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Introduction

My research addresses the mathematical structure of quantum field theory and its applications to geometric repre-
sentation theory using tools from derived algebraic geometry and homotopical algebra. I’m particularly interested
in developing rigorous mathematical models for constructions that appear in physics – for instance the notion of
“twisting” for supersymmetric field theory – and using those models to turn properties that have been observed in
the physics literature into novel mathematical structures.

The notion of a topological twist of a supersymmetric field theory has already been used to motivate and explain
a number of wide-reaching research programs in mathematics, for instance the theory of mirror symmetry from
twists of 2d N = (2, 2) sigma models, the theory of symplectic duality and 3d mirror symmetry from twists of 3d
N = 4 theories, the theory of Donaldson and Seiberg-Witten invariants from 4d N = 2 gauge theories and Kapustin
and Witten’s approach to the geometric Langlands correspondence from 4d N = 4 gauge theories. One aim of my
research is to develop systematic mathematical techniques for the study of such supersymmetric twists that includes
these examples – in many cases promoting an analogy to a more precise statement – and allows for the development
of new examples. In this research statement I’ll summarise five themes of my research including ongoing projects
and proposals for future work. I’ll begin with a short introduction to each topic: more detailed statements can be
found in the sections below.

1. The idea of twisting, to a first approximation, says that if you’re given a quantum field theory with an odd
symmetry Q satisfying Q2 = 0 you can obtain a simpler quantum field theory by restricting to the Q-invariant
part. For example one piece of data one can associate to a quantum field theory is a vector space Obs(U)
of observables on any open set U ; in the twisted theory these observables are replaced by the cohomology
of Obs(U) with respect to Q. The expectation coming from physics is that for special choices of Q called
“topological” symmetries the twisted quantum field theory is itself topological, meaning that measurements
made on an open set U only depend on the topology of U and not on any extra geometric structure like a
metric. This idea is a unifying theme for my research: I’m interested in making the idea of twisting precise
and studying the mathematical structures coming from twisted field theories, both when Q is topological but
also more generally.

In joint work with Safronov I investigated the physical expectation above: in what sense is the twist by a
topological supercharge actually topological? One model for the observables in a topological field theory in
dimension n is given by a “little n-disk algebra”, meaning we have a single algebra A of local observables
along with a multiplication A⊗k → A for every way of embedding k n-dimensional balls into a big n-ball. We
don’t get this structure automatically after twisting, but there’s only a single condition to verify.

Theorem ([ES18]). The algebra of local operators in a topologically twisted quantum field theory in dimension
n has the structure of a little n-disk algebra whenever the canonical map extending observables defined on a
ball of radius r to a ball of radius R > r is a quasi-isomorphism.

The condition in the theorem is not automatic, but we check that it is satisfied under many physically
reasonable circumstances, for instance for a special type of field theory called “superconformal”. The main
source of field theories with an odd symmetry we can twist by is the theory of supersymmetry : supersymmetric
field theories have an action of a Z/2Z-graded extension of the group of isometries of Rn which in particular
typically includes many odd elements Q such that Q2 = 0. We went on to classify all possible twists for
supersymmetric field theories in dimensions up to 10. There are quite a few interesting twists which have not,
as far as we are aware, been studied in the mathematics literature. I discuss our proposed research in this
direction in Section 1.
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2. My original motivation for studying these ideas came from Kapustin and Witten’s work [KW07] on the
geometric Langlands program. Kapustin and Witten described a pair of topological twists of a supersymmetric
gauge theory in dimension 4 and argued that to each twist and any Riemann surface C one can attach a
category of “boundary conditions” along C. Specifically these categories are categories of sheaves on certain
representation-theoretic moduli spaces that depend on the curve C and the gauge group G. The claim is that
the categories thus obtained are the same as the categories that appear in the geometric Langlands program.
The physical expectation is that these two categories should be equivalent, where on the one side the group
G occurs and on the other its Langlands dual group G∨ occurs. This is exactly what geometric Langlands
predicts.

In joint work with Yoo [EY18, EY17] I gave a formalism for twisting that allowed us to calculate the categories
in Kapustin and Witten’s twists, verifying the expectation that the geometric Langlands categories occur.
This required some ingredients that did not appear in Kapustin and Witten’s original work to see the correct
algebraic structures on the moduli spaces, and to see a crucial “singular support condition” for the geometric
Langlands correspondence discovered by Arinkin and Gaitsgory [AG15]. In future work we propose to extend
this calculation to a much larger family of twisted gauge theories. There is a physical expectation that this
larger family is related by a vast web of “Gaiotto” dualities [Gai12], so we expect this calculation to lead
to a large family of new conjectural equivalences generalizing the geometric Langlands correspondence. See
Section 2 for more details.

