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1 Motivation from Gauge Theory

In this seminar, we’ve spent a fair amount of time discussing three-dimensional quantum field theories. A topological
3d quantum field theory assigns invariants to smooth compact 3-manifolds that can be computed by cutting and
pasting along 2-manifolds. Better still, if the theory is extended to codimension 2 one can cut and paste along
2-manifolds with boundary, as Sean explained. The particular example we’ve focused on is Chern-Simons Theory,
which was discussed by Nilay and Pyongwon. Chern-Simons theory is an example of a gauge theory : it depends on
the choice of a compact gauge group G, and the action functional is invariant under a natural action of the group

G = C∞(M,G)

of gauge transformations on the fields. In addition, it has the special property of being manifestly topological, i.e.
the action functional only depends on the underlying smooth oriented manifold, and not on any additional data
(“background fields”).

I’m more interested in studying four-dimensional gauge theories. These are important both for physics – the
standard model is an example of a 4d gauge theory – and for a wealth of mathematical applications. Of course, just
like we used Chern-Simons theory to study the topology of 3-manifolds, one can use 4d gauge theories to study the
topology of 4-manifolds: Donaldson and Seiberg-Witten invariants are examples of the successful application of this
principle. The applications I’m most interested in are a little different. Instead of assigning numerical invariants to
closed 4-manifolds, one can think of a 4d gauge theory as assigning categorical invariants to closed 2-manifolds, or
more precisely to pairs (Σ, G) where Σ is a closed 2-manifold and G is a choice of gauge group. These invariants
often coincide with invariants from the field of geometric representation theory, which is to say that they can be
studied using the algebraic geometry of stacks built from Σ and G.

Examples 1.1. 1. The principal example of a 4d gauge theory, from which many other examples can be built,
is Yang-Mills theory. As a classical theory this theory is defined as follows.

Definition 1.2. Yang-Mills theory with gauge group G on a smooth oriented Riemannian 4-manifold X is the
classical field theory whose fields are given by connections A on principal G-bundles, and whose Lagrangian
density is

L(A) = Tr(FA ∧ ∗FA)

where Tr is the map Ω4(X; gP ⊗ gP )→ Ω4(X) associated to a choice of invariant pairing on g. The equations
of motion in Yang-Mills theory say that d∗FA = 0.

2. A connection A is called self-dual if FA = ∗FA, and anti-self-dual if FA = − ∗ FA. One observes, since FA is
closed, if A is self-dual or anti-self-dual then it automatically satisfies the equations of motion of Yang-Mills
theory. One can modify the classical field theory above to self-dual Yang-Mills theory, which has only the
self-dual solutions. One considers fields of form (A,B), where B is a self-dual gP -valued 2-form, and the
Lagrangian density

Lself-dual(A,B) = Tr(FA ∧ ∗FA + F+
A ∧ ∗B)
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where now F+
A is the self-dual part of FA. The equations of motion of this theory say that FA = ∗FA and

F+
A = B.

3. Yang-Mills theory on R4 admits supersymmetric extensions. These are theories with a Z/2-graded space
of fields which is acted on by a supersymmetry algebra – a Z/2 graded algebra extending the Poincaré
algebra – preserving the space of solutions to the equations of motion. There are different versions of this
theory depending on which supersymmetric extension of the Poincaré algebra one chooses. The odd parts of
supersymmetry algebras are always spinorial representations of so(4), so one speaks of N = 1, 2 and 4 super
Yang-Mills theory, where one takes 1,2 or 4 copies of the spin representation (we skip 3, because it turns out
that there’s no extension of Yang-Mills theory which is acted on by the N = 3 supersymmetry algebra but
not the N = 4 supersymmetry algebra.) Super Yang-Mills theories also can be restricted to their self-dual
parts.

4. There’s a procedure called twisting, which takes a supersymmetric classical field theory and returns a theory
which is invariant under some of the symmetries in the Poincaré group. I won’t describe this procedure in this
talk, but this procudure allows you to construct topological field theories from supersymmetric field theories.
From the point of view of mathematics this provides a strong motivation for considering supersymmetry.

Remark 1.3. After twisting, the difference between Yang-Mills theory and its self-dual part frequently
vanishes.

My aim today is to describe a relationship between these four-dimensional gauge theories and a version of Chern-
Simons theory which makes sense in 3 complex dimensions, i.e. 6 real dimensions.

Definition 1.4. Holomorphic Chern-Simons theory on a complex manifold of complex dimension 3 equipped with
a Calabi-Yau structure Ω 1 is the theory whose fields are (0, 1)-connections on G-bundles (with an action of the
usual gauge transformations), and whose Lagrangian density is

L(A) = Ω ∧ Tr(A ∧ ∂A+
2
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A ∧ [A,A]).

