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1 Wilson and ’t Hooft Operators

1.1 Wilson Operators as Holonomy

Consider Yang-Mills theory for a compact connected Lie group G on a Riemannian manifold X (for now we can
get away with assuming very little about X. In particular we needn’t assume that X is 4-dimensional). Fields in
such a theory are connections A on principal G-bundles P → X. A natural thing we might try to observe in the
theory is the holonomy of A around curves γ ⊆ X. Let’s recall what this means.

So let γ ⊆ X be an oriented closed curve, and choose a base-point x ∈ γ. A connection A defines parallel transport
in the bundle P ; in particular, parallel transport around γ defines an automorphism αA,γ of the fibre Px at x, hence
an element Holγ(A) = αA,γ(e) of the group G: the holonomy of the connection around the curve γ. This element
is independent of the choice of base-point x up to conjugation, and reversing the orientation on γ sends αA,γ(e) to
its inverse.

Now, we’d like to produce a number from the data we chose. To do this, choose a finite-dimensional real or complex
representation ρ of G. We define the Wilson operator around γ to be the observable

Wγ,ρ : A 7→ Tr(ρ(Holγ(A))).

Note that this is a gauge invariant observable: performing a gauge transformation conjugates Holγ(A) by an element
of the group, which doesn’t affect the observable by cyclic invariance of the trace.

1.2 Exponential description

We can produce a more algebraic construction of this Wilson operator, which we can manipulate more easily. This
will be easiest to understand first in the abelian case, so let’s temporarily fix G = U(1). We may as well take ρ to
be 1-dimensional, so let ρ be the representation z 7→ zn for n ∈ Z. We’ll argue that in this case

Holγ(A) = ei
∮
γ
A

and so
Wγ,n(A) = ein

∮
γ
A.

Let’s think about what this means. The gauge field A is not actually a 1-form, but upon choosing a principal
U(1)-bundle the connections on that bundle become a torsor for Ω1(X). So we choose a base connection AP on
each U(1)-bundle. We may as well choose these base connections by choosing a flat connection on the trivial bundle,
and translating this trivialisation to the other bundles canonically by adding an appropriate harmonic form. The
result will be independent of exactly which flat connection we choose. Given this, we can define

Wγ,n(A) = ein
∮
γ
(A−AP )
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for a completely well-defined expression.

Remark 1.1. If the curve γ is a boundary, i.e. if the class [γ] = 0 in the first homology group of X, then we have
a nice description of the Wilson operator by Stokes’ theorem. If γ bounds a disc D then we can write the Wilson
operator as

Wγ,n(A) = ein
∫
D
FA .

Since FA is a genuine 2-form, this expression is already well-defined. We also observe that it is independent of the
choice of the bounding disc D. In this situation we still have a well-defined operator even if n is not an integer.

I should at least remark on why this definition agrees with the previous one, i.e. why this exponential computes
the holonomy. Consider the restriction of a circle bundle P to γ. This restriction is trivial, so choose an explicit
trivialisation P |γ ∼= γ × U(1). The metric on X gives us a special vector field on γ, namely γ̇, and the parallel
transport equation is the requirement that a section σ satisfies

∇γ̇(θ)σ = 0,

for θ a co-ordinate on U(1). That is,
ιγ̇(θ)dσ = iιγ̇(θ)Aσ.

So plug in σ(θ) = ei
∫ θ
0
A, and check that it satisfies the equation.

1.3 Path Ordering

Ok, what about non-abelian groups? There’s still an exponential description in general, but it requires a little
more care to define. Specifically, since we’re dealing with the exponential of a matrix-valued function, we have
to introduce a gadget called the path-ordered exponential to make sense of it. We can make a definition in local
co-ordinates.