3. With Pestun I’m currently pursuing another novel analogue of the geometric Langlands correspondence,
this time related to twists of supersymmetric gauge theories in five dimensions. This work begins with an
algebro-geometric result, where we construct a hyperkähler structure (in particular a CP1-indexed family of
holomorphic symplectic structures) on a moduli space of “multiplicative Higgs bundles” on a curve C. Points
in this moduli space are principal G-bundles on C equipped with a bundle automorphism φ : P → P with
a fixed set of singularities. So far we’ve been studying the “rational” case where C = C with a boundary
condition at infinity, but we hope to extend our analysis to the “trigonometric” case where C = C× with
boundary conditions at 0 and infinity. In Section 3 I’ll explain our results and how they lead to a multiplicative
generalization (meaning functions valued in the Lie algebra g are replaced by functions valued in the Lie group
G) of the geometric Langlands conjecture.

4. Not all quantum field theories and not all twists are topological. For example, it’s natural to study field
theories in dimension 2n where the observables on an open set U depend on a complex structure on U .
We call such theories holomorphic. Holomorphic theories can occur via twisting by certain “holomorphic”
symmetries Q; being holomorphic is a weaker condition on Q than being topological and so holomorphic twists
are more plentiful than topological twists.

In joint work with Brian Williams I’m investigating an example of holomorphic twisting coming from the
theory of gravity. There is an intricate physical theory of field theories extending the classical theory of
gravity but also including supersymmetry, these theories are called theories of supergravity. Because these
theories are supersymmetric we can study their twists. Starting from a supergravity theory in four real
dimensions we give a description of its holomorphic twist, and explain how this twisted theory can very easily
be extended to include matter fields: something that is much trickier in the full supersymmetric setting. In
Section 4 I explain this project and its potential applications.

5. Finally I’ll describe an application to the theory of quantum groups. The Yangian Y (g) of a Lie algebra g is
an infinite-dimensional Hopf algebra that quantizes the algebra of functions on the group G1[z] of G-valued
polynomials with constant term 1 (which can be naturally equipped with a Poisson bracket). Costello [Cos13]
explained a relation between the Yangian and a twist of a gauge theory in dimension 4: the local observables
in this twisted theory are not equal to the Yangian: instead they generate the Yangian by applying the process
of Koszul duality.

I propose to extend this example to describe not only the Yangian itself, but also the twisted Yangian
Y (g, gθ) ⊆ Y (g) associated to an involution θ of g. This is a subalgebra which is a coideal with respect
to the comultiplication. By generalizing recent ideas from the work of Weelinck we will be able to produce the
twisted Yangian from a twisted gauge theory on the quotient of R4 by an involution fixing a line. The local
observables on a ball away from this fixed line will be Koszul dual to the Yangian, and the local observables
on a ball meeting the fixed line will be Koszul dual to the twisted Yangian. This analysis should lead to a
description of the “universal K-matrix”: a datum describing the coideal structure coming from the physical
structure of the twisted quantum field theory. For more details on this proposal see Section 5.
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Project 1 Supersymmetric Twisting

In joint work with Safronov [ES18] I gave a mathematical description of the concept of twisting in quantum field
theory. The idea (both of twisting in general and of our work specifically) is the following. Suppose you’re given
a field theory over Rn with an action of the group of translations – we use factorization algebras as in the work
[CG17, CG18] of Costello and Gwilliam as a model for perturbative field theory. Typically the data of the local
observables on an open set U ⊆ Rn depends on the geometry of U . However, if we’re given the data of a homotopy
trivialization of the translation action then we prove that the local observables actually only depend on the homotopy
type of U . In that sense, the field theory is topological. More precisely we prove the following.

Theorem ([ES18, Corollary 2.28]). Let Obs be a factorization algebra on Rn with a homotopically trivialized
action of the group of translations, and suppose the factorization map Obs(Br(0))→ Obs(BR(0)) associated to the
inclusion of concentric disks of radii r < R is a quasi-isomorphism. Then Obs(B1(0)) can be canonically given the
structure of an En-algebra.

Note that this theorem does not appeal to Lurie’s result from [Lur17] comparing En algebras and locally constant
factorization algebras. In fact it is constructive, it builds an action of a specific model for the En operad.

Topological twisting is a way of constructing theories with homotopically trivial translation action. Suppose now
that our field theory is acted upon by a supertranslation algebra: a super Lie algebra T whose even part is the
translation algebra Rn. Suppose Q is an odd element of T satisfying [Q,Q] = 0. One can form the twist with
respect to Q: a new field theory roughly speaking given by taking the homotopy invariants with respect to the
group ΠCQ generated by Q (see [ES18, Section 3.2] for a careful definition). The Q-twisted theory has the property
that all translations in the image of [Q,−] act homotopically trivially. If the map [Q,−] is surjective we say Q is a
topological supercharge. More precisely we prove the following.

