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1 Introduction

In this talk, I’ll try to synthesise some of the ideas from the earlier talks in order to describe an example of a
fully extended 2d TQFT. This TQFT will be built from geometric data following the “bottom-up” approach
of the cobordism hypothesis. That is, we’ll choose a category of geometric objects (quashicoherent sheaves
on a stack) to assign to the point, and explore some of the consequences of this assignment at the level of
higher-dimensional manifolds. We’ll be following the aproach of the paper “Integral Transforms and Drinfeld
Centers in Derived Algebraic Geometry” by Ben-Zvi, Francis and Nadler [1]. The main theorem that will help
us to understand this example is an identification of the category of quasicoherent sheaves on a fibre product in
terms of the tensor product of the categories of sheaves on the factors, or in terms of the category of functors
between these categories

QC(X1 ×Y X2) ∼= QC(X1)⊗QC(Y ) QC(X2) ∼= FunQC(Y )(QC(X1), QC(X2)).

In particular, we see that the Hochschild homology and cohomology of the category QC(X) are both identified
with QC(LX), the category of sheaves on the loop space.

2 2d Topological Quantum Field Theories

Let’s set up the kind of objects we’ll be constructing, and in doing so, recall some of the ideas from Pavel’s talk
yesterday. We’ll construct a two-dimensional, fully extended, oriented, categorified TQFT. All these adjectives
need some unpacking. A fully extended 2d TQFT is, as ever, a functor

Z : 2 Bord→ C

where 2 Bord is an (∞, 2)-category of bordisms, and C is a target (∞, 2)-category. These categories should be
symmetric monoidal, and the functor Z should be a symmetric monoidal functor.

We’ll work with the oriented bordism category (though in fact the functor we will construct also defines an
unoriented theory). This is worth remarking from the point of view of the cobordism hypothesis (see [3]): the
simplest form of the cobordism hypothesis constructs a framed TQFT from a fully dualisable object of C. Being
part of an unoriented TQFT imposes more restrictions on this object. The bordism category has a symmetric
monoidal structure coming from disjoint union.

For our target category, we’ll use a categorified Morita category of algebras: that is, a Morita category internal
to ∞-categories. To spell this out a bit more we have

• Objects: algebra objects in ∞-categories.

• 1-Morphisms: bimodule objects in ∞-categories.

• 2-Morphisms and higher: (the classifying space of) morphisms of bimodule objects.
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When I say ∞-category in this talk, I’ll always mean objects of the category StL of stable, presentable ∞-
categories with morphisms colimit-preserving functors. This category has a symmetric monoidal structure by
tensor product (of presentable ∞-categories), as Patrick explained on Monday.

Suppose we have such a TQFT, with Z(pt) = A. This imposes some fairly strong conditions on A, as we saw
yesterday. For a start (for A to correspond to at least a framed theory), A must be fully dualisable. It must have
a dual object, and the evaluation 1-morphism must have right and left adjoints. If we consider the circle with its
trivial 2-framing (coming from a 1-framing), we can split it into two semicircles (evaluation and coevaluation),
and observe that

Z(S1) = A⊗A⊗Aop A = HH•(A)

the Hochschild homology of A. As we saw in Lee’s talk, for A to correspond to an oriented theory we further
require A to be invariant under an SO(2) action. In particular, the Hochschild homology must be isomorphic
to the Hochschild cohomology of A, which is assigned to the circle with the framing coming from the boundary
of a disc (we replace the semicircle coev by the left adjoint evL, which is the composition of coev with a Serre
automorphism. In an oriented theory the Serre automorphism is trivialised as Pavel explained, which is just a
fancy way of saying that the induced orientated circles coming from these two circles are related by an oriented
diffeomorphism. The existence of the TQFT imposes this condition on A. There is a detailed discussion of
extended 2d TQFTs explaining these issues in [2] chapter 2.

Furthermore, this Hochschild (co)homology object must come with further structure, coming from the 2d
bordisms in the source category. A bordism ∐

m

S1 →
∐
n

S1

induces a homomorphism
Z(S1)⊗m → Z(S1)⊗n

in a way compatible with composition. In other words, the Hochschild (co)homology HH•(A) gains the structure
of an E2-algebra. That is, we can view a configuration of m circles in a disk as a 2-cobordism (S1)tm → S1, so
applying the functor Z to this 2-morphism we get a map of classifying spaces

Confm → Hom(HH•(A)⊗m, HH•(A))

where Confm denotes the relevant configuration space of circles.

3 2d TQFTs from Sheaves on a Stack

We’re going to, following Ben-Zvi–Francis–Nadler, construct an example of such a TQFT. We’ll try to work in
a “bottom-up” fashion, starting with the algebra object assigned to the point, and working up to the bimodules
and homomorphisms assigned to 1- and 2-manifolds.

