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1 Setup

Let’s recall some notions from classical Lagrangian field theory. Let M be an oriented supermanifold: our
spacetime, of dimension n|d. For our purposes, we will most often think about the case where M is either
Minkowski space M̌n = R1,n−1, or Super Minkowski space

M = M̌n ×ΠS

where S is a representation of Spin(1, n− 1).

Definition 1.1. Let E → M be a smooth (super) fibre bundle. The associated space of fields is the space
of smooth sections φM → E. A Lagrangian density on F is a function L : F → Dens(M) – where Dens(M)
denotes the bundle of densities on M – that satisfies a locality condition.

Precisely, we form the pullback bundle

Dens(M)F //

��

Dens(M)

��

M ×F π1

// M

and require L to be a section of this bundle such that, for some k, for all m ∈M , L(m,φ) only depends on the
first k derivatives of φ. We can phrase this in terms of factoring through the kth jet bundle of E.

As usual, we define the action functional to be the integral

S(φ) =

∫
M

L(φ).

A Lagrangian system generally includes additional information, namely a choice of variational 1-form γ. In
general I won’t use this data, but I should mention when it might play a role.

1.1 Symmetries

In this talk, we will be discussing Lagrangian systems with certain kinds of symmetry called supersymmetry. As
such, it’ll be important to understand what it actually means to be a symmetry of such a system. Heuristically,
a symmetry is just an automorphism of the space of fields that preserves the Lagrangian. It’ll be easier for us
to work with infinitesimal symmetries: symmetries will form a kind of Lie group, and infinitesmial symmetries
will be elements of the Lie algebra: tangent vectors at the identity symmetry.

Definition 1.2. An infinitesimal symmetry of the Lagrangian system (F ,L) is a vector field ξ ∈ Vect(M ×F),
that is local, and preserves the action. More precisely

1. Locality means, analogously to locality for a Lagrangian, we require that there is some number k, such
that ξφ only depends on at most k derivatives of φ for any m ∈M .
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2. Preserving the action means that
Lieξ L = dαξ

for some (twisted) n− 1-form αξ on F .

Again, one could phrase the locality condition in terms of the kth jet bundle of E.

Why does this exactness condition correspond to preserving the action? This is a consequence of the usual
variation description of the space of classical solutions of a Lagrangian system. Indeed, first remember what
the Lie derivative means:

Lieξ L(φ) =
d

dt

∣∣∣∣
t=0

L(exp(tξ)∗φ).

That is, the Lie derivative describes the infinitesimal variation of the function L in the direction of the tangent
vector ξ. So this Lie derivative vanishes if the Lagrangian density is constant along such infinitesimal variations.
Of course, we don’t need to preserve the density, only its integral: the action. This integral is preserved if making
such an infinitesimal modification changes the Lagrangian density by an exact term by Stokes’s theorem.

We should say more about the calculus of variations, and what we mean by a variation (speaking heuristically
only). Recall the idea: if we have an action S =

∫
L that we want to extremise over a space of fields (e.g. most

classically a path space), we can consider the behaviour of this functional in a small neighbourhood of a given
field φ. That is, we look at small variations φ+ δφ within this neighbourhood, and ask when∫

L(φ+ δφ)− L(φ) = 0

for all such variations. In the limit as the size of the neighbourhood goes to zero, this corresponds to computing
the linear term in a Taylor expansion for L. We call such extremal values of φ classical solutions of the
Lagrangian system, and denote the space of such solutions by M.