Theorem ([ES18, Proposition 3.12, Theorem 3.37]). Now let Obs be a supersymmetric factorization algebra on Rn
and let ObsQ be the twist by a topological supercharge Q. If the condition from the previous theorem is satisfied
then ObsQ(B1(0)) has the structure of an En-algebra. In many examples (such as superconformal field theories)
the condition is satisfied automatically, and we can additionally extend the En-algebra to an SO(n) n En-algebra,
or a framed En-algebra.

This analysis is fairly complete for perturbative field theories – indeed, we went on to classify the possible twists of
supersymmetric theories in all dimensions up to ten – but it would be very interesting to extend this analysis from
algebras of observables to more sophisticated objects: categories or stacks. For example, in [EY18] I developed,
with Yoo, a formalism for topological twists of the moduli stacks of solutions to the equations of motion in certain
classical field theories. In supersymmetric gauge theories we can model the classical moduli spaces as formal derived
thickenings of stacks BunG(X) of algebraic principal G-bundles on algebraic varieties (one could consider the same
notion where BunG(X) was replaced by any base stack fixed by Q). These can equivalently be viewed as Lie
algebroids over BunG(X), and we can then form the twist as a Lie algebroid.

Proposal 1. Using the classification from [ES18] we can compute all the field theories arising by twisting and
compactifying supersymmetric Yang-Mills theories in dimensions up to ten. This calculation will proceed as follows.
Begin by calculating the twist of N = k super Yang-Mills theory with gauge group G on Rn as an L∞-algebra. The
compactification of this twisted theory on a smooth variety Xm can be modelled as a factorization algebra valued in
Lie algebroids on the stack BunG(X). This can then be further twisted using a supersymmetry algebra in dimension
n − m. If this latter twist was topological and the assumption of rescaling invariance is satisfied then the local
observables of the compactified theory define an En−m-algebra. However we can also investigate other structures
associated to these twisted compactified theories such as categories of line operators or boundary conditions.

Note that many interesting twisted theories that occur are A-type twists, meaning the moduli stacks that occur are
de Rham stacks, and in particular have contractible tangent complex. We should always describe these examples in
families, as deformations of a holomorphically twisted theory. While the Lie algebra data at the fully twisted point
is contractible it arises as a fiber of a family of Lie algebras over A1 whose fiber at 0 is non-contractible.

Proposal 2. In the classification of topological twists we came across an interesting example that doesn’t appear
to have been studied in the mathematics literature. In 8 dimensional N = 1 there is a topological supercharge with
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stabilizer Spin(7). Alternatively, reducing down to 7 dimensions there is a topological supercharge with stabilizer
G2. According to the theory of factorization homology – which allows one to build topological quantum field
theories defined on G-structured n-dimensional manifolds from a G-equivariant En-algebra – the twists of super
Yang-Mills theories in these dimensions will be gauge theories defined on manifolds with special holonomy: Spin(7)
in dimension 8 or G2 in dimension 7. What are these twisted theories exactly? For instance, the 8-dimensional
example yields a Spin(7)-equivariant E8-algebra: what is it? What are the En-algebras in lower dimensions arising
from compactification? We speculate that these theories are related to categorifications of Donaldson-Thomas
theory.

Project 2 Geometric Langlands and Gaiotto Duality

My motivation for studying twists of supersymmetric field theory originally came from the work of Kapustin and
Witten [KW07]. They described an approach to the geometric Langlands conjecture using twists of N = 4 super
Yang-Mills theory in dimension 4. To summarise their approach, Kapustin and Witten described a family of
topological twists of N = 4 super Yang-Mills with gauge group G parameterized by points Ψ in CP1. They then
compactify these twisted theories on a Riemann surface C and argue that the theories thus obtained look like the
A-model with target T ∗ BunG(C) when Ψ = 0 and the B-model with target LocG(C) when Ψ =∞. Here BunG(C)
is the moduli stack of holomorphic G-bundles on C and LocG(C) is the moduli space of G-local systems on C.
Finally they argue that S-duality swaps the group G with its Langlands dual G∨, and acts antipodally on the
CP1 family of twists. The geometric Langlands equivalence then arises by comparing the categories of boundary
conditions in the two dual theories at Ψ = 0 and ∞. There are two main mathematical issues that Kapustin and
Witten didn’t address.

1. The moduli stack LocG(C) of G-local systems on C and the moduli stack FlatG(C) of flat G-bundles on C are
analytically equivalent but algebraically distinct. The geometric Langlands conjecture is usually formulated
with the latter algebraic structure (though see [BZN16] for a discussion of the former case). Therefore to
compare this approach to work in mathematics we need a field-theoretic origin for the algebraic structure on
the moduli space.