Let X be a perfect stack, in the sense of Justin’s talk earlier today. For instance, X might be a quasi-compact
scheme with affine diagonal, or a quotient stack of the form Y/G, where G is an affine algebraic group acting
on a variety Y . Later on we’ll consider the specific example X = BG, for G an affine algebraic group. When
G is finite, this recovers the (Dijkgraaf-Witten) finite group gauge theory discussed yesterday. I’ll avoid using
any details from the language of derived stacks beyond the most formal calculations.

We have the (stable, presentable) ∞-category QC(X) of quasi-coherent sheaves on X. This is a monoidal
∞-category via the tensor product of OX -modules. From now on, lets work relative to a (derived if we like)
commutative ring k. So X is a stack over k, and QC(X) is a k-algebra object in ∞-categories.

Now, we’d like to construct a TQFT from this category in the manner described above. To do this, we need
QC(X) to be self-dual as an algebra. That is, we need maps (unit and trace)

1
u // QC(X)⊗QC(X)

t // 1

where 1 is the monoidal unit in k-linear ∞-categories, namely mod k, such that the composite

QC(X)
u⊗1

// QC(X)⊗QC(X)⊗QC(X)
1⊗t

// QC(X)
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is the identity. Furthermore, we need to know that QC(X) is O(2)-invariant, and in particular that

HH•(QC(X)) ∼= HH•(QC(X)).

These are both consequences of the following theorem, computing quasicoherent sheaves on a fibre product:

Theorem 3.1 ( [1] 4.7, 4.10). Let p1 : X1 → Y , p2 : X2 → Y be maps of perfect stacks. Then there are
canonical equivalences

QC(X1 ×Y X2) ∼= QC(X1)⊗QC(Y ) QC(X2)
∼= FunQC(Y )(QC(X1), QC(X2))

Note that we’re working in a derived setting throughout, so we always mean the derived fibre product. We’ll
sketch this theorem towards the end, but first we’ll derive some consequences, and finish constructing the TQFT.
Firstly:

Corollary 3.2. If X is a perfect stack, QC(X) is self-dual.

Proof. We have QC(X)⊗QC(X) ∼= QC(X×X), so we can produce the unit and trace by u = ∆∗π
∗, t = π∗∆

∗,
where ∆ is the diagonal embedding and π : X → Spec k. So the unit sends a k-vector space to a power of
the structure sheaf of the diagonal, and the trace computes the cohomology of the restriction of a sheaf to the
diagonal. To check that this really does exhibit QC(X) as self-dual is a base-change argument ( [1] 4.9).

We can see a relative version as well, i.e. that QC(X) is self-dual as a QC(Y )-module, given a map π : X → Y .
The unit and trace are given by exactly the same functors as before, where ∆ is now the diagonal X → X×Y X.
To see that this exhibits QC(X) as self-dual, we note that u⊗ 1 corresponds to the map (∆12 ⊗ 1)∗(π1)∗, and
1⊗ t corresponds to the map (π2)∗(1⊗∆23)∗. So we can apply base change to the commutative diagram

X
∆ //

∆

��

X ×Y X
π1 //

1⊗∆23

��

X

X X ×Y X
π2oo

∆12×1
// X ×Y X ×Y X

,

and note that πi ◦∆ = 1: X → X.

Furthermore, we can understand the Hochschild homology and cohomology from this point of view, i.e. the
object the TQFT assigns to the circle. By the theorem, we have

HH•(QC(X)) = FunQC(X)⊗QC(X)(QC(X), QC(X))

= QC(X ×X×X X)

= QC(X)⊗QC(X)⊗QC(X) QC(X) = HH•(QC(X)).

What exactly is this object? We have X ×X×X X where the maps are both the diagonal embedding. This

space is also known as the derived (free) loop space LX, or in other words the mapping space XS1

. Indeed,
from a topological point of view, we can compute this homotopy fibre product by replacing the space X by the
homotopy equivalent path space PX, and the diagonal map X → X × X, by the map PX → X× sending a
path to its end points. From this point of view, points in the fibre product PX ×X×X PX correspond to pairs
of paths with the same end points, i.e. closed loops in X. Thus we have shown that the Hochschild homology
and cohomology of QC(X) agree, and are given by

QC(LX).

We conclude our description of the TQFT by describing the maps coming from a bordism Σ:
∐
m S

1 →
∐
n S

1.
By the above discussion, we have seen Z(

∐
m S

1) = QC(LXm). This suggests natural maps associated to
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bordisms coming from pushing and pulling sheaves. That is, the inclusion of the incoming and outgoing
boundary of Σ induces a diagram

XΣ

f1

{{ww
ww

ww
ww

w
f2

##GGGGGGGG

(LX)m (LX)n

and hence a functor (f2)∗(f1)∗ : QC(LXm) → QC(LXn). These functors exhibit the E2-algebra structure on
QC(LX).

