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1 Introduction

The interest on Hecke modifications in the geometrical Langlands program
comes as a natural categorification of the product in the spherical Hecke
algebra, which one associates with an irreducible unramified representation
of GLn (or any algebraic group) on a local field, or the completion of a
function field around a point for curves over a finite field. In the case over
C, not only one has a more natural way of connecting the local and global
pictures but also certain questions of concern in the number field case simply
do not arise.

Let X be a smooth projective curve over C, and G a (semisimple) re-
ductive connected algebraic group. One form of the Langlands geometric
conjecture is that to which LG−local system E over X1, one can associate a
Hecke eigensheaf LE on the (algebraic) stack BunG of principal G−bundles
on X. In particular for GLn these are, respectively, vector bundles with a
flat connection and (perverse) sheaves (or equivalently D−modules) on the
moduli space of isomorphism classes of rank n vector bundles over X. More-
over, these D-modules satisfy the Hecke conditions. To formulate the Hecke
conditions we need to introduce the so-called Hecke modifications, which our
seminar hopes to relate to ’t Hooft operators on quantum field theories.

1One can take as a definition of an LG-local system on X a homomorphism ρ :
π1(X,x0)→L G(C).
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2 Hecke modifications

Let x ∈ X, we consider the set of triples Heckex = {(M ,M ′) ∈ BunG ×
BunG, β : M |X\x → M ′|X\x}, that is two isomorphism classes of principal
G−bundles over X, with a bundle isomorphism β away from the point x. We
have natural projections h←(M ,M ′) = M and h→(M ,M ′) = M ′. Now
given a sheaf F over the space BunG, we can define its Hecke modification
at the point x as

Hx(F ) = h→∗ (h←∗(F )) .

This is a very abstract definition and one needs to know specifically which
kind of sheaves one wants to consider and how to make sense of these and of
sheaf operations over an algebraic stack. We will try to give a more intuitive
picture of what is happening without entering in the technicalities of any of
the aforementioned.

Morally by the function-faisceaux dictionary, one can think of a sheaf F
as a function f(x) on the space BunG. Hence the push-pull operation on f(x)
is like an integral transform, h←∗(f)(x, y) is f considered as a two variable
function, with trivial dependence on y. And h→∗ integrates over the fibers of
the projection on the right factor. Our kernel here should be a characteristic
function on BunG×BunG which realize pairs of principal G−bundles over X
which are isomorphic away from a fixed point x.

More abstractly, and this is where the geometric aspects give a more
natural way of globalizing these constructions as opposed to the number
theory case of the program, we can consider Hecke the data of

Hecke = {(x,M ,M ′) ∈ X × BunG × BunG, β : M |X\x → M ′|X\x}.

And the projection supp × h→ : Hecke → X × BunG which is just (x,M ′).
Then form the global Hecke modification by

H(F ) = R (supp× h→)∗ (h←∗(F )) ,

where one actually has to take the derived functor of the push-forward. This
gives an operation from (derived) sheaves on BunG, to (derived) sheaves on
X ×BunG, and the Hecke condition with respect to a local system E can be
heuristically written as2

H(F ) = E � F .

2The formula we gave is not precise. Actually one needs a condition which is different
on different fibers of the projection and only has a simple form for irreducible local systems
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We will make it precise in special cases to follow.
Note that one has a certain asymmetry on this formulaion of the geometric

Langlands conjecture, because we considered special kind of sheaves on X on
the lefthand side, and associated to it a special kind of sheaf over BunG on
the righthand side. We could furthermore consider a certain moduli stack on
the lefthand side also, i.e. LocLG, the moduli stack of LG local systems on X,
and consider a special kind of sheaves on it, and for each one of them associate
a Hecke eigensheaf. However it is subject of current research which kind of
sheaves on the lefthand side form the appropriate category to consider.

With that abstract construction in mind one will now specialize to GLn
and then to n = 1 to try to have a more intuitive understanding of what is
happening.