2 Supersymmetry

2.1 Translation and Supertranslation

For this section, suppose M = ˇ(M)
n
× ΠS is super Minkowski space. On this space, we have an infinitesimal

action of the super translation algebra
T = V ×ΠS

where V is the even abelian Lie algebra R1,n, and the bracket comes from a choice of symmetric bilinear pairing
Γ: S ⊗ S → V , or in coordinates

[Qa, Qb] = Γcabxc

For xi and Qj bases for the even and odd parts of the vector space T . Such a pairing always exists, and in the
case where S is irreducible is unique up to a scalar

If (F ,L) defines a classical field theory on ˇ(M)
n
, we can extend the action of the translation algebra V on super

Minkowski space to an action on ˇ(M)
n
×F . Indeed, as a Lie group, v ∈ Rn acts on fields by precomposition

ˇ(M)
n +v→ ˇ(M)

n
→ E,

and we can differentiate this action to produce an action of the Lie algebra. That is, an element v ∈ V acts on
fields by

v · φ =
d

dt

∣∣∣∣
t=0

exp(tv)∗φ

which is just φ(x) 7→ φ(x−v). It is easy to see that this gives an action by symmetries, i.e. the map V ↪→ Vect(F)
lands in the subalgebra of symmetries. Certainly the action is local, and translation preserves the Lagrangian.
This is the kind of symmetry we’d like to extend to a supergeometry setting.
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2.2 Supersymmetric Lagrangians

Definition 2.1. A classical field theory (F ,L) is supersymmetric if this action of translation extends to an
action of the super translation algebra T by symmetries. .

If n ≡ 1, 3, 4 mod 4, then there is a unique minimal irreducible spin representation S, so T = V ×ΠSN . We say
there are N supersymmetries. If n ≡ 2 mod 4, there are two minimal irresucible spin representations S+, S−,
so T = V × π((S+)N1 ⊕ (S−)N2). We say there are (N1, N2) supersymmetries.

Remark 2.2. We don’t need the symmetries to be manifest here, so we should be careful with our computations.

Let’s unpack this. For simplicity, suppose S is irreducible, i.e. that there is N = 1 supersymmetry. What do we
need to do to define a supersymmetry? Well, let Q1, . . . , Qd be a basis for S. These should define odd vector
fields on the supermanifold M ×F . One can package this data as

δ = ηaQa

where we have adjoined η1, . . . , ηd formal odd parameters. So this even element defines an even vector field on F
packaging all of the supersymmetries: one can read off from the action of this element how the supersymmetry
corresponding to any individual Qa acts by looking at the ηa term after applying δ. The use of the symbol
δ is intended to be evocative of the first variation from the calculus of variations: it is the tangent vector
corresponding to a particular variation of the fields.

This is, in a sense, a universal supersymmetry. A general odd element of the supersymmetry algebra looks
like

∑
aiQi, so we must define a supersymmetry for each such element. We should think of defining the above

vector field over a universal ring, and specialising to specific values to recover these individual symmetries, such
as the action of each individual Qi.

Now, to check that this defines an action of the super translation algebra, we must first check the commutation
relations: i.e. that the action agrees with

[ηa1Qa, η
b
2Qb] = ηa1η

b
2Γ(Qa, Qb).

In this universal picture we must clearly work with different universal parameters η1, η2, to ensure we check all
possible supercommutators at once. Secondly, we much check that δ is a symmetry, i.e. that

Lieδ L = dα

for some α. Later, we will see this in some examples.

2.3 Superspace picture

A natural setting where we expect a nice action of the super translation algebra T is where spacetime is the
corresponding super Minkowski space M , so T acts on spacetime in a natural way. Indeed, many natural field
theories in the sense described above are equivalent to such theories on M : in this section we will explain
how to recover a supersymmetric field theory on ˇ(M)

n
from a field theory on M , by taking component fields.

Throughout this section, ι : M̌ → M will denote the inclusion of the even part of superspace, i.e. the map
corresponding to the map of super-rings

C∞(M̌)[θ1, . . . , θd]→ C∞(M̌)

by setting all θi to 1.