Of course, this doesn’t give a full description of a 2d fully extended TQFT. There are still a lot more pieces
of data to describe, and compatibilities to check. However, we have at least described all of the data in a 2d
non-extended TQFT. To check that this describes a functor, it is just necessary to check compatibility with
composition. That is, we consider diagrams given by sewing bordisms, of the form

XΣ

zzuuuuuuuuu

$$JJJJJJJJJ

XΣ1

zzuuuuuuuuu

$$IIIIIIIII XΣ2

zzuuuuuuuuu

$$IIIIIIIII

(LX)m1 (LX)m2 (LX)m3

and use base change to check the appropriate composition identity holds for the maps of sheaves.

Example 3.3. Let’s consider what form this theory takes in the example X = BG, for G an affine algebraic
group over a field k of characteristic zero (for simplicity). BG is an example of a perfect stack, so we can apply
the above construction to produce a TQFT that assigns QC(BG) to the point. We might interpret this as a
derived category of representations of G. Indeed, suppose that G is a finite group, and consider the analogous
underived category. Then a quasicoherent sheaf on BG is just the same as a k-vector space with a (right, say)
G-action, i.e. a right kG-module.

Our TQFT assigns to the circle the category QC(LBG). The stack LBG is equivalent to the adjoint quotient of
G, i.e. the quotient G/G where G acts on itself by conjugation. We can give a topological argument for this fact
as follows: a point in LBG is the same as a map S1 → BG, which corresponds to a principal G-bundle on S1.
We can produce all principal G-bundles on S1 by taking the trivial G-bundle on the interval [0, 1], and gluing
the fibres at the end points 0 and 1 together. If we trivialise the fibre at 0, then this gluing map corresponds to
multiplication by an element g ∈ G, and changing this trivialisation corresponds to conjugating this element g,
thus we can identify such a G-bundle with a point in the adjoint quotient G/G.

What about the maps coming from 2-manifolds? Let Σ be a closed 2-manifold. Then we are considering the
correspondence

BGΣ

||zz
zz

zz
zz

""DD
DD

DD
DD

∅ ∅

,

that is, the functor Modk → Modk that sends the generator k to H∗(BGΣ;OBGΣ). The mapping space BGΣ is
also known as the moduli stack of G-local systems LocG(Σ) (where G is given the discrete topology, so bundles
and local systems coincide), and our TQFT computes the cohomology of this moduli stack.

4 Sheaves on Fibre Products

Now we’ll explain where Theorem 3.1 comes from, and why we need the hypothesis that the underlying derived
stacks are perfect.

First, let’s compare QC(X1 ×X2) and QC(X1) ⊗QC(X2). There is a natural functor between them, namely
the external product

� : QC(X1)⊗QC(X2)→ QC(X1 ×X2).
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In the case when Xi are perfect, it suffices to investigate this functor on compact objects. Since compact and
perfect objects coincide for a perfect stack, these objects generate the whole category.

Proposition 4.1. The above functor defines an equivalence on the level of compact objects:

� : QC(X1)c ⊗QC(X2)c
∼→ QC(X1 ×X2)c.

Proof, following [1]. The crucial fact is that this functor is essentially surjective, i.e. that QC(X1 × X2) is
generated by external products of compact objects. We argue this as follows. Suppose Hom(M1 �M2, N) ∼= 0
for all Mi ∈ QC(Xi)

c. We can deduce that N ∼= 0 following [1] Proposition 3.24. Unpacking this, we have

Hom(M1 �M2, N) = Hom(π∗1M1,Hom(π∗2M2, N))

= Hom(M1, π1∗Hom(π∗2M2, N)).

The M1 generate, so the sheaf on X1, π1∗Hom(π∗2M2, N) ∼= 0. We analyse this sheaf now on an affine open
U → X1.

Γ(U, π1∗Hom(π∗2M2, N) ∼= 0) = HomU×X2
(π∗2M2, N)

= HomX2
(M2, (π2|U×X2∗N).

The M2 generate, so the sheaf on X2, π2|U×X2∗N
∼= 0. Thus for any affine open V → X2, Γ(U × V ;N) ∼= 0.

Such affine opens cover X1 ×X2, so N ∼= 0 as required, and the M1 �M2 generate.

Given this, the fact that the functor is fully faithful is a calculation using the projection formula. Indeed, we
compute

Hom(M1 �M2, N1 �N2) = Γ(X; p∗1M
∨
1 ⊗ p∗2M∨2 ⊗ p∗1N1 ⊗ p∗2N2)

= Γ (X; p∗1HomX1
(M1, N1)⊗ p∗2HomX2

(M2, N2))

= Γ (X2; (p2)∗ (p∗1HomX1
(M1, N1)⊗ p∗2HomX2

(M2, N2)))

where this calculation relies upon the fact that the Mi are fully dualisable. Now apply the projection formula
to the morphism p2.