The solutions to the equations of motion are holomorphic principal G-bundles.

This theory also admits a supersymmetric extension: given a complex supermanifold whose even part has complex
dimension 3, with a super Calabi-Yau structure, the above theory still makes sense.

Remark 1.5. A different way of defining a classical field theory, which is maybe more satisfying to a mathematician,
is to define it in terms of its phase space. One can define a classical field theory to be a sheaf of derived stacks whose
global sections admit a (−1)-shifted symplectic structure, in the sense of [PTVV13]. One can recover holomorphic
Chern-Simons theory on X from this point of view by assigning to an open set U ⊆ X the moduli space BunG(U).
The Calabi-Yau structure on X makes BunG(X) into a (−1)-shifted symplectic stack by the AKSZ construction.

Remark 1.6. For further information about holomorphic Chern-Simons theory, twistor geometry and its appli-
cations to gauge theory and gravity, I recommend the comprehensive accounts of Ward and Wells [WW91], and
Mason, Skinner and Woodhouse [MW96].

2 The Penrose-Ward Transform

The relationship between holomorphic Chern-Simons theory and Yang-Mills theory proceeds via the idea of com-
pactification of a classical field theory. This idea is very simple, it’s just a version of pushforward.

Definition 2.1. Given a smooth map p : X → Y (in examples, this will usually be a fiber bundle), and a classical
field theory M on X, the compactification along p is the classical field theory on Y whose fields and Lagrangian
density on U ⊆ Y are those of M on p−1(U) ⊆ X.

1that is, a nowhere vanishing (3, 0)-form.
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The idea, introduced by Ward [War77] following a program of Roger Penrose, is that self-dual Yang-Mills theory on
a Riemannian 4-manifold X arises by compactifying holomorphic Chern-Simons theory on a suitable complex 3-fold
Tw(X) → X, called the twistor space of X. This idea is sometimes called the Penrose-Ward correspondence. In
order to realise this proposal, we’ll need to impose a curvature condition on X, which will need a little background
from differential geometry.

Recall that the curvature of a connection on a vector bundle E over a manifold X is an End(E)-valued 2-form. If X
is a Riemannian manifold then there is a canonical connection on the tangent bundle (the Levi-Civita connection),
and therefore a canonical End(TX)-valued 2-form called the Riemann tensor of X. Using the metric we can identify
the Riemann tensor with a section of T ∗⊗4X . The bundle T ∗⊗4X receives an action of the principal SO(4)-bundle of
oriented frames, and under this action it decomposes into a number of irreducible summands. In particular the
Riemann tensor decomposes into several summands, living in these irreducible summands.

Recall that SO(4) ∼= (SU(2)×SU(2))/(Z/2), where Z/2 is embedded diagonally. Irreducible complex representations
of SU(2)× SU(2) are given by pairs (i, j) where i and j are half-integers ≥ 0, corresponding the the representation
V ⊗2i1 ⊗ V ⊗2j2 , where V1, V2 are the fundamental representations of the two copies of SU(2). The diagonal Z/2 acts
trivially whenever i+ j is an integer; in these cases the complex representation also admits a real form.

Proposition 2.2. The Weyl tensor W (X) is the summand of the Riemann tensor corresponding to the 10-
dimensional representation (2, 0) + (0, 2). It decomposes into irreducible summands W+(X) and W−(X).

Remark 2.3. The other irreducible summands of the Riemann tensor live in the representations (0, 0) (1-dimensional)
and (1, 1) (9-dimensional), and are built from the Ricci scalar and the Ricci tensor respectively, along with the met-
ric.

Atiyah, Hitchin and Singer provided a mathematical realization of Ward’s proposal, provided X satisfies a suitable
flatness condition.

Definition 2.4. A Riemannian 4-manifold X is called self-dual if the negative Weyl tensor W−(X) vanishes.

Theorem 2.5 (Atiyah-Hitchin-Singer [AHS78]). If X is a self-dual oriented Riemannian 4-manifold, there exists a
complex manifold Tw(X) and a smooth map p : Tw(X)→ X so that holomorphic Chern-Simons theory on Tw(X)
compactifies to self-dual Yang-Mills theory on X.

Remarks 2.6. 1. For this to be literally true, we need to assume G is simply connected, otherwise we need to
consider only the part of holomorphic Chern-Simons theory where the bundles are trivialisable on the fibers
of p.

2. When I say “holomorphic Chern-Simons compactifies to self-dual Yang-Mills” here, I mean that there’s a
bijection on the level of coarse moduli spaces. That is, there’s a canonical bijection between flat G-bundles
on Tw(X) and self-dual G-bundles on X. One can actually prove something stronger: not only is there a
bijection of classical solutions, but given two solutions there’s an equivalence of “perturbative field theories”:
there’s an L∞ algebra classifying deformations of a holomorphic bundle, and of a self-dual bundle, modulo
gauge, and these algebras are canonically quasi-isomorphic (see Boels, Mason and Skinner [BMS07], who also
prove the supersymmetric version).

