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We’ve began to see what it means to twist a supersymmetric field theory. I will review Donaldson
theory and Seiberg-Witten theory, which have applications to the classification of four-manifolds. Then
I will hint at a relation of these classification theories to a twist of a particular N = 2 4d supersymmetric
Yang-Mills theory. Hopefully Kevin or someone else will go further into this.

A quick review of Donaldson theory

A major problem in topology and differential geometry is the classification of smooth manifolds. Don-
aldson came up with a program that assigns smooth invariants to manifolds, and shed some light into the
craziness of dimension four. There is a lot of hard analysis going on in the background here, but I will
choose to avoid that for sake of exposition.

Here is the setup. Let M be a closed, simply connected, oriented, Riemannian manifold. Let P → M
be a principal SU(2) bundle with connectionω. Let V be the irreducible two-dimensional representation
of SU(2). We get a 2-plane bundle E = P ×SU(2)V over M , and an induced connection ∇ on E . Locally,
∇ = d +A, and the curvature has the form F = F∇ = dA+ 1

2 A∧A. Now F ∧ F defines an element of
Ω4(M ;su(2)) and we may take the trace of this. It is a basic fact from Chern-Weil theory that

∫

M
c2(E) dvolg =−

1

8π

∫

M
tr(F ∧ F ) dvolg .

Consider the nasty group G = Aut(P ) of automorphisms of P . Let A′ be the (infinite dimensional)
vector space of connections on P . Then G acts on A′ in the obvious way. This action has huge stabilizers
and one could never hope the quotient would look nice. By choosing appropriate Sobolev spaces one
can make the quotient into a Hilber manifold. Donaldson theory is concerned with a subquotient of this
space.

Now, recall the Hodge star operator in this context:

? :Ωi (M ; E)→Ω4−i (M ; E).

Since ?2 = id on 2-forms we have a splitting

Ω2(M ;V ) = Ω2
+(M ;V )⊕Ω2

−(M ;V )

called the self-dual (eigenvalue +1) and anti-self-dual (eigenvalue -1) 2-forms. Donaldson theory is con-
cerned with anti-self-dual forms, as these are the natural objects that arise in the holomorphic setting,
even thought there is no a priori reason to consider them over the self-dual forms in the real case. Clearly
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the subspace A ⊂ A′ of ASD connections is invariant under the action of G and we may hence define
(using, of course, appropriate Sobolev spaces)

M :=A/G

the moduli space of ASD connections. A lot goes into checking the moduli space is locally well behaved,
but one can show for generic metrics M (or a slight variant of) is a smooth manifold of dimension d =
8c2(E)−3(b0− b1+ b+2 ), atleast when b+2 > 0. Moreover, one can show that for a generic path of metrics
the moduli space M(P, gt ) = {([A], t )} is a smooth oriented manifold.

Rougly, Donaldson invariants are defined as integrals of differential forms on the moduli space of
irreducible ASD connections. As in the case with invariant theory, we need to define some universal
bundle. Let Q be the principal bundle A(P )×G P over B(P )×M . Then p1(Q) ∈ H 4(B(P )×M ) and we
may take the slant product

H2(M )→H 2(B(P )) , x 7→ p1(Q)/x.

It is uniquely determined by the homology-cohomology pairing relation

〈α/x, y〉= 〈α, x × y〉

where x × y is the homology cross product. It is a fact that p1(Q)/x is divisble by 4 so we may define

µ(x) :=−
p1(x)/x

4
∈H 2(B).

We can extend this to a map
µ : H2(M )→H 2(M(P )+)

which is very nontrivial. When d ≡ 3
2 (1+ b+2 ) mod 4 we can define

γd : H 2(B)⊗d →Z , x1⊗ · · ·⊗ xd 7→
∫

M(P )
µ(x1)∧ · · · ∧µ(xd ).

Seiberg-Witten Theory

Donaldson theory provided a beautiful program for assigning smooth invariants to manifolds and allowed
for many classification theorems. There are some drawbacks, however. The moduli space is not as well
behaved as we would like it. For instance, it is not compact. This stems from the complexity of the
equations of motion defining the moduli space. In 1994, Witten provided a much simpler set of equations
that produce a moduli space and invariants that hold essentially the same information. In this section I
will give the mathematical program for producing such equations and invariants. In the last section we
will briefly look at the field theory that inspired all of this.