3 G = GLn

In this case, as we already mentioned, the Langlands correpondence asso-
ciates to a rank n vector bundle with a flat connection on X a Hecke eigen-
sheaf on the moduli space of rank n vector bundles over X. The Hecke
modification can be described more geometrically. To do that we will intro-
duce some notation. Say M ∈ Bunn, where by Bunn we understand the sheaf
of locally free quasi-coherent sheaves of rank n. One wants to understand,
how many β̃ : M →M ′ map of sheaves exist, such that the restriction to a
formal neighbourhood which does not contain x is an isomorphism. Clearly,
they can only differ at the point x. Say we fix a local parameter t at x, then
we can model the completion of the local ring at x as C[[t]]. Since this is a
map of sheaves the compatibility conditions allow us to assume without lost
of generatlity, that Mx

∼= C((t))n, and that the stalk at Mx is a sub-C[[t]]-
module of M ′

x of rank n. This does not leave many options, and we can
separate them by asking the jump in degree to be locally i. In other words,
the length of M ′

x/Mx to be i ≥ 03.
This gives us a stratification of Heckex, which we write as Heckex,i and

E. One also would like to respect the grading of the derived categories of sheaves, so one
has to be careful with the degrees. Finally, since we want to preserve the categorical
information of the construction, it is natural not to ask for equalities but isomorphism on
the Hecke conditions.

3One can clearly see that Mx ⊗C[[t]] C((t)) ∼= M ′
x, i.e. M |

D
×
x

∼= M ′|
D

×
x
, where D×x is

the formal punctured disk around x.
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that can be described as

Heckex,i = {(M ,M ′) ∈ Bunn×Bunn, β : M ↪→M ′, length(M ′
x/Mx) = i}.

Note that it allows this quotient to be any sheaf of length i supported on
x, not necessarily a direct sum of skyscraper sheaves. [One can verify that
the fibers of this morphism, over any of the two factors are Gr(i, n) the
Grassmanian of subspaces of dimension i inside n.] We actually can consider
the global modification restricted to the subspaces as defined above, we write
Hi for this Hecke modification. It is a functor from the derived category of
sheaves on Bunn to the derived category of sheaves on X×Bunn. This allows
us to be more precise about the Hecke eigenproperty. We say the local system
E of rank n over X is an eigenvalue for the sheaf F , if we have isomorphisms

ıi : Hi(F )
'→ ∧iE � F [i(n− i)], i = 1, . . . , n.

We need to perform a shift on degree to have the box product with ∧iE
to land in the same degree as the Hecke modification. One can check that
this indeed gives back the Hecke eigenvalue conditions for the classical Hecke
algebras by considering the curve X over a finite field Fp. Since this is not
our main interest in this seminar I would just sketch this connection in a
later section.

4 G = GL1

There are two particular features of theGL1 case which make it more concrete
than the general case just discussed. One is a geometric realization of the
moduli space BunG, the other is a more explicit description of the Hecke
modification as the Fourier-Mukai transform.

The local systems one consider in this case are just line bundles with a
flat connetion E over X. On the other side, the moduli space of line bundles
over X forms an actual scheme Pic(X), the Picard variety of X. The Hecke
modification as defined before in this case gives a map,

h→ : X × Pic(X) −→ Pic(X)

(x,L ) 7−→ L (x).

Note that the only now trivial isomorphism away from a point is the twisting
of the line bundle at that point. So the Hecke modification is just h→∗(F ),
and the Hecke condition reduces to h→∗(F ) ∼= E � F .
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Now I will briefly describe a direct construction of the Hecke eigensheaf
from the local system E. We write X(d) for the d-th symmetric product of
X. And consider the map h→ : X×X(d) → X(d+1), which to a point x and a
degree d divisor D associates D+ x. We want to construct a sheaf Symd(E)
on each X(d) which satisfy the analog to the Hecke condition

E � Symd(E)
'→ h→∗Symd+1(E).

Let sd : Xd → X(d) be the symmetrization map. We define Symd(E) =(
sd∗
(
E�d

))Sd . It is just a verification that this satisfies the condition above.
To define the sheaf on Pic(X) we use the Abel-Jacobi map from πd :

X(d) → Jac(X)d, the degree d part of the Jacobian. This map associate to d
points of X the corresponding divisor, which can also be seem as a line bundle
of degree d, hence an element of Jac(X). For d sufficiently large the fibers
of this map are projective spaces and moreover have the same dimension
over each line bundle. In fact, if the degree of L is greater than 2g − 2, by
Riemann-Roch dim H1(X,L ) = 0, which gives that the space of sections of
L is non-empty. Now to ask for a divisor D, s.t. O(D) = L is equivalent to
consider PH0(X,L ).