2. The “best-hope” geometric Langlands correspondence comparing the categories D-modules on BunG(C) and
coherent sheaves on FlatG∨(C) needs correcting, as shown in the work of Arinkin and Gaitsgory [AG15]. One
must consider not all coherent sheaves on FlatG∨(C), but only those satisfying a singular support condition.
This condition does not appear in the work of Kapustin and Witten and its sequels.

In my work with Yoo [EY18, EY17] we gave a construction of the Kapustin-Witten twists resolving both of these
issues.

1. As described in the previous section, in [EY18] we introduced a non-perturbative description for topological
twists of gauge theories. In the specific example of N = 4 supersymmetric gauge theory we obtain a descrip-
tion of the classical field theory and its twists with a canonical algebraic structure using the Penrose-Ward
correspondence, which says that 4d supersymmetric gauge theories arise as dimensional reductions of holo-
morphic Chern-Simons theory on twistor space – a complex 3-fold. This Chern-Simons theory has a canonical
algebraic structure therefore so does its dimensional reduction. Using these ideas we proved the following.

Theorem ([EY18, Corollary 4.16, Proposition 4.26]). The Kapustin-Witten A- and B-twists of N = 4 super
Yang-Mills assign to an algebraic curve C the following derived moduli spaces of germs of solutions to the
equations of motion.

EOMA(C) = (HiggsG(C))dR

EOMB(C) = T ∗[1]FlatG(C).

In particular the moduli space on the B side admits the expected algebraic structure for geometric Langlands.

One obtains the categories from geometric Langlands by the ansatz of categorical geometric quantization.
Each moduli space admits a canonical Lagrangian subspace, and the geometric Langlands categories arise as
the categories of ind-coherent sheaves on those Lagrangians.
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2. In [EY17] we described the physical meaning of Arinkin and Gaitsgory’s singular support conditions. We
describe a very general concept: a category of boundary conditions in a topological field theory is acted upon
by the algebra of local observables, and therefore one can discuss the support of a boundary condition in the
moduli space of vacua: the spectrum of the algebra of local observables. We proved the following.

Theorem ([EY17, Theorem 3.24]). The space of vacua in the Kapustin-Witten B-twist is isomorphic to
h∗/W 1. The full subcategory of boundary conditions on a curve C set-theoretically supported at the vacuum
0 ∈ h∗/W is equivalent to the Arinkin-Gaitsgory category IndCohNG

(FlatG(C)) of sheaves with nilpotent
singular support.

In fact we conjecture somewhat more. It makes sense to consider the full subcategory of objects supported
at any point in h∗/W . We discussed these categories in the example of the B-twist of N = 4 super Yang-
Mills theory and conjectured that the category of boundary conditions supported at v ∈ h∗/W is equivalent
to IndCohNL

(FlatL(C)) where L is the stabilizer of the point v. We refer to this as the “gauge-symmetry
breaking” conjecture.

The gauge-symmetry breaking conjecture leads to an interesting new conjectural factorization structure on
IndCoh(FlatG(C)). Restricting attention to the case where G = GLn so that h∗/W can be identified with the
configuration space of n points in C we make the following conjecture.

Conjecture. There is a factorization algebra over C where the stalk over a point x ∈ Ran(C) is equivalent
to the algebra of Hochschild cochains⊕

n≥1, x̃∈Symn(C)

HC•(IndCohNLx̃
(FlatLx̃

(C)))

where x̃ ∈ Symn(C) is a lift of x ∈ Ran(C) and Lx̃ is its stabilizer in GLn.

This conjecture has a physical interpretation in terms of the motion of D3-branes, and we conjecture that it
is related to the factorization structure on cohomological Hall algebras as in [KS11b] viewed analogously as
the Hilbert space on a stack of D0-branes.

This research leads to several natural questions, as well as an intriguing potential generalization to Gaiotto’s duality
for general theories of class S, as I’ll now explain.

Proposal 3. We propose to develop the necessary formalism to prove the analogous result to the theorem on
vacuum conditions on the A-side. That is, beginning with the category of ind-coherent D-modules as discussed
in [Gun17] (see also the category of renormalized D-modules of [AG15]) to prove that the full subcategory of
D-modules set-theoretically supported at 0 ∈ h∗/W is equivalent to the usual geometric Langlands category
D-mod(BunG(C)). Concretely this would involve studying the action of a subring of the Hochschild cohomology
HH•(D-modcoh(BunG(C))) freely generated by h/W .

Proposal 4. Gaiotto [Gai12] introduced a wide-reaching generalization of the S-duality that is conjectured to
implement a generalization of geometric Langlands duality for the so called theories of “Class S”. These are N = 2
supersymmetric field theories obtained by reducing the six-dimensional (2, 0) superconformal field theory on a curve
Σ: one obtains the usual 4d N = 4 super Yang-Mills theories when Σ is an elliptic curve.