Let’s set up SW theory. Want to fix a smooth, oriented, four-manifold M with a so-called spinc struc-
ture.

What does this mean? If eG → G is any covering space of Lie groups and P → M is a principal G-
bundle, we can talk of a lift of P to a principal eG bundle as follows. It is a principal eG bundle eP → M
with a bundle map eP → P that is equivariant with respect to the covering map eG → G. In our case, we
consider the double cover Spin(n)→ SO(n). A spin structure on M is a lift of the principal SO(n) bundle
of orthonormal frames to a Spin(n) bundle eP → M . A basic argument with the Serre spectral sequence
shows that

M is spin⇔ w2(T M ) = 0

and in this case, spin structure are in bijective correspondence with H 1(M ;F2).
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Example 2.1. For any field k, the total Steifel-Whitney class of kPn = (1+ a)n+1 where a is a generator
of the first non-vanishing cohomology group. For k = R, we see that RP n is spin iff n ≡ 3 mod 4. For
k =Cwe see thatCP n is spin iff n is odd. This shows, in particular, thatCP 2 is an oriented four-manifold
that is not spin.

The objects we would like to consider depend on a spin structure being present, which is an issue
as not all four-manifolds admit such a structure. It is useful to consider a slightly weaker structure; of a
manifold being spinc . Recall,

Spinc (n) := Spin(n)×Z/2 U(1).

Now, we may talk of lifting the bundle of orthornormal frames to a spinc structure in multiple, albeit
equivalent ways. From the definition, we get a short exact sequence

1 // Z/2 // Spinc (n) // SO(n)×U(1) // 1. (1)

A spinc structure on M is a U(1)-bundle Q → M and a lift of PT M ×Q to a principal Spinc (n) bundle
eP c → M . That is, there is a bundle map eP c → PT M ×Q that is equivariant wrt the rightmost map in (1).
Alternatively, we have a short exact sequence

1 // U(1) // Spinc (n) // SO(n) // 1. (2)

We may also define a spinc structure as a lift of PT M to a principal Spinc (n) bundle. That is, there is a
bundle map eP → P that is equivariant wrt the rightmost map in (2). It turns out these two definitions
are equivalent, and the resulting spinc structures are related in an obvious way. Namely, if we are given
eP we can form a line bundle Lσ := eP ×λ C where λ(z) = z2. The U (1)-frames of this bundle exactly
corresponds to Q.

It is a basic fact that spinc structures exist on M iff w2(T M ) is the reduction of a integral homology
class. It is a basic fact that this is always the case for four-dimensional manifolds. That is, four-dimensional
manifolds always admit spin structures. Thus CP 2, for instance, is a manifold that is spinc but not spin.

Example 2.2. (Spin⇒ Spinc ) Suppose we are given a spin structure eP0→ M . Let Q0 be the trivial U(1)
bundle over M . Form

eP = eP0×Z/2 Q0

where Z/2 acts as (p, z) ∼ (−p,−z). Then eP is a Spinc (n) bundle by the action [(g ,λ)] · [(p, z)] :=
[(g p,λz)], and clearly is equivariant with respect to the covering map.

Example 2.3. Every complex manifold admits a canonical spinc structure. Maybe later.

Now, recall the complex spin representation. In dimension 4 it splits into two irreducible reps:

Spin(4)→GL(S±)

where dim S± = 2. It is a fact that this spin rep uniquely extends to a rep of spinc

∆ : Spinc (4)→GL(S±).

Denote by S = S+ ⊕ S−. We may also interpret the spin group as sitting inside the the even part of the
Clifford algebra C`(n). Likewise, Spinc (n) embeds in the even part of the complexified clifford algebra.
The spin representation above is just a restriction of Clifford multiplication.
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Finally, let M be an oriented four-manifold with spinc structure σ = (eP ,Q). Define the spinor bundles
using the above rep:

S±σ := eP ×∆ S±.

Let Sσ = S+σ ⊕ S−σ . We also have Clifford algebra bundles

C`Cσ := P ×SO(4) (C`(4)⊗C).

Clifford multiplication (C`(4)⊗C)⊗ S→ S extends to a bundle map

cliff : C`Cσ ⊗ S→ S

and the odd part of C`Cσ maps S± to S∓, as it should.
Fix the Levi-Civita connection on PT M and let A be a connection on Q. This data gives a connection

on eP and we can associate connections∇±A to S±σ respectively. Denote by 6∂ ±A the compositions:

Γ(S±)
∇±A // Γ(S±⊗T ∗M ) cliff // Γ(S∓).

