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The idea of twisting supersymmetric field theories is a useful idea for two reasons:

1. It allows us to take a very complicated and unwieldy field theory (like super Yang-Mills) and produce a much
simpler theory, both simpler in the sense of having a more understandable Lagrangian description, but also
often simpler in terms of invariance under the action of certain symmetries. For instance one can often produce
topological or conformal field theories from supersymmetric theories that are only Euclidean.

2. It allows us to produce theories that can manifestly be defined on general Riemannian manifolds from su-
persymmetric theories that only make sense on very special manifolds: Rn, or manifolds admitting covariant
constant spinors.

In this talk I’ll explain what it means to twist a supersymmetric theory, and explain how these two simplifications
can arise. In addition to the original papers of Witten [4], [5] a good reference on cohomological field theories and
topological theories is a minicourse by Marcel Vonk [3]. A more modern perspective on twisting is described by
Costello [1], [2].

1 Supersymmetric Field Theories

Let’s recall the notion of supersymmetry from the point of view of classical Lagrangian field theories on a flat
spacetime. We’ll use the following definition of a classical field theory

Definition 1.1. A classical Lagrangian field theory on Rn is a pair (Φ,L), where Φ is a coherent sheaf of super
vector spaces on Rn, and L is a map of sheaves into the sheaf of densities

L : Φ→ Dens(Rn).

Requiring that this is a map of sheaves ensures locality, i.e. that the Lagrangian density cannot depend on interaction
between values of the fields which are separated in spacetime.

Remark 1.2. Usually we equip Rn with a pseudo-Riemannian metric, and allow the Lagrangian density L to
depend on this metric. To make this dependence explicit we will often write Rp,q instead of Rn, to indicate Rn
equipped with the standard diagonal metric of signature (p, q), and consider field theories with this metric fixed.

The action of the additive group Rn on itself by translation induces an action of Rn on the super vector space
Φ(Rn) of global fields by pullback (assuming throughout that the sheaf of fields is equivariant for the action of the
isometry group of spacetime). The derivative of this action at the identity describes an action of the abelian Lie
algebra Rn by infinitesimal symmetries: that is, translation manifestly preserves the action.
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Definition 1.3. An infinitesimal symmetry of the Lagrangian field theory (Φ,L) is a vector field ξ ∈ Vect(Φ(Rn)×
Rn), that is local, and preserves the action: that is,

Lieξ L = dαξ

for some (twisted) n − 1-form αξ on Φ. This means the infinitesimal variation of the Lagrangian density along ξ
integrates to zero by Stokes’ theorem, so the integral of the Lagrangian density (the action) is preserved.

The idea of supersymmetry is that under certain circumstances it is possible to extend the translation action to also
include fermionic symmetries of the super vector space of fields. If this happens, the Lagrangian theory is called
supersymmetric. More precisely:

Definition 1.4. Let S be a non-trivial finite-dimensional real spinorial representation of Spin(p, q), and let Γ: S⊗
S → Rp+q be a spin-equivariant symmetric bilinear pairing (i.e. a map of Spin(p, q)-representations). The super
translation algebra associated to this data is the super Lie algebra with underlying vector space

T = Rp+q ⊕ΠS,

whose only non-trivial bracket comes from the pairing Γ.

A field theory (Φ,L) on Rp,q is said to be supersymmetric if the translation action by Rp+q extends to the action
of a super translation algebra T by infinitesimal symmetries.

If p− q 6= 0 mod 8, then there is a unique irreducible spinorial representation S0. If S ∼= SN0 the theory is said to
have N supersymmetries. If p− q ≡ 0 mod 8 then there are two irreducible spinorial representations S1 and S2. If
S ∼= SN1

1 ⊕ SN2
2 then the theory is said to have (N1, N2) supersymmetries.

1.1 R-Symmetries

So far, we’ve only discussed the action of translation on a field theory, naturally induced from the action of Rn on
itself. However, Rp,q has more isometries than just translation, we have the infinitesimal action of a full Poincaré
algebra of the form so(p, q) o Rp+q preserving the metric and orientation of spacetime. This action describes
infinitesimal symmetries of any Lagrangian field theory on Rp,q in an analogous way to the action of translation.

Introducing a fermionic piece S acted on by so(p, q) as before (with this action defining the additional brackets)
leads to a super Poincaré algebra, which exponentiates to a super Poincaré group. The spin group acts on the
odd symmetries. We might ask, are these the only ways to modify the supersymmetries? In general no, and the
additional automorphisms are called R-symmetries.

Definition 1.5. The R-symmetry group associated to the super translation group T is the group

GR = {α ∈ Out(T ) : α(v) = v for all v ∈ Rp+q},

the group of outer automorphisms fixing the bosonic part.

When we include the left multiplication action also, there is an action of the product group Spin(p, q)×GR on the odd
part of the super translation algebra. Understanding the action of this group will be important for understanding
whether a theory is topological or not, and in order to force theories to be topological we’ll modify this action using
the R-symmetries.

2 Topological Field Theories

In many important examples of field theories the Lagrangian density L manifestly has no dependence on the
metric on spacetime (for instance, Chern-Simons theory has this property). Such theories are particularly easy to
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work with, and usually admit obvious extensions to theories defined on more general manifolds, where they may
have applications computing topological invariants and so on. However, even if a theory isn’t explicitly metric-
independent it is sometimes possible to modify the observables in a theory so as to produce a topological result.
In this section I’ll explain a general procedure due to Witten [4] [5] for identifying such theories. This will be the
foundation for the idea of twisting.