Definition 1.2. Given a matrix-valued function M on R, we define the path-ordered exponential of M by a power
series

Pe
∫ t
0
M(t1)dt1 = 1 +

∫ t

0

M(t1)dt1 +

∫ t

0

∫ t1

0

M(t1)M(t2)dt2dt1 +

∫ t

0

∫ t1

0

∫ t2

0

M(t1)M(t2)M(t3)dt3dt2dt1 + · · · .

We can use this local definition to define the path-ordered exponential

Holγ(A) = Pei
∮
γ
A

and hence the Wilson operator Wγ,ρ(A) (where we must trivialise the Ω1(X)-torsors on each bundle to make this
well-defined, as before). With enough care, one can check that this expression does indeed define the holonomy of
the connection around the curve γ.

1.4 ’t Hooft Operators

Now, recall that in the case where the curve γ bounds a disc D, we have a natural description of the Wilson
operators that only involves the curvature of the fields. From the point of view of quantum physics, this is actually
the most important case, for the following reason.

Proposition 1.3. If γ represents a non-trivial class in H1(X) then the expectation value 〈Wγ,ρ〉 is zero.

Proof sketch. Let me explain heuristically why this is true in the example where G = U(1). We’ll use gauge
invariance of the expectation value. For any closed 1-form α we can perform an upper-triangular change of variables
on the fields A 7→ A+ α without changing the expectation value. So in the path integral

1

Z

∫
DAein

∮
γ
AeiS(A) =

1

Z

∫
DAein(

∮
γ
A+

∮
γ
α)eiS(A)
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since the Yang-Mills action is preserved by addition of a closed form. Therefore ein
∮
γ
α = 1, so

∮
γ
α = 0 (if it’s

non-zero we can multiply by a constant to ensure it’s not a multiple of π). However,
∮
γ
α is precisely the pairing

between [γ] ∈ H1(X) and [α] ∈ H1(X). This pairing is non-degenerate, so for the result to be zero for all [α], we
require [γ] = 0.

Let’s assume now that [γ] = 0, so γ bounds a disc D. Furthermore, let’s specify that dimX = 4. In this case,
there’s another natural operator we might define that’s supported on a neighbourhood of γ. First let’s discuss the
case G = U(1).

Definition 1.4. The abelian ’t Hooft operator Tγ,b(A) is the observable

Tγ,b : A 7→ eib
∫
D
∗FA .

Notice that this no longer can be expressed as the exponential integral of a 1-form: the integrand is no longer close
to exact, but rather the sum of an integral harmonic form and a coexact form.

Let’s discuss a more traditional description of the ’t Hooft operators, again restricting ourselves to the abelian case
for simplicity (though it’s quite possible to define ’t Hooft operators for non-abelian gauge groups, as I’ll discuss
later). One can describe ’t Hooft operators in terms of what happens when they are inserted into a path integral.
Specifically they have the effect of imposing a singularity condition on the fields around γ. This is quite easy to
derive, by algebraic manipulation.

So consider a path integral involving an ’t Hooft operator, and complete the square as follows:

1

Z

∫
DAO(A)eib

∫
D
∗FAei

∫
FA∧∗FA =

1

Z

∫
DAO(A)eib

∫
D
∗FAei

∫
(bδD+FA)∧∗FA

=
1

Z
ei
b2

4

∫
δD∧∗δD

∫
DÃO(A)ei

∫
FÃ∧∗FÃ

where δD is the 2-current Poincaré dual to [D] ∈ C2(X). We performed the change of variables FA 7→ FÃ = FA− b
2δD.

Or – on the level of gauge fields – A 7→ Ã = A− b
2d
−1δD (we’ll make precise what this means shortly). How should

we interpret these new variables? We should think of Ã as a connection with a simple pole around the curve
A. Indeed, there are ways steps to see this, by calculation in co-ordinates, and by studying the behaviour of the
curvature after change of variables.