Hom(M1 �M2, N1 �N2) = Γ (X2; HomX1(M1, N1)⊗HomX2(M2, N2))

= HomX1(M1, N2)⊗HomX2(M2, N2)

as required.

Now, let’s go on to consider the case of a general fibre product X1×Y X2. Again, I’ll only sketch the arguments
given in [1]. We’ll analyse the category QC(X1)⊗QC(Y )QC(X2) by taking a “resolution”, i.e. viewing it as the
colimit of a simplicial diagram in∞-categories. There is a standard way of doing this, by taking the “two-sided
bar construction”, which we already saw a version of in Shilin’s talk yesterday, which allowed us to compute a
derived tensor product (as Hochschild homology groups for a bimodule are Tor groups). So we take the colimit
(geometric resolution) of the simplicial diagram

QC(X1)⊗QC(X2) QC(X1)⊗QC(Y )⊗QC(X2)oo
oo QC(X1)⊗QC(Y )⊗QC(Y )⊗QC(X2) · · ·oo

oo
oo

with arrows given by contracting tensors, and produce a category equivalent to QC(X1) ⊗QC(Y ) QC(X2).
Alternatively, we could’ve taken the limit (totalization) of the cosimplicial diagram

QC(X1)⊗QC(X2) //
// QC(X1)⊗QC(Y )⊗QC(X2) //

//
//
QC(X1)⊗QC(Y )⊗QC(Y )⊗QC(X2) · · · .

with arrows given by the right adjoints of the maps in the previous diagram. This limit is just the previous
colimit evaluated as a limit in the opposite category StR to StL.

In both cases, we can apply the previous theorem 4.1 for the absolute case to interpret these diagrams in a
geometric way. The diagrams are both induced from the cosimplicial diagram of stacks

X1 ×X2
//
// X1 × Y ×X2

//
//
// X1 × Y × Y ×X2 · · ·
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with arrows given by pullback along the maps in the first case, and pushforward in the second case.

Ok, so this gives us a lot of different ways of viewing the category QC(X1)⊗QC(Y ) QC(X2). How does it help
us? Well, we now have a lot of maps to work with, allowing us to compare this category to other categories of
a more geometric origin. First of all, we have an adjunction

QC(X1)⊗QC(Y ) QC(X2)
τ∗ //

QC(X1 ×X2)
τ∗

oo

by looking at purely the 0-(co)simplices in our resolutions: inclusion of the 0-simplices, or a map from the
totalization to the 0-cosimplices. Secondly, we have another easy adjunction, coming from the universal map
π : X1 ×Y X2 → X1 ×X2, namely

QC(X1 ×Y X2)
π∗ //

QC(X1 ×X2)
π∗

oo .

In other words, we’ve described a pair of monads on the category QC(X1 ×X2).

Now, it seems natural to try to apply the monadicity theorem. Indeed, one can check that both the maps τ∗ and
π∗ are conservative and preserve all colimits, so our two categories QC(X1)⊗QC(Y )QC(X2) and QC(X1×Y X2)
are categories of modules for monads on QC(X1 ×X2).

The proof concludes with the most important step: these monads are actually equivalent. We construct maps
between them by factoring the maps π∗ and π∗ through the category QC(X1)⊗QC(Y )QC(X2). There’s one more
natural adjunction that we haven’t yet considered. The map π doesn’t just induce maps between QC(X1×Y X2)
and QC(X1 × X2). It actually induces maps to and from the whole (co)simplicial category QC(X1) ⊗QC(Y )

QC(X2). That is, there is an adjunction

QC(X1)⊗QC(Y ) QC(X2)
π̃∗

//
QC(X1 ×Y X2)

π̃∗

oo .

We can view π∗ for instance as taking a sheaf on QC(X1 × X2), including the 0-simplices into the whole
simplicial ∞-category representing the tensor product, and then pulling back to a sheaf X1 ×Y X2 along the
augmentation π. In other words, π∗ = π̃∗τ∗, and similarly π∗ = τ∗π̃∗. Thus we have maps of monads

τ∗τ
∗ //

π∗π
∗ = τ∗π̃∗π̃

∗τ∗oo

given by the unit and counit of the π̃ adjunction. One can check that in fact these maps define an equivalence,
and thus the algebraic and geometric categories coincide, which proves the first equivalence of Theorem 3.1.

The self-duality of QC(X) as a QC(Y )-module produces the second equivalence immediately, since

FunQC(Y )(QC(X1), QC(X2)) ∼= QC(X1)∨ ⊗QC(Y ) QC(X2) ∼= QC(X1)⊗QC(Y ) QC(X2).
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