3. One would like to prove something stronger still: that these could be glued together to an actual equivalence
of derived moduli stacks. The obstacle to doing this is that there isn’t currently any way of describing the
moduli space of self-dual bundles as a derived stack. Indeed, there’s no reason to expect this moduli space
to admit an algebraic, or even analytic structure, so doing so would likely need some currently undeveloped
formalism of derived smooth stacks.

4. One can define algebraic Chern-Simons instead of holomorphic Chern-Simons, as the theory whose phase
space is the moduli space of algebraic G-bundles on an algebraic 3-fold. These, however, are only relevant for
the Penrose-Ward correspondence in a few examples: for compact X only S4 or CP3. Hitchin proved [Hit81]
that if X is compact, Tw(X) is only Kähler in these two examples. Since it’s also proper, it can only admit
an algebraic structure in these two cases. If X is not required to be compact then a few other possibilities
arise: open subvarieties of these two options, plus certain open subvarieties in Fano 3-folds.
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2.1 Constructing Twistor Spaces

I’ll explain how to construct Tw(X) along with its complex structure, then say a few words about the proof of
theorem 2.5. As a smooth 6-manifold, p : Tw(X)→ X is straightforward to define.

Definition 2.7. The twistor space Tw(X) is the total space of the CP1 bundle P(S+) over X. Here S+ is the
positive Weyl spinor bundle: the rank 2 complex vector bundle associated to the frame bundle by the representation
(1/2, 0) of so(4) ∼= su(2)⊕su(2). This bundle might fail to be globally defined if X is not spin, but its projectivisation
is always defined.

We can define an almost-complex structure on Tw(X) using the Levi-Civita connection on TX . The pullback of this
connection to twistor space allows us to canonically split the tangent bundle to Tw(X) as TTw(X) = p∗TX ⊕ Tvert;
the almost-complex structure will preserve this decomposition.

� The fibers of the second summand are isomorphic to the tangent space in the fiber direction, so the second
summand inherits a complex structure from the complex structure on the fibers (which, we recall, are copies
of CP1).

� The fibers of the first summand are isomorphic to tangent spaces at point x ∈ X. If we choose a spinor
s ∈ (S+)x, the Clifford multiplication map ρ : (S+)x ⊗ TxX → (S−)x induces an isomorphism of real vector
spaces TxX → (S−)x, and therefore a complex structure on TxX. This isomorphism is invariant under
rescaling, so given a point in the fiber p−1(x) ∼= P(S+)x we obtain a complex structure on the first summand
of the tangent space.

It remains to check that this almost-complex structure is integrable if (and, as it turns out, only if) the Weyl tensor
W−(X) vanishes. I’ll outline Atiyah-Hitchin-Singer’s approach to proving this ( [AHS78, Proposition 3.1 and 4.1]).
Firstly, integrability is a local condition, so it suffices to check that the almost-complex structure, defined as above,
on the 8-dimensional real vector space R4×S+ is integrable (locally we can define S+, not just its projectivisation).

We first check that the almost-complex structure, viewed as a sub-bundle of TC(R4 × S+), can be identified as the
kernel of a first-order differential operator. More precisely, given a differential operator D on a vector space E, one
defines a sub-bundle V (D) of the complexified tangent bundle TCE whose fiber over x ∈ E is generated by tangent
vectors v such that ∂vf = 0 for all f ∈ ker(D). Our almost complex-structure arises in this way for the operator

C∞(R4;S+)
A→ Ω1(R4;S+)

ρ→ ker(ρ)

where the second map is orthogonal projection onto the kernel of the Clifford multiplication map ρ : Ω1(R4;S+)→
C∞(R4;S−), using the metric. The idea is that this operator, the twistor operator D is the ∂ operator for the
complex structure, i.e. solutions to the twistor equation Df = 0 are local holomorphic functions on twistor space.

Atiyah, Hitchin and Singer now prove a general proposition about the integrability of such sub-bundles.

Proposition 2.8. Let D : C∞(E) → C∞(F ) be a first-order differential operator of the form σA, where A is a
connection on TE , and σ : Ω1(E) → C∞(F ) (the symbol of D). The sub-bundle V (D) of TCE is integrable if and
only if the following two conditions hold.

1. The exterior derivative dA sends ker(σ) to ker(σ) ∧ Ω1(E).

2. The curvature FA of the connection lies in ker(σ) ∧ Ω1(E).

In the case of the twistor space, condition 1 is automatically