A standard technique which we will exploit is a choice of basis for the spaces of left and right translation invariant
vector fields on M . We fix throughout bases xa and θb for the even and odd parts of the supertranslation algebra
T as an n|d-dimensional super vector space, acting on M . The vector fields ∂i = ∂

∂xi are both left and right
invariant. We can extend this to bases ∂1, . . . , ∂n, D1, . . . , Dd and ∂1, . . . , ∂n, τQ1

, . . . , τQd
of left and right

invariant vector fields respectively by defining

Da = ∂a − θbΓcab∂c
τQa

= ∂a + θbΓcab∂c
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and checking the appropriate invariances. We use the very different seeming notation for these two families of
odd vector fields because we will use them to play different roles. The left invariant vector fields will be used as
covariant derivatives, to write down a superspace Lagrangian, while the remaining right invariant vector fields
will correspond to the supersymmetries coming from the Qa. The Da and τQb

commute with one another, and
with the even vector fields ∂i, but there are non-trivial internal supercommutators

1

2
[Da, Db] = −Γcab∂c

1

2
[τQa

, τQb
] = Γcab∂c

We will call fields on M superfields, usually denoted Φ.

Example 2.3. Consider F = Map(M,X), for X a Riemannian manifold. This is the space of fields of a
supersymmetric sigma model. We should take care: this mapping space is itself a supermanifold, so contains
more data than just its geometric points. We can analyse the odd data in this space by, for instance, considering
the R[η] points of this superspace, for η an odd variable.

Let L be the Lagrangian in this superspace field theory. Taking component fields roughly corresponds to looking
at the Taylor expansion of some Φ in the odd variables. As odd variables are all nilpotent, this Taylor expansion
will necessarily terminate after finitely many terms. So, more precisely, fix some Φ: M → E. Then we can
expand Φ in local co-ordinates xi, θj as

Φ(x1, . . . xn, θ1, . . . , θd) =
∑
J

ι∗DJΦ

where the terms use the global frame Da of left invariant odd vector fields . So DJ represents a product of
these Da’s. The right hand side expands as a sum over monomials like θa1 · · · θak , and as the θa are odd, there
are only finitely many such terms.

In this setting, supersymmetries are easy to see. Indeed, let Qa be a basis for S, the fermionic part of the
super translation algebra. Let ηa be odd parameters. The element ηaQa of T [η1, . . . , ηd] now generates a
diffeomorphism of M using our right invariant vector fields τ : namely the exponential exp(ηaτQa

). In other
words, our vector field acts on superfields by the usual procedure:

δ(Φ) =
d

dt

∣∣∣∣
t=0

exp(−tηaτQa
)∗Φ,

where the inverse (the minus sign) appears to make this a left action, rather than a right action.

We can produce the corresponding action on each component field ι∗DrΦ explicitly by putting:

δ(ι∗DrΦ) =
d

dt

∣∣∣∣
t=0

ι∗Dr (exp(−tηaτQa
)∗Φ) .

As long as one is sufficiently careful with what one means by “ d
dt”after applying the Dr. That is, the super-

symmetries are
δ(ι∗DrΦ) = −ηaι∗DaD

rΦ.

We have replaced τQa by Da because we’re pulling back to the even part of superspace, on which they agree
(see [1] p238), and used the fact that the Da commutes with Dr.

How can one produce a component Lagrangian from a superspace Lagrangian? The idea is to perform a Berezin,
or fermionic integral, i.e. to push forward under the projection map π : M → M̌ . We make a choice of volume
form on the fermionic part of superspace, S∗. Call it ddθ. Then our superspace Lagrangian density has the
form

L = |dnx|ddθ`,

where ` is a function F → R. The density |dnx| is determined uniquely from the Lorentzian metric on
V = R1,n−1 In order to describe a component Lagrangian

Lcom = |dnx|Ľ
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we must integrate out the fermionic directions. In good situations, one can write this component Lagrangian
explicitly by choosing a suitable combination of Da operators, Dr say, and to put Ľ = ι∗Dr`. Slighly more
generally one could add on an appropriate differential operator so that the resulting Lagrangian differs from
π∗L by an exact term that will not affect the dynamics. That is:

π∗L = Lcom + |dnx|∆ι∗`

where ∆ is some Poincaré invariant differential operator. We’ll see examples of these operators Dr and ∆ below:
though we’ll probably only deal with simple examples where one can choose a Dr so that ∆ = 0, i.e. literally
replace an integral with a derivative.