These are the plus and minus Dirac operators. The odd sum of these

6∂A=
�

0 6∂ −A
6∂ +A 0

�

.

In local coordinates the Dirac operator is not scary. Fix a trivialization of Sσ about a point and let ei be a
basis. Then

∂Aψ|x =
∑

i

ei · ∇ei
(ψ)|x

= dψ|x +
∑

i






A(ei )ei +

∑

j<k

ωk , j (ei )(e j ek )






·ψ(x).

Of course, it can be viewed as a twisted exterior derivative.
Now, we are ready to talk about the SW equations and SW moduli space. Our objects will be

Cσ =Aσ ×Γ(S
+
σ )

where Aσ is the affine space of unitary connections on Q. Fixing A0, we can write Aσ =A0+Ω
1(M )⊗ iR.

Make the canonical identification of
∧2
+T ∗M⊗Cwith the traceless endomorphisms of S+σ . Forψ ∈ Γ(S+σ )

consider the assigment

Γ(S+σ )ϕ 7→ 〈ψ|ϕ〉ψ−
1

2
〈ψ|ψ〉ϕ.

One checks that this defines a traceless endomorphism q(ψ) of S+σ , hence determines an element of

Ω2
+(M ; iR). Choosing a basis and writing ψ = (ψ1 ψ2) the endomorphism q(ψ) has matrix represen-

tation:
 

1
2 (|ψ1|2− |ψ2|2) ψ1ψ2

ψ1ψ2 − 1
2 (|ψ1|2− |ψ2|2).

!
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From which it is immediate that it is traceless. We define the Seiberg-Witten equations for (A,ψ) to be

F +A = q(ψ) , 6∂ +A ψ= 0.

Now I need to tell you what the gauge group is. We choose

G=Aut0(eP )

the group of automorphisms of eP covering the identity on M . There is a canonical identification of G
with Maps(M , S1) which goes as follows. For any principal G-bundle P →M we have the identification

Aut(P )↔{bγ : P →G | bγ (p g ) =Adg−1(bγ (p))≡ g−1
bγ (p)g}

induced from the relation γ (p) = pbγ (p). For our case, let’s write γ (ep) = epbγ (ep). We have

π1(epbγ (ep)) =π1(ep)ρ
c (bγ (ep))

So, for γ ∈ G, we must have bγ (ep) ∈ kerρc =U(1)⊂ Spinc (4) for all ep ∈ eP .
Since U(1) is the center of Spinc (4), if bγ (ep) ∈ U (1) then g−1

bγ (ep)g = bγ (ep), so bγ is constant on fibers
of eP →M . Hence bγ descends to a map fγ : M →U(1). It is easy to see this argument works backwards, so
we have established:

G↔Maps(M , S1)

We denote this correspondence on elements by γ↔ fγ .
The action is defined as:

C×G→ C , (A,ψ) · γ := ((detγ )∗A, (S+γ−1) · γ ).

Lemma 2.1. Let (A,ψ) ∈ C and γ ∈ G. Then

6∂(detγ )∗A(S
+(γ−1) ·ψ) = S−(γ−1) · (6∂Aψ).

Proof. Note this is equivalent to proving 6∂A+2 f −1
γ d fγ

( f −1
γ ψ) = f −1

γ 6∂Aψ. At a point x, computing in terms

of an orthonormal basis {ei} of Tx M determined by a section es on a small neighborhood U of x, we have

6∂A+2 f −1
γ d fγ

( f −1
γ ψ)− f −1

γ 6∂Aψ =

(

4
∑

i=1

ei · d ( f
−1
γ
bψ)(ei )

+
1

2

4
∑

i=1






(s∗QωA+ 2 f −1

γ d fγ )(ei )ei +
∑

j<k

ωU
k j (ei )e j ek






· ( f −1

γ ψ)







− f −1
γ







4
∑

i=1

ei · d bψ(ei )+
1

2

4
∑

i=1






s∗QωA(ei )ei +

∑

j<k

ωU
k j (ei )e j ek






·ψ







=
4
∑

i=1

ei · d ( f
−1
γ )(ei )ψ+

1

2

4
∑

i=1

h

2 f −1
γ d fγ (ei )ei

i

· ( f −1
γ ψ)