We can analyse the curvature by integrating it over various 2-cycles in X. If we take a small 2-sphere embedded
in X, representing zero in H2(X), then we look at the integral

∫
S2 FÃ = − b

2

∫
S2 δD, which computes the linking

number of γ and the 2-sphere. So generally this is 0, unless the 2-sphere is contained in a fibre of the normal bundle
to γ in X, in which case we get − b

2 (the residue of the pole).

Now, let’s look at Ã in coordinates. Work locally near a point in γ, i.e. consider the manifold R× R3, with γ the
curve R× {0}. One can define a 2-form on R× (R3 \ {0}) by

F = − b
2
∗3 d

(
1

‖x‖

)
where x are coordinates on R3. The singular 2-forms FÃ above are precisely those that can locally be written as
the sum of a smooth 2-form on R×R3 and a 2-form with simple singularity along γ of this form. To check this, we
observe that a form is determined by its integral over closed 2-cycles, and indeed that all closed 2-cycles are either
boundaries, or homologous to spheres in fibres of the normal bundle to γ. We can integrate the above form over
such spheres, and check that it agrees with the calculation above.

This also tells us precisely what kind of mathematical objects Ã are: they are connections on principal U(1) bundles
on X \ γ whose integrals over small 2-spheres normal to γ are − b

2 .
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Remark 1.5. We can define observables like Wilson and ’t Hooft operators in many dimensions. Whenever one
can identify the fields in a theory with differential forms (as we did here via the curvature map), one has analogous
exponential integrals (possibly path-ordered) that one can perform, just by integrating p-forms over p-submanifolds
with boundary. If the total dimension is 2p, one can also integrate the Hodge star of fields over such p-cycles.

A nice example is the theory where fields are circle- (or torus-) valued functions on a 2-manifold. Such a map φ has
a derivative dφ which is a 1-form, so can be integrated over intervals. If one takes the limit as an interval becomes
very short, divided by the length of the interval, one recovers directional derivatives of the field φ.

Let’s say something about how this extends to the general, non-abelian case. The utility of this description “inserting
an ’t Hooft operator corresponds to imposing a simple singularity in the fields along γ” is that it naturally extends
to the non-abelian case. To do so, we must choose a cocharacter µ : U(1) → G. This defines a pullback map
µ∗ : Ω2(X; g)→ Ω2(X). We give a definition of what it means to insert a non-abelian ’t Hooft operator into a path
integral (so this is not fully precise).

Definition 1.6. An ’t Hooft operator Tγ,µ for gauge group G and cocharacter µ is the observable that – when

inserted into the path integral – modifies the fields to singular connections Ã, such that µ∗FÃ is the curvature of a
connection with simple singularity along γ as above.

One can check that this depends on µ only up to conjugacy. We can write non-Abelian ’t Hooft operators in the
form

Tγ,µ : A 7→ ei
∫
D
µ∗∗FA

analogous to the formula we gave for abelian ’t Hooft operators above.

2 Surface Operators

What if, in the abelian gauge theory, instead of integrating FA over discs, we built observables from the integral of
FA over closed 2-submanifolds S? Of course, this is only non-trivial if S is not homologous to zero. Similarly, for the
abelian gauge theory on a 4-manifold we could integrate ∗FA over closed 2-submanifolds. These are usually referred
to as surface operators. Let me say a little about the latter kind of operator (the so-called disorder operators).

So, in the abelian gauge theory on a 4-manifold, we consider the operator

ΣS,b : A 7→ eib
∫
S
∗FA

for b ∈ R and S ⊆ X a closed surface. Insertion of such an operator into the path integral corresponds to performing
a change of variables FA 7→ FÃ = FA − b

2δS , where much as before, δS is the 2-current Poincaré dual to the 2-cycle
[S]. Now, we can compute the integral of such a current over 2-cycles: one finds∫

T

FÃ =

∫
T

FA −
b

2
|S ∩ T |,

where the intersection number is computed by perturbing S and T to be transverse, as usual.

Note: This section is not complete, but I’m hoping to add more details later.
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