First, recall that Noether’s theorem tells us that for each symmetry there is associated a conserved current : a current
j whose divergence is zero. In particular, we can apply this to the translation symmetries of a field theory on Rn, to
produce conserved currents for each element of Rn. One usually chooses a basis xα for Rn and denotes the associated
conserved current Tαβ dx

β . The corresponding 2-tensor is called the energy-momentum tensor associated to the
field theory. If the theory is topological then the translation symmetries act trivially on the fields, and therefore,
the energy-momentum tensor vanishes. We’ll construct a theory where this happens by starting with the next best
thing. Suppose we have a fermionic symmetry Q such that:

1. Q2 = 0

2. The energy-momentum tensor Tαβ is Q-exact.

3. The vacuum state is Q-invariant (more on this later).

Remarks 2.1. • Since Q is fermionic, Q2 = 1
2 [Q,Q] makes sense.

• We can ensure that condition 2 holds by requiring the Lagrangian itself to be Q-exact: asking for another
map Λ: Φ→ Dens(X) of sheaves such that L(φ) = Λ(Qφ). If this is the case then perturbations of the action
under infinitesimal translation symmetries are themselves given by Q-exact observables, which vanish in the
cohomology.

Now, the idea is to pass to the cohomology with respect to Q, i.e. to consider Q-closed observables modulo Q-exact
observables, so that the energy-momentum tensor – being Q-exact – vanishes. What does this mean?

Intuitively, observables are just functions on the space of fields Φ(Rn). The symmetry Q acts on observables by
pulling back along the action on functions, so it’s clear what it means to be Q-closed or Q-exact. Now, for the
Q-cohomology of observables to be a sensible thing to consider we need computable quantities in the quantum field
theory – path integrals –to be independent on the choice of representative in a cohomology class. That is, we need
the expectation value of Q-exact observables to vanish.

Here’s a sketch proof of this fact using the Hamiltonian formalism (following Vonk [3]). The exact observable QO
corresponds to an operator on the Hilbert space of the theory [S,O] (abusing notation to identify the functional
O with the corresponding operator). Here S is the canonical quantisation of the conserved current of Q. The
expectation value of this observable is computed to be

〈0|SO|0〉 ± 〈0|OS|0〉

in the usual physics notation. Now we use the invariance of the vacuum: condition 3 above. Invariance of the
vacuum under Q is equivalent to the condition S|0〉 = 0, so this expectation value must vanish. The result is that
these observables behave as observables in a quantum field theory.

While intuitively it suffices to work with any heuristic definition of observables, one can make this more mathe-
matically explicit in the language of factorisation algebras. In this language, the observables in the quantum field
theory are modelled by an elliptic moduli problem, which in particular is a super cochain complex (perhaps with,
for instance, a dgla or L∞-structure). Intuitively, we should just add Q to the differential in the moduli problem.
Of course, for this to make sense, we really need Q to be degree one for the grading in the moduli problem (ghost
number): a priori it just acts on fields, i.e. is degree zero in the ghost number grading, but fermionic. So we must
fix this somehow if we want to get anywhere with this description. For concreteness, let’s describe this for twisted
supersymmetric theories.
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3 Topological Twisting

Given our discussion on cohomological field theories above, we are led to wonder whether we could cook up a
fermionic symmetry Q that could define a topological field theory from the supersymmetries in a supersymmetric
theory. We’ll see that while the energy momentum tensor is not exact for any supersymmetry, we can often make
it exact by modifying the action of the isometry group of spacetime on the fields.

The procedure begins as follows:

1. Find an odd element Q of the super translation algebra such that [Q,Q] = 0.

2. Choose a homomorphism ρ : Spin(p, q) → GR – hence an embedding of Spin(p, q) into Spin(p, q) × GR by
g 7→ (g, ρ(g)) – such that Q is invariant for the new Spin(p, q)-action.

Since Q is Spin(p, q)-invariant (the fermionic symmetries of the system form a Spin(p, q) representation: and we’re
asking for Q to lie in a trivial irreducible summand), the energy-momentum tensor is Q-exact. Indeed, if this is
the case the image of the map [Q,−] from odd symmetries to even symmetries is itself an irreducible Spin(p, q)-
representation. We just have to check that some [Q,Q′] is a translation because the translations Rp+q describe
the defining representation of Spin(p, q), which is irreducible. If every translation is of the form [Q,Q′] then the
conserved currents for these translations are also Q-exact.

So applying the recipe in the previous section produces a topological field theory. As mentioned in the previous
section, if we just want to add Q to the BV-BRST differential on the complex of observables we’ll need to fix its
degree. We can do this explicitly in this supersymmetric setting. To do so, choose a copy of C× ↪→ GR. This C×
acts on Q, and we’d like it to act with weight 1 (given the data we’ve already given ourselves we can always find
such an embedding). We’ll use this C× to change the degrees in the BV-BRST complex so that Q is bosonic of
degree 1 as required. If (Obs, d) is the complex of observables in our Lagrangian field theory, we’ll consider the new
complex

ObsQ = (Obs((t)), d+ tQ)
U(1)

,

where t is a degree 1 complex fermionic parameter, so tQ is degree 1 bosonic as required, and where C× acts on t
with weight −1.

Remark 3.1. We could perform this procedure even if Q was not Spin(p, q)-invariant. In that case we generally
wouldn’t get a topological theory, but we might still get a twisted theory that was easier to manage in some ways
than the original theory. For instance, for N = 1 super Yang-Mills there is no topological twist, but there is a
conformal twist.
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