Theorem 2.4 (1.36 in [1]). This component Lagrangian Lcom is supersymmetric.

Proof. For simplicity, let me only talk about the simple case, where Lcom = π∗L. First we show the result of
performing Berezin integration – that is, the pushforward π∗L – is supersymmetric. We must check that this
Lagrangian is invariant up to an exact term upon Lie differentiation with respect to δ, a vector field on M̌ ×F
which is constant in the F direction. So we compute, using Cartan’s formula,

Lieδ L = Lieδ π∗L
= π∗ Lie−ηaτQa

L
= π∗

(
dι−ηaτQa

L
)

= d
(
π∗ι−ηaτQa

L
)

which is exact as required.

3 Examples of Supersymmetric Sigma Models

Example 3.1. Let’s discuss the supersymmetric particle, i.e. the one-dimensional supersymmetric sigma model.
We’ll give both a superspace description, and a discussion of the component fields.

Let M = R × ΠS, where S is the non-trivial irreducible representation of Spin(1) ∼= Z/2. So the associated
supertranslation algebra is T = R1|1, with bracket [Q,Q] = 2, where Q generates the fermionic part. Let (t, θ)
be co-ordinates on M . Then we have odd vector fields

D = ∂θ − θ∂t
τQ = ∂θ + θ∂t.

Then (∂t, D) and (∂t, τQ) are bases for the left and right translation invariant vector fields on M respectively,
and we have non-trivial commutators

[D,D] = −2∂t

[τQ, τQ] = 2∂t.

The fields in our sigma model are functions of supermanifolds Φ: M → X, where X is a Riemannian manifold
with metric g. By analogy with the classical sigma model, we choose the Lagrangian density

L(Φ) = −1

2
dtdθ〈Dφ, ∂tΦ〉,

describing a supersymmetric Lagrangian by our discussion above.

Let’s produce the associated component Lagrangian. So we write L = dtdθ`, where ` is the Lagrangian function
−1/2〈Dφ, ∂tΦ〉. The component fields are

φ = ι∗Φ

ψ = ι∗DΦ,
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where ι : R ↪→ M . So φ : R → X is an even function, and ψ is a spinor field in Γ(R, φ∗ΠTX). We produce
the component Lagrangian by applying the operator ι∗D to the Lagrangian function above, corresponding to
taking the Berezin integral.

Lcom = −1

2
dt ι∗D〈DΦ, ∂tΦ〉

= −1

2
dt ι∗ (〈DDΦ, ∂tΦ〉 − 〈Dφ,D∂tΦ〉)

= −1

2
dt ι∗ (〈−∂tΦ, ∂tΦ〉 − 〈Dφ, ∂tDΦ〉)

=
1

2
dt
(
|φ̇|2 + 〈ψ,∇φ̇ψ〉

)
.

By the result 2.4, we know this component field Lagrangian is supersymmetric. We can describe the supersym-
metries. Indeed, consider the even vector field δ = ητQ. Then we compute how δ acts:

δφ = −ηι∗DΦ = −ηψ
δψ = −ηι∗DDΦ = ηι∗∂tΦ = ηφ̇.

Example 3.2. For a tougher example, let M = M3|2 = R1,2 × ΠS where S is the 2d spinor representation of
Spin(1, 2) ∼= SL(2,R). The super translation algebra T has two odd generators Q1, Q2, with non-trivial bracket
given by identifying the even piece of the algebra V with Sym2 R2. So we can choose a basis y11, y12, y22 so that
the brackets are

[Q1, Q1] = y11, [Q1, Q2] = y12, [Q2, Q2] = y22.

