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In this talk I’ll aim to demystify the following statement:

“The classical theory of electromagnetism on a 4-manifold M is a gauge theory whose fields are connections on
principal U(1)-bundles on M .”

How does one go from the E andB fields one learns about in school to this rather baroque geometric construction,
and what does it mean for the physics? The answer to this question involves a rather beautiful story, whose
most critical component is an argument given by Dirac in his 1932 paper “Quantised Singularities in the
Electromagnetic Field”, following geometric ideas of Weyl.

1 Electromagnetism

Let’s start off by reviewing the theory of electric and magnetic fields, and their unification in the 19th century.
We’ll work through several approaches for mathematically describing these fields, and their behaviour. The
most traditional is the following.

Definition 1.1 (First Approximation). The electric field E and the magnetic field B are vector fields on R3,
varying with time.

We can investigate these fields by asking how they act on a charged particle: the ‘Lorentz force’ experienced by
the particle. A particle of charge q moving along a path γ(t) experiences a force

F (t) = q
(
Eγ(t)(t) + γ̇(t)×Bγ(t)(t)

)
.

One of the great triumphs of 19th century physics was the discovery of exactly how these fields relate to one
another: the unification of electricity and magnetism. These are famously summarised by Maxwell’s equations,
which – in a vacuum – take the form

∇ · E = 0 ∇ ·B = 0

∇× E = −∂B
∂t

∇×B =
∂E

∂t

Here, and throughout this talk, I’ll be using units where the speed of light c = 1. Later on I’ll probably set
Planck’s constant ~ = 1 also. On R3 this is all well and good, but we’d like to understand the behaviour of
electric and magnetic fields on a more general 3-manifold M . What will replace these divs and curls? There
is a natural way of rephrasing this story that will make the answer apparent: dualise everything, and phrase
everything in terms of differential forms.

Definition 1.2 (Second Approximation). The electric field E and the magnetic field B are 1-forms in Ω1(R3),
varying with time.

What form does the Lorentz force law now take? Given a time dependent vector field X, there is a time
dependent 1-form built out of the 1-forms E and B, namely

F (t) = E(t) + Ẋ(t) ∨ ∗B(t)
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where Ẋ ∨ − denotes contraction with the vector field (̇X), and ∗ denotes the Hodge star (coming from the
standard metric on R3). This is what we might call the field strength associated to the electric and magnetic
fields E and B: the Lorentz force law says that that a particle with charge 1 following a trajectory given by X
experiences force given by the dual of this 1-form (again, using the metric). Notice here that the force does not
depend on B itself, but rather on its Hodge dual. So let’s treat this 2-form as fundamental instead:

Definition 1.3 (Third Approximation). The electric field E is a 1-form in Ω1(R3), and the magnetic field B
is a 2-form in Ω2(R3), varying with time.

We can explicitly include the time dependence in our setup by defining a field strength 2-form F = E∧dt+B ∈
Ω2(R4). The Lorentz force law now says that the force experienced by a particle is given by

Ẋ ∨ F

where now Ẋ describes the “4-velocity” of a particle moving in R4.

In this language, Maxwell’s equations take a particularly simple form. In a vacuum as before they now say,
simply that

dF = 0 d∗F = 0

where d∗ = ∗d∗ is the formal adjoint to d under the metric. In other words, electromagnetic fields are nothing
but 2-forms on R4 satisfying these two equations: “harmonic” 2-forms. Even more satisfying is that these
equations make perfect sense where R3 any 3-manifold M with a Riemannian metric, or even when the whole
spacetime is replaced by a general 4-manifold N with a Riemannian or pseudo-Riemannian metric. In light of
the theory of relativity, being able to work on a general Lorentzian manifold is extremely important.

At this point, I can’t resist mentioning the evident symmetry here: the Hodge star acts on the space Ω2(N),
preserving the harmonic 2-forms. On the level of electric and magnetic fields, this is visible as the symmetry

E 7→ B,B 7→ −E

of the space of solutions to Maxwell’s equations. This is usually referred to as “electric-magnetic duality”. It
no longer holds once one introduces an electric charge distribution into the setting, in which case the second
Maxwell equation becomes d∗F = J , but one can restore the symmetry by positing the existence of a dual
“magnetic charge distribution”.

