with a D-module equipped with a good fil-
tration. This is, then, an analogue of a variation of Hodge structure where singularities are allowed
to arise (i.e. we’re working with regular holonomic D-modules rather than integrable connections).
These objects are called Hodge modules, but the precise definition is rather involved. In this chapter
we will at most sketch out some of the ideas and consequences of the theory.

Since we are now thinking about Hodge structures on constructible sheaves, the behaviour along sin-
gularities becomes crucial. Luckily, we have introduced the dual perspectives of vanishing cycles and
the Kashiwara-Malgrange filtration that allow us to analyse such things. Essentially, a Hodge module
Mof weight w is a filtered regular holonomic DX -module with an underlying rational structure which
is a rational perverse sheaf. Furthermore, we require the existence of certain filtrations on the nearby
and vanishing cycle complexes of M , whose kth graded parts are themselves weight k Hodge modules
supported on the singular loci. Thus in a sense we define Hodge modules inductively, with variations
of Hodge structure playing the role of the base case.

The following theorem of Saito is a generalisation of the similar property of variations of Hodge
structure:

Theorem 7.11 (Hodge-Saito). Let X be a projective variety, and let M be a polarized Hodge
module of weight w on X. Then there is the natural structure of a polarized Hodge structure on
the hypercohomology

Hk(X,DRX(M)[dim(X)])

arising from the Hodge module structure on M .

The real objects Saito aimed to study were mixed analogues of these Hodge modules. The notion of
a mixed Hodge structure is classical:
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Definition 7.12. A mixed Hodge structure V is a Q-vector space equipped with two filtrations:
a decreasing Hodge filtration F • as before, and also an increasing filtration W • called the weight
filtration. We require that F • induces a (pure) Hodge structure on each graded piece

grkW (V ) = W kV/W k−1V

of weight k.

Such structures were first invented to define Hodge structures on intersection cohomology groups
analogous to the classical Hodge structures on (singular) cohomology. 3 This allows one to prove
results like the two Lefschetz theorems in the setting of intersection cohomology. By generalising these
notions, one can prove powerful results like the intersection homology analogue of the decomposition
theorem:

Theorem 7.13 (Decomposition theorem for mixed Hodge modules). Let f : X → Y be a proper
map of varieties. Denote the category of mixed Hodge modules on X by MHM(X). Then if M ∈
Db(MHM(X) is semisimple and pure (i.e. actually just a complex of polarized Hodge modules) then

f∗M ∼=
⊕
i∈Z
Hi(f∗M)[−i]

and all the Hi(f∗M) are themselves semisimple and pure.

From this, it is possible to prove

Theorem 7.14 (Decomposition theorem for intersection complexes). Let f : X → Y be a proper map
of varieties. Denote the intersection complex of X by ICX . Then there is an isomorphism

Rf∗ICX ∼=
⊕
i∈Z

pHi(Rf∗ICX)[−i]

and all the perverse sheaves pHi(Rf∗ICX) are semisimple. Here pHi are the so-called perverse coho-
mology sheaves.

For a good exposition of these ideas and more, see the article [1] of Andrea, De Cataldo and Migliorini.
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