Theories in dimension 4 with N = 2 supersymmetry admit a holomorphic-topological twist which we call the
Kapustin twist after [Kap06]. Take a theory of class S associated to a curve Σ and a self-dual group G, form
the Kapustin twist and compactify it on a curve C to obtain a 2d topological field theory which we’ll denote by
ZΣ,G(C). This topological field theory should admit a category BΣ,G(C) of branes. Gaiotto’s duality then tells us,
in particular, the following.

Conjecture. The collection of categories BΣ,G(C) for each Σ assembles to form a sheaf of categories over the
moduli space Mg,n of curves. This sheaf extends to the boundary of the moduli space, i.e. extends to a sheaf of
categories over the compactification Mg,n.

1Up to a degree shift by 2: see the paper for a discussion of the role of the degree shift.
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The 4d theory at the boundary of the moduli space is obtained by RG-flowing to a particular low energy limit
for the family of theories in the interior. These limiting theories do not necessarily have Lagrangian descriptions,
however we can seek out examples where the twisted reduced theories nevertheless have amenable descriptions.

There are examples in which we can explicitly calculate the categories BΣ,G(C) and therefore investigate this
conjecture. To begin with we can compute many examples in the interior of the moduli space of curves by calculating
the Kapustin twist of N = 2 super Yang-Mills with an arbitrary matter hypermultiplet. Taking this as a starting
point we can proceed to the following examples.

• The examples where g = 0, n = 4 are given by N = 2 super Yang-Mills theory with four fundamental matter
hypermultiplets. The dependence on a point in the moduli space M0,4 is given by a coupling parameter. In
the case where G = SU(2) there is a triality isomorphism, here realized as an action of the group S3 on the
category occuring in the Kapustin twist. Which, as a first example, we can identify.

• A large family of dualities generalizing Argyres-Seiberg theory were described by Gaiotto and then greatly
expanded by Chacaltana and Distler [CD10]. These dualities occur whenever a nodal curve at the boundary
of Mg,n can be obtained by gluing two curves at a point. Typical examples relate an SU(n) supersymmetric
gauge theory with appropriate matter to an SU(2) gauge theory coupled to a non-Lagrangian superconformal
matter theory – for instance the theories denoted by Tn. While these theories are hard to describe in general,
in the special case where our curve C has genus 1 we have a Lagrangian description of the 2d compactified
theory as a sigma model valued in a Hitchin system [GMN13] – alternatively we could have reversed the order
of our compactification along C and along Σ (although one needs to keep careful track of the twists one uses).
By identifying the categories BΣ,G(C) in each case we can hope to obtain interesting conjectural equivalences
as consequences of Gaiotto duality.

• Finally we might investigate the ansatz that the Kapustin twists, even of the theories occuring at non-
Lagrangian points with gauge group G, have Lagrangian descriptions of the form Coh(SectG(C, VΣ)) where
SectG(C, VΣ) is the moduli stack of G-bundles along with sections of an associated bundle in some represen-
tation VΣ, possibly twisted by the canonical bundle of C. We hope to check this ansatz and identify VΣ in
some simple examples.

Project 3 Multiplicative Langlands Duality

In current work with Pestun I am pursuing another connection between the geometric Langlands program and
supersymmetric gauge theory. The version of the geometric Langlands conjecture here is a “multiplicative” version
of the conjecture that is, as far as we are aware, a new idea. Our work involves the following moduli space (versions
of which have been studied previously by Hurtubise-Markman [HM02], Bouthier [Bou14] and Frenkel-Ngô [FN11]).

Definition. The moduli space of multiplicative G-Higgs bundles on a curve C consists of pairs (P, φ) where P is a
principal G-bundle on C and φ is a meromorphic automorphism of P . We fix the locations of the poles of φ at a
divisor D = {z1, . . . , zk}. We can also fix the local behaviour near the poles – controlled by a dominant coweight
ω∨zi of G at each puncture. Denote these moduli spaces by mHiggsG(C,D) (without fixed local behaviour) and
mHiggsG(C,D, ω∨) (with fixed local behaviour where ω∨ denotes a k-tuple of dominant coweights) respectively.

We focus our attention on the following rational/trigonometric/elliptic trichotomy:

• (Rational) C = CP1 and we fix a framing at the point ∞.

• (Trigonometric) C = CP1 and we fix a B+ reduction at ∞ and a B−-reduction at 0 so that the respective
induced T -reductions coincide.

• (Elliptic) C = E is an elliptic curve (with no additional decorations).

In these cases the moduli space – like the ordinary Hitchin system – has the structure of an algebraic integrable
system which we can naturally describe using the theory of shifted Poisson and coisotropic structures [CPT+17,
MS18]. In particular it has an algebraic symplectic structure. If one doesn’t fix dominant coweights at the punctures
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the full infinite-type moduli space has a Poisson structure and the moduli spaces with fixed coweights are symplectic
leaves.