This discussion would not be complete without mentioning the natural Lagrangian framework these equations
live in. Maxwell’s equations arise as the equations of motion for a certain Lagrangian. That is, solutions to
Maxwell’s equations are nothing but critical points of the “Yang-Mills functional”

S(F ) =

∫
M

F ∧ ∗F.

2 Geometry

Now, I’ll give a quick outline of some of the geometry that’ll be important in our eventual description of
electromagnetic fields, namely the concept of a connection on a principal U(1)-bundle. Let M be a smooth
n-manifold, and let π : P → M be a principal circle bundle. Such a bundle is determined up to isomorphism
by its first Chern class, an element c1(P ) ∈ H2(M ; 2πZ). In other words, this is the degree of the associated
complex line bundle P ×U(1) C.

The basic idea of a connection on P is the following. We want to be able to describe parallel transport for
tangent vectors on P . In order to do this, we either need to specify the space of horizontal vectors in each
tangent space TpP (so that we have a canonical splitting of each tangent space into horizontal and vertical
vectors), or equivalently we need to specify a 1-form which vanishes in (annihilates) the horizontal directions.
When one unpacks what this means in the case of a circle bundle, one arrives at the following definition.

Definition 2.1. A connection on P is a 1-form A ∈ Ω1(P ), which is invariant for the action of U(1) on P ,
and restricts to the fundamental 1-form idzz on each fibre (the infinitesimal generator of the action of U(1) on
itself). The horizontal vector fields on P are given by the kernel of the action of A on vector fields.
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The way the physicists like to think about connections is the following: choose a trivialisation (sα : Uα → P )
of P , and pull back the connection 1-form to a collection of 1-forms Aα ∈ Ω1(Uα). Physicists call these “local
gauge potentials”. Modifying the trivialisation by sα 7→ fαsα, where fα : Uα → U(1) has the effect of modifying
the gauge potentials by

Aα 7→ Aα + f−1
α dsα.

In particular, the derivative dAα is unchanged. Therefore the derivatives glue together to form a global closed
2-form

FA ∈ Ω2(M)

the curvature of the connection A. This curvature has an interesting cohomological property

Fact (Chern-Weil). The curvature FA of any connection A on a principal U(1)-bundle P satisfies

[FA] = c1(P ) ∈ H2(M).

In particular [FA] is an integral cohomology class.

To summarise, to the connection A on the principal bundle P , we have associated a closed, integral 2-form, the
curvature of A. In fact, all such 2-forms arise in this way, as the curvature of some connection on the principal
bundle P with the appropriate first Chern class, although in general there will be more than one connection
yielding this particular curvature.

3 Dirac Quantisation

So what does all this have to do with electromagnetism? We argued that classical electromagnetism on a 4-
manifold was the theory of closed 2-forms satisfying a particular differential equation (harmonic 2-forms). What
does this have to do with connections? Well, we’ll see that once one introduces a little quantum mechanics into
the picture, the electromagnetic field strength has to satisfy a so-called quantisation condition, making it into
a closed integral 2-form, i.e. exactly the curvature of a connection on a principal U(1)-bundle. I’ll sketch this
argument, then explain what it all means geometrically.

For simplicity, consider a 4-manifold of form M3 × R, where M is an oriented Riemannian 3-manifold. We’ll
consider charged quantum particles moving in a fixed electromagnetic field. What does this mean? Well,
let’s review some basic quantum mechanics. A quantum particle moving in a potential A is described by a
“wavefunction” ψ (i.e. an L2-function) satisfying the Schrödinger equation

i
∂ψ

∂t
= −(∇+ iA)2ψ.

We’ll work in local charts Uα for M . On these charts we can write F |Uα = dAα as the derivative of a local
electromagnetic potential, which we think of as the potential energy of a charged particle moving under this
field. What happens when we try to solve Schrödinger’s equation in this electromagnetic potential? We can do
this locally, to get local solutions ψα on Uα. But when can we glue these solutions to form a global solution?