We claim the sheaf Symd(E) descends to Pic(X)d, for d ≥ 2g − 1.
Since the sheaf E is locally constant, and the projective spaces are simply-
connected, hence E is constant on the fibers of πd. We call Autd(E) the sheaf
on Pic(X)d. We can write a commutative diagram between the actions of
h→ on the symmetric power of X and on the Pic(X) at the same degree,
connected by the Abel-Jacobi map. The commutativity of the diagram gives
the Hecke condition for the components of the Picard of degree d ≥ 2g − 1.

Finally, to extend the sheaf Autd(E) to a lower degree we observe that if
Autd−1(E) were defined it would have to satisfy the Hecke condition

E � Autd−1(E) ∼= h→∗Autd(E).

Restricting to a point x ∈ X we can write Ex ⊗Autd−1(E) ∼= h→∗x (Autd(E))
4. Since the stalk is just a vector space, we get Autd−1(E) ∼= E∗x ⊗ Autd(E).

4Clarifying

h→x :Pic(X)→ Pic(X)

L → L .

And the box product on the stalk is, by definition, just the tensor product.
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One still have to check that this reverse induction does not depend on the
point x, which we leave to the reader’s amusement.

This proves the correspondence on the case of GL1, and actually this
argument holds for fields of positive characteristic. One remarkable thing,
which is what makes the geometric version of the Langlands program inter-
esting, is that the descent condition here is very simple, and is solved by
the simply-connected fibers argument due to Deligne. Even on the abelian
case for number fields the descent condition is a non-trivial reciprocity law
in abelian class field theory. This gives an ideia of how the geometric version
has an easier local to global passage.

We make some remarks as how a generalized Fourier-Mukai transform can
be used to establish this correspondence. We denote by Loc1 the space of
degree 1 local system on X, i.e. holomorphic line bundles with a holomorphic
(hence flat) connection. Let (F ,∇) ∈ Loc1, since F has a flat connection, its
first Chern class vanishes, so deg(F ) = 0. We can then map p : Loc1 → Jac
by just forgetting the connection, where Jac = Pic0, i.e. the degree 0 part
of the Picard variety. We look at the fibers of p, since any holomorphic line
bundle F on X has a holomorphic connection, we can fix a connection ∇,
and the fiber of p is ∇′ = ∇+ω, where ω is a holomorphic 1-form. By Serre
duality H0(X,O) ∼= H1(X,Ω)∗, so the fibers of p are dual to H1(X,ω) which
are the fibers of the cotangent bundle over Jac.5.

From a local system F ∈ Loc1 on X, we can construct a holomorphic
line bundle with a (flat) holomorphic connection on Jac, i.e. a rank 1 local
system. It goes like this: the data of F is the same as a group homomorphism
from π1(X) → C

×, since C× is abelian this map factors through H1(X,Z)
(the commutator subgroup of π1(X)). In a Riemann surface X, we can
identify H1(X,Z) with H1(X,Z), and we know Jac ∼= H1(X,O)/H1(X,Z) ∼=
C
g/H1(X,Z) so we get a map from π1(Jac)→ C

×.
Now let’s consider the product Loc1 × Jac and the (almost tautological)

bundle P over it defined by the restriction to (F ′,∇′)×Jac is the line bundle
with connection (F ′,∇′) on Jac. If we consider the projections p1, p2 to
Loc1 and Jac respectively, we obtain functors F and G between the bounded
derived category of coherent O−modules on Loc1 to the derived category of
D−modules on Jac:

F : M 7→ Rp1∗p
∗
2(M ⊗P) G : N 7→ Rp2∗p

∗
1(N ⊗P).

5Sometimes one says that Loc1 is the twisted cotangent bundle to Jac
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In particular, if OE is the skyscraper sheaf at E = (F ,∇) ∈ Loc1, then
G(OE) is (the degree zero component of) AutE, the Hecke eigensheaf on Pic.

Rothstein and Laumon proved that these functors establish an equiva-
lence between the two categories. Thus, we can think of the Hecke eigen-
sheaves on Pic (and in general BunG) as a conterpart of the skyscraper
sheaves on Loc1, so as building blocks of the category of D−modules on Pic.

5 Comparison with curves over finite fields

The Langlands program establishes a connection between representations of
the absolute Galois group of a number field and certain automorphic repre-
sentations. In the Galois side, we have a natural action of Frobenius elements,
on finite dimensional representation - the Langlands correspondence also say
we should have some operation on the automorphic side to which this Frobe-
nius action corresponds. This is the what the Hecke operators accomplish.