A theorem of Charbonneau and Hurtubise [CH10] (for GLn) and Smith [Smi15] (for general G) tell us that the
moduli space of multiplicative G-Higgs bundles (or rather its polystable locus) is analytically isomorphic to the
moduli space of G-monopoles on C × S1. In the rational case this moduli space of periodic monopoles can be
realized as a hyperkähler quotient. In particular it is holomorphic symplectic. In this case Pestun and I prove the
following.

Theorem ([EP18] (In Progress)). In the rational case, the isomorphism identifying the moduli space of periodic
monopoles and the moduli space of multiplicative Higgs bundles is compatible with the holomorphic symplectic
structures on both sides. The holomorphic symplectic structure on the multiplicative Higgs moduli space can be
identified with the pullback of the Poisson Lie structure under the map mHiggsfr

G(CP1, D) → G1[[z−1]] given by
restriction to a formal neighbourhood of the framed point∞. For G = GLn the symplectic leaves coincide with the
symplectic leaves classified by Shapiro [Sha16].

Our equivalence promotes the holomorphic symplectic structure on mHiggsfr
G(CP1, D, ω∨) to a hyperkähler structure.

We can identify the holomorphic symplectic space obtained by rotating to a point q in the twistor sphere with the
moduli space of q-connections: principal G-bundles P equipped with a meromorphic isomorphism P → q∗P from
P to its translate.

This work is motivated in part by the work of Nekrasov and Pestun [NP12], which implies that moduli spaces
of multiplicative Higgs bundles arise as the Seiberg-Witten integrable system associated to ADE quiver gauge
theories. In particular they should admit natural hyperkähler structures. Nekrasov and Pestun also conjectured
that the deformation quantization of the algebras of functions on the moduli spaces (without fixing data at the
singularities) should be closely related to the Yangian – our result shows that there is an algebra map from the
Yangian Y (g) to this deformation quantization of our moduli space. If we fix data at the singularities the resulting
deformation quantization therefore has the structure of a Y (g)-module. Our approach follows the work of Hurtubise
and Markman [HM02] who studied the elliptic analogue of our symplectic structure.

Proposal 5. We hope to extend this work in two ways. Firstly we plan on studying the trigonometric analogue of
this result, where we expect there to exist a natural holomorphic symplectic structure related to symplectic leaves
in the loop group with its trigonometric R-matrix.

We also conjecture that it’s possible to construct symplectomorphisms from the rational multiplicative Higgs moduli
space – after rotating away from 0 in the twistor sphere – to a version of the trigonometric Zastava space studied
by Finkelberg, Kuznetsov and Rybnikov [FKRD18] via a Nahm transform; in other words by comparing monopoles
with suitable boundary conditions on C × S1 with monopoles on C× × R. Likewise in the trigonometric case it
should be possible to compare the multiplicative Higgs moduli space to the space of monopoles on E × R with
scattering-type boundary conditions at ±∞.

Part of our motivation for this work is to give a multiplicative analogue of the geometric Langlands conjecture. To
a first approximation this conjecture should take the following form.

Conjecture (Multiplicative Geometric Langlands). Let G be a Langlands self-dual group. In the rational, trigono-
metric and elliptic examples there is an equivalence of categories

Aq−1-branes(mHiggsG(C,D, ω∨)) ∼= Coh(q-ConnG(C,D, ω∨))

where q-ConnG is the moduli space of q-connections where q is an automorphism of C. If G is obtained from a
self-dual group G̃ via an automorphism ψ of the Dynkin diagram, there is an equivalence of categories

Aq−1-branes(mHiggsG̃(C,D, ω∨)ψ) ∼= Coh(q-ConnG(C,D, ω∨))

where on the left ψ acts on q-ConnG̃(C,D, ω∨) via its action on the Dynkin diagram of G̃, but also by rotating the
circle (where we identify mHiggsG̃(C) with BunG(C × S1

Betti)).

We can also pose a symmetrical 2-parameter form of the conjecture analogous to the quantum Langlands corre-
spondence. In order to make these conjectures precise we need a concrete mathematical model for the category of
Aq−1 -branes. We’ll discuss in a moment the abelian case where we have such a model, but first let’s discuss the
limit q → id, in which we obtain a classical limit for this multiplicative Langlands conjecture.
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Conjecture. Let G, G̃ and ψ be as above. There is an equivalence of categories

Coh(mHiggsG(C,D, ω∨) ∼= Coh(mHiggsG̃(C,D, ω∨)ψ).

From the physical point of view these conjectures are motivated by S-duality for 5d N = 2 super Yang-Mills theory.
Just as the usual Langlands duality arises by dimensionally reducing a 6d (2, 0) superconformal field theory on a
torus, we can study the compactification of the 6d theory on a torus then take the radius of only one of the circles
to zero, keeping the other circle finite. The result is a 5d N = 2 gauge theory compactified on a circle, and we can
study the (partially) topological twists of such 5d theories. The categories of A- and B-branes above arise as the
categories of boundary conditions in such twists on 3-manifolds of the form C ×S1, with the insertion of monopole
operators at a finite set of points.