In order to see this we’ll analyse what happens when we choose a different local potential, Aα + dχ. How does
this affect the solutions to the Schrödinger equation? It is not hard to check that is ψα was a solution under
potential Aα, then e−iχψα is a solution under potential Aα + dχ. What does it mean for these solutions to glue
to a global gauge invariant wavefunction? Well, let’s imagine travelling around a closed loop γ in M . Whenever
we pass between two neighbouring charts Uα and Uβ we pick up a transition function dχαβ = Aα −Aβ . Thus,
travelling around the whole loop we find that we require a compatibility condition for gauge invariance:

ψα = e−i(χα1
(0)−χα1

(1)+···+χαn (0)−χαn (1))ψα.

That is, we need
∑n
i=1 χαi(0) − χαi(1) ∈ 2πZ. Here, I’m thinking of my transition functions χαi as functions

[0, 1]→M partitioning the loop γ.

Ok, so in order for solutions to be independent of the choice of gauge (i.e. to glue to a single-valued global
solution instead of a mult-valued one) we need a condition for any collection of local gauge transformations
around any loop. We can think of the global wavefunctions as not really functions on M × R, but sections of
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a possibly non-trivial U(1)-bundle P which we might call the phase bundle, and imagine the fibre as keeping
track of the “phase” of the quantum particle. This is starting to sound promising. I’ll give a Čech argument
that phrases the restriction on A in a more cohomological way.

Claim. This condition is equivalent to the condition that the curvature FA has integral periods, i.e. that for
any closed surface Σ ⊆M × R (without loss of generality ⊆M), we have∫

Σ

FA ∈ 2πZ,

or equivalently [FA] ∈ H2(M × R; 2πZ).

Proof. We apply Stokes’ theorem. Choose any cell decomposition of M . Each two-cell Di is contractible, so we
can locally write F |Di = dAi for Ai ∈ Ω1(Di). Furthermore, on each 1-cell `ij , we can write Ai|`ij−Aj |`ij = dχij
for χij ∈ Ω0(`ij) a local function. We used the orientation to order the pair (i, j) here. From this point of view
we can repeatedly apply Stokes’ theorem to localise the electromagnetic flux to an expression on the 0-skeleton.
That is: ∫

Σ

F =

n∑
i=1

∫
Di

dAi

=

n∑
i=1

∫
∂Di

Ai

=

n∑
i=1

∑
j<i

∫
`ij

Ai|`ij −Aj |`ij

=

n∑
i=1

∑
j<i

∫
`ij

dχij =

n∑
i=1

∑
j<i

χij(1)− χij(0).

Asking for this to land in 2πZ for any cell decomposition is equivalent for asking for the analogous sum to land
in 2πZ around any loop, which is exactly our quantisation condition.

So the result is, we’ve shown that – for physical reasons – any electromagnetic field must be described by a
2-form with integral periods, i.e. precisely the curvature of a connection on a principal U(1)-bundle. So I’ve
met the goal I set myself at the outset of this talk. But what does it really mean?

Well, let’s think about what role the connection itself played. The data of a connection on a principal U(1)
bundle was the data of a local potential for the electromagnetic field strength in each chart of a trivialisation.
These potentials do not have to glue to form a global 1-form, but the ambiguity in the attempt to glue is limited
by our quantisation condition: roughly we can glue “up to local circle valued functions eiχ”. The potentials
are only defined up to a gauge symmetry, which corresponds to changing the trivialisation of the bundle, or in
other words to automorphisms of the circle bundle.

A particularly neat consequence of this geometric description is that it now makes sense for groups other than
U(1)! We can look at principal G-bundles for any compact Lie group G, and say that the “fields” in a non-abelian
gauge theory are connections on such a bundle. Now, we can once more write the action

S(A) =

∫
N

Tr(FA ∧ ∗FA)

using the metric on spacetime N , and look at the extrema of this action. The study of these PDEs is called
Yang-Mills theory, and is important both in mathematics (e.g. the study of the topology of 4-manifolds), and
in physics (e.g. for G = SU(3), the quantum version of this theory – with matter – models the strong nuclear
force).


	Electromagnetism
	Geometry
	Dirac Quantisation