= 0

as desired.
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This shows that the second of the SW equations is invariant under changes of gauge. What about the
first equation? The curvature transforms as

Fdetγ ∗A= f −1
γ FA fγ = FA

so F +
detγ ∗A

= F +A . As for the part involving q

q( f −1
γ ψ)ϕ =

D

f −1
γ ψ|ϕ

E

ψ−
1

2

D

f −1
γ ψ| f −1

γ

E

ϕ = | fγ |
−2q(ψ)ϕ = q(ψ)ϕ

for all ψ,ϕ ∈ Γ(S+) and γ ∈ G. It follows that the first SW equation is also invariant under gauge transfor-
mations. We can tentatively define the Seiberg-Witten moduli space to be

Mσ := Sσ/Gσ

where Sσ ⊂ Cσ is the space of solutions to the SW equations. If only this action were smooth, there would
be hope for saying nice things about this moduli space. Alas, we are sunk immediately as G is not even a
Lie group, so it does not make sense to talk about a smooth G-action on a manifold. This is where Sobolev
spaces first come into the picture; which we do not get into here. There is also no hope of having a well
behaved moduli space if the solutions are reducible, i.e., ψ ≡ 0. This is where the perturbation comes
in, but since I’m not getting into that just suppose I’m either including a perturbation or I’m looking at
irreducible things.

Theorem 2.2. Mσ is a smooth, compact, oriented manifold of dimension

d (σ) =
1

4
(c1(Q)

2− 2(χ (M )+τ(M ))).

Here τ = b+2 − b−2 .

Actually, I lied to you. One needs to first perturb the equations a bit to get everything to work out.
Don’t worry about it too much now. Compactness comes from very beautiful curvature identities and
bounds involving the Dirac operator.

We need to get our hands on a particular line bundle over Mσ . Fix x0 ∈ M . Let us consider the short
exact sequence of groups

1 // G0
σ

// Gσ
// U(1) // 1

where evx0
denotes the evaluation map γ 7→ γ (x0) ∈ U(1) and where G0

σ := ker evx0
. This sequence

corresponds to the sequence of principal bundles

C∗σ
G0
σ

!!

G

��

C∗σ/G
0
σ

U (1)
}}

B∗σ

.
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Denote byUσ the complex line bundle associated, by the standard action of S1 on C, to the principal U (1)-
bundle C∗σ/G

0
σ displayed above. To define the Seiberg-Witten invariant we must split up into different

cases. Recall that we are restricting to manifolds with b+2 > 1.
Let’s define the invariants. I didn’t talk much about the orientation, but when dimMσ = 0, the SW

invariant is defined to be the sum of ±1 over the points of Mσ , where the sign depends somehow on the
orientation. When dimMσ > 0 we define

swσ (M ) =
∫

Mσ

(1− c1(Uσ ))
−1.

Here (1− t )−1 = 1+ t + t 2+ · · · , which does indeed terminate.

Twisting N= 2, d = 4 theory

It is a result of Witten that there is a TQFT whose correlation function are exactly the Donaldson invari-
ants. I would like to briefly give that story here, but I am very unclear of the details. One starts with
N= 2, d = 4 SYM theory on, say, Euclidean space. One can perform all these manipulations on a general
four-manifold, but I want to get the local formulae across.

The data for N= 2, d = 4 SYM. We use Euclidean signature. We take our symmetry group to be

V ⊕ (S+⊕W ⊕ S−⊕W ∗)[1]

where V is the defining four dimensional rep of SO(4) and W is two-dimensional. The group of R-
symmetries is GR = U (2) ∼= SU (2)×U (1). In the decomposition SU(2)+ × SU(2)− × SU(2)×U(1) the
physical fields are:

Gauge field : A∈ ()

Spinors (i= 1,2) : λi ∈
�1

2
,0,

1

2
,−1

�

λi ∈
�

0,
1

2
,
1

2
,+1

�

Scalars : ϕ ∈ (0,0,0,+2) , ϕ ∈ (0,0,0,−2).

And the SUSY fields are:

Qi ∈
�1

2
,0,

1

2
,+1

�

, Q i ∈
�

0,
1

2
,
1

2
,−1

�

, i = 1,2.

The twist we choose is

ρ : Spin(4)→ SU(2)×U(1) , (g , h) 7→ (g h−1, 1).
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