Proposal 6. Make this reasoning precise using the techniques of Section 2.

Proposal 7. For a first example we can consider the abelian case of the conjecture on the elliptic curve. Write
Diffq(X) for the category of q-difference modules on X, i.e. modules for the sheaf of q-difference operators. Our
conjecture suggests we should look for an equivalence of categories

Diffq1(q2 ConnGL(1)(E) ∼= Diffq−1
2

(q−1
1 ConnGL(1)(E)

given by a twisted Fourier-Mukai transform analogoue to that of Polishchuk and Rothstein [PR01]

Project 4 Holomorphic Theories and Holomorphic Supergravity

In a joint paper with Williams and Yoo [EWY18] we investigated how the theory of asymptotic freedom and the
notion of the β-function fit into the factorization algebra formalism for perturbative quantum field theory. In
a future project we propose to use these ideas to study RG flow for holomorphic field theories on Cn, and in
particular to work towards a conceptual understanding of higher analogues of the c-theorem of Zamolodchikov. We
are also currently investigating a specific holomorphic theory in two complex dimensions arising as a twist of N = 1
supergravity.

In our earlier paper we obtained the following result.

Theorem ([EWY18]). There is a quantum observable – the β-functional – associated to any translation-invariant
field theory, describing the first order deformations of the effective interaction. This observable is closed for the
BV differential. The contribution at k-loops is individually closed if the `-loop contributions vanish for ` < k. In
particular if the theory is classically scale-invariant then its cohomology class – the 1-loop β-function – is well-
defined. This class is a homotopy invariant in the space of all quantum field theories and independent of the choice
of 1-loop quantization of a classical field theory. It can be computed as a 1-loop counterterm or as a 1-loop scale
anomaly. Altogether this allows us to verify in the formalism of factorization algebras the physical computation of
the β-function of Yang-Mills theory.

Now, let’s consider holomorphical factorization algebras on Cn, meaning quantum field theories with an action
of the Lie algebra of holomorphic vector fields. There is a classification of the possible anomalies associated to
the holomorphic translation action in terms of the Lie algebra cohomology of the algebra Wn of Lie algebras on
the formal n-disk: see [Wil18, Section 4.5]. One can describe these classes explicitly as local observables in the
factorization envelope of the algebra of holomorphic vector fields. In joint work with Williams we hope to use this
in order to understand the c-theorem and glimmers of its higher analogues for higher dimensional holomorphic field
theories.

Proposal 8. Every conformal anomaly cocycle pulls back to a class in the space of anomalies for holomorphic vector
fields. We propose to identify the a- and b-classes [DS93] as concrete observables in the factorization envelope of
the algebra of holomorphic vector fields. In particular we would like to investigate the geometric interpretation of
the a-class in complex dimension 2 occuring in the a-theorem of Komargodski and Schwimmer [KS11a].

In joint work with Williams I am also investigating the holomorphic twist of N = 1 supergravity in dimension 4. The
theory of twisted supergravity has recently been studied in the mathematics literature by Costello and Li [CL16].
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In the physics literature some relevant aspects of twisted supergravity have been discussed by Baulieu, Bellon and
Reys [BBR13] who calculated the supersymmetry action on N = 1 supergravity as a superalgebra extending the
group U(2) nC2.

We are currently working on the following project.

Proposal 9. There is an equivalence between the holomorphic twist of N = 1 supergravity on a complex symplectic
surface X – which we model in the first order formalism – and the cotangent theory of holomorphic symplectic
vector fields on X. By an equivalence, we mean a quasi-isomorphism between the sheaves of dg Lie algebras that
model the classical fields in the BV formalism. The latter theory has, as its classical BV complex, the dg Lie algebra
of fields

(A,B) ∈ Ω0,•(X)[1]⊕ Ω2,•(X)

with Lie bracket given by the holomorphic Poisson bracket on Ω0,•(X).

Furthermore, if we couple the supergravity theory to a chiral matter multiplet valued in a vector space V and
calculate the holomorphic twist, we obtain the theory of holomorphic symplectic vector fields coupled to a free βγ
system valued in V , where the field A acts on γ via the holomorphic Poisson bracket. In particular the complicated
supergravity coupling becomes something very simple. We will demonstrate this by proving that the twisted
coupling is the unique one that is compatible with the cotangent structure and the holomorphic covariant structure
– this uniqueness is an obstruction theory calculation.