Consider the three dimensional sigma algebra, with fields

F = {Φ: M3|2 → X}

where again, X is a Riemannian manifold. The Lagrangian density is, similarly to the 1d case, given by

L(Φ) =
1

4
|d3y|d2θ εab〈DaΦ, DbΦ〉,

where ε comes from the Lie bracket

ε =

(
0 1
−1 0

)
,

and where the left invariant vector fields D1, D2 are given by formulae as usual:

Da = ∂θa − θb∂yab
.

We can work out the component fields, and the component Lagrangian as previously. One computes the
components

φ = ι∗Φ

ψa = ι∗DaΦ

F = −ι∗DDΦ

corresponding to the scalar, θa and θ1θ2 terms in the Taylor series for Φ. The field φ is a scalar field, i.e. a
function M̌ → X, the ψa define an odd spinor field

ψ ∈ Γ(M̌,Π(φ∗TX ⊗ S)),

and F is an even section
F ∈ Γ(M̌, φ∗TX).

On M , we can investigate the operator D2 = 1
2ε
abDaDb, which computes the Berezin integral∫

d2θ = ι∂θ1∂θ2 = ι∗D2.
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This allows us to compute the component Lagrangian. Indeed,

Lcom = −1

4
ι∗D2εab〈DaΦ, DbΦ〉

= −1

4
ι∗εab

(
2〈DaΦ, D2DbΦ〉 − εcd〈DcDaΦ, DdDbΦ〉

)
.

Now, we must use simplify D2Da and DaDb. One checks DaDb = −(∂ab − εabD2), easily case-by-case, and

D2Da = ±1

2
D1D2D1 −D2D1D1

= ±1

2
R(D1, D2)D1 − (D2D1)D1 − 2∇y12D1 −D2D1D1

= ±1

2
R(D1, D2)D1 + 2D2∂y11 − 2∇y12D1

= ±1

2
R(D1, D2)D1 + 2∇y11D2 − 2∇y12D1

where the sign depends on the value of a. We used the fact that the curvature R obeys the relation

R(Da, Db) = DaDb +DbDa + 2∇yab
.

We can express this as D2Da = εbc(− 1
6R(Da, Db) +∇ab)Dc. Thus, the component Lagrangian evaluates to

L =
1

4
ι∗εabεcd

(
1

3
〈Daφ,R(DbΦ, DcΦ)DdΦ〉 − 〈DaΦ,∇bcDdΦ〉+ 〈∂ycaΦ− εcaD2Φ, ∂ydbΦ− εdbD2Φ〉

)
=

1

12
εabεcd〈ψaφ∗R(ψb, ψc)ψd〉 −

1

2
εabεcd〈ψa, ∂ybcψd〉+

1

2
εabεcd〈∂ycaφ+ εcaF, ∂ydbφ+ εdbF 〉

=
1

12
εabεcd〈ψa, R(ψb, ψc)ψd〉 −

1

2
εabεcd〈ψa,∇ybcψd〉+

1

2
|dφ|2 − 1

2
|F |2

=
1

2
|dφ|2 − 1

2
εabεcd〈ψa,∇ybcψd〉 −

1

2
|F |2 +

1

12
εabεcd〈ψa, R(ψb, ψc)ψd〉

where at the final step we just re-arrange the terms for clarify, so the interaction term is last. The second term
here could also be written ψ /Dψ, where /D denotes the Dirac form on the relevant spinor representation.

The supersymmetries are easy to compute, namely

δφ = −ηaι∗DΦ = −ηaψa
δψa = −ηbι∗DbDaΦ = ηb(∂yab

φ− εabF )

δF = ηaι∗DaD
2Φ = ηa

(
1

3
εbcR(ψa, ψb)ψc − εbc∂yab

ψc

)
using the expressions for DaDb and D2Da derived above.

Note that F will not play any role in the equations of motion (since its derivatives don’t appear in the Lagrangian:
they will impose that F = 0), so it is in some sense a purely auxilliary field.
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