We will actually consider the construction over a function field, because
this lends to a closer analogy to the geometric case over C. Let F be the
function field of a smooth projective curve X over the finite field Fp. One
can consider the adeles over this curve X, AX =

∏
x∈X Fx, where Fx is the

fraction field of the completion the local ring at the point x. If one chooses a
rational function t vanishing at x one can identify (though non-canonically)
this local field with Fx((t)), here Fx is the residue field at the point x, this
can be any finite extension of the field Fp. We will denote by Ox its ring
of integers, which in this case is just the power series Fx[[t]]. The side of
the Langlands program we are interested in is concerned with automorphic
representation of GLn(A).

LetGLn(F ) be the algebraic groupGLn with base F andK =
∏

x∈X GLn(Ox).
K is the maximal compact subgroup of GLn(A). We consider the action of
GLn(F ) on GLn(A) diagonally, and form the quotient GLn(F )\GLn(A). Let
χ : GLn(A)→ C

× be a Grossencharacter, i.e. a character which vanishes on a
finite (index) subgroup. We will be interested on the space of locally constant
functions on this quotient Cχ (GLn(F )\GLn(A)). The action of GLn(A) on
this function space is given by

h · f(g) = f(gh), for h ∈ GLn(A) and f ∈ Cχ.

With this set up, we can give the conditions asked for Cχ to be an automor-
phic representation
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(i) The orbit K · f is finite-dimensional.

(ii) The central elements of GLn(A) act by the character, i.e. f(gα) =
χ(α)f(g), for α ∈ A×.

(iii) Cuspidality. 6

The reason we consider this particular cuspidal automorphic representa-
tion is that every irreducible (cuspidal) automorphic representation appears
in it with multiplicity one. This is a theorem of Piatetski-Shapiro.

Say π is an irreducible cuspidal automorphic representation so defined.
We can decompose it as π = ⊗′x∈Xπx. Here each πx is an irreducible repre-
sentation of GLn(Fx) and the restricted product means that all but finitely
many of the πx are unramified representations. What this means in this case
is that there exists a nonzero element vx ∈ πx which is stabilized by GLn(Ox).

On an unramified place we can define a spherical Hecke algebra Hx.
The is the space of compactly supported functions on the double-quotient
GLn(Ox)\GLn(Fx)/GLn(Ox). They have a multiplication give by convolu-
tion

f1 ? f2(g) =

∫
GLn(Fx)

f1(gh
−1)f2(h)dh,

where dh is a Haar measure on GLn(Fx), normalized such that GLn(Ox) has
volume 1.

We can give a more explictly description of Hx. Let Hi,x denote the char-
acteristic function of the double cosetGLn(Ox)diag(tx, . . . , tx, 1, . . . , 1)GLn(Ox).
Where we have the local parameter tx on the diagonal up to the i-th spot.
The fact here is that Hx is the free C−algebra on these elements, i.e.

Hx
∼= C[H1,x, . . . , Hn−1,x, H

±
n,x.

These Hi,x are the so-called Hecke operators.
We also have an action of Hx on πx, for πx a representation of GLn(Fx).

Let v ∈ πx, an element fx ∈Hx acts by

fx ? v =

∫
GLn(Fx)

fx(g)g · vdg.

6We actually want to restrict to automorphic representations of GLn which are not
obtained by induction from representation of GLn for a smaller n. This condition is
expressed as the vanishing of the integral of f over any coset relative to a parabolic
subgroup.
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If we have an element h ∈ GLn(Ox) and v is GLn(Ox)-invariant, then fx?v is
still GLn(O)-invariant. The important fact here is that for an irreducible and

unramified πx, dimπ
GLn(Ox)
x = 1. So if we choose a certain nonzero element

vx ∈ πx, invariant under GLn(Ox) we get that all the operators Hi,x act by
multiplication by a complex number

Hi,x ? vx = φ(Hi,x)vx.

And these numbers φ(Hi,x) are called the Hecke eigenvalues of the the irre-
ducible representation πx.

Any homomorphism Hx → C can be recovered form the collection of
{φ(H1,x), . . . , φ(Hn,x)}. One can combine them in a symmetric manner so
as to have a direct relation with certain eigenvalues on the Galois side of
the Langlands correpondence, i.e. the Frobenius eigenvalues of a Galois rep-
resentation. And an important result is that the Hecke eigenvalues at all
unramified places allow one to reconstruct the whole autmorphic representa-
tion π up to isomorphism.
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