We intend to apply this in order to study the holomorphic twists of G2-compactifications of 11-dimensional super-
gravity. In the 11d N = 1 supersymmetry algebra there is a twist with 9d image stabilized by the group G2×SU(4).
We can therefore describe the corresponding twist of maximal supergravity on a G2-manifold as the coupled N = 1
4d supergravity theory above with matter determined by the cohomology of the G2-manifold. Alternatively we
could start with 10d type IIB supergravity. The corresponding twist of this theory is conjectured to be equiva-
lent to BCOV theory in [CL15]. Our proposal is compatible with this conjecture under compatification along a
Calabi-Yau threefold.

After completing this analysis I propose to extend it in order to investigate twists of the AdS/CFT correspondence.

Proposal 10. Having computed the holomorphic twist of N = 1 supergravity in four dimensions coupled to
matter, we can extend the calculation to analyze the holomorphic twists of N = 2 supergravity. We can then
describe holomorphic 3d boundary theories associated to this holomorphic twist, whose observables we can model
by factorization algebras on R × C which are topological in the real direction and holomorphic in the complex
direction, or equivalently by E1-algebras valued in vertex algebras.

The AdS4/CFT3 correspondence leads us to speculate that there is such a boundary theory Koszul dual (see the
proposal in [Cos17]) to the algebra of quantum observables in a twisted gauge theory, namely a twist of N = 2
superconformal Chern-Simons theory in dimension 3 in the large N limit (see e.g. [BKKS08]).

Project 5 Twisted Yangians

I’ll finally discuss a project relating twisted Yangians – coideal subalgebras for the Yangian – to defects in 4d
supersymmetric field theory. This generalizes work of Costello [Cos13] (and its sequels with Witten and Yamazaki
[CWY17, CWY18]) and uses ideas recently introduced by Weelinck [Wee18].

The Yangian arises from a 4d partially holomorphic Chern-Simons theory – for instance arising as a deformation of
holomorphically twisted 4d N = 1 super Yang-Mills theory. The local quantum observables in this theory form an
E2-algebra valued in holomorphic factorization algebras. The Yangian is equivalent to the E1 Koszul dual of this
algebra of local observables.

Proposal 11. Consider the quotient of R2 ×C with respect to the Z/2Z-action (x, y, z) 7→ (x,−y,−z) so that the
Z/2Z-action fixes a line. Consider the partially holomorphic Chern-Simons theory with gauge group G on R2 ×C.
We can descend this theory to the quotient stack where Z/2Z acts not only on spacetime but also on the gauge
group by an involution θ : G → G (alternatively we can think of this as a 4d theory with a line defect). Consider
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the categories of line operators along lines Rx×{y0}×{z0}. There is a monoidal category L of line operators in the
bulk (away from the fixed line) and an L-module L0 of line operators along the defect. We have a pair of natural
functors

(L,L0)→ (HC•(L)-mod,HC•(L0)-mod)
∼= (Obs-mod,Obs0-mod)

to the categories of modules for the local operators in the bulk and at the defect. Here HC•(C) denote the algebra
of Hochschild cochains of C. According to Costello’s theorem, Obs is Koszul dual to the Yangian algebra Y (g).
I conjecture that Obs0 is Koszul dual to the twisted Yangian Y (g, gθ) – a coideal subalgebra in the Yangian
associated to the involution. Just as Costello’s description characterizes the universal R-matrix as determined
by the quantization of the factorization structure (the OPE) in the holomorphic direction this characterizes the
universal K-matrix in a similar way in terms of the action of the local observables in the bulk on those near the
defect.

This expectation comes both from calculating the classical limit and from the work of Weelinck. Weelinck proved
that the data of a topological factorization category on the orbifold R2/(Z/2Z) is equivalent to a choice of quantum
symmetric pair. Replacing one of the real directions by a complex direction I hope to find a similar relationship,
where now the quantum symmetric pairs include spectral parameter. By Costello’s theorem we already know that
the algebra in the bulk is Koszul dual to the Yangian, in particular it has the same category of modules. At the
defect we would therefore expect to obtain the category of modules for some coideal subalgebra, which is then fixed
by observing that it has the correct classical limit.

This proposal is related to the project I described in Section 3. Conjecturally the four-dimensional partially
holomorphic Chern-Simons theory is a boundary theory for the holomorphic-topological twist of 5d N = 2 Yang-
Mills theory which I hope will lead to a “holographic” explanation of the Koszul duality between their algebras of
local observables.

References

[AG15] Dima Arinkin and Dennis Gaitsgory. Singular support of coherent sheaves and the geometric Langlands conjecture.
Selecta Math. (N.S.), 21(1):1–199, 2015.

[BBR13] Laurent Baulieu, Marc Bellon, and Valentin Reys. Twisted N = 1, d = 4 supergravity and its symmetries.
Nuclear Phys. B, 867(2):330–353, 2013.

[BKKS08] Marcus Benna, Igor Klebanov, Thomas Klose, and Mikael Smedbäck. Superconformal Chern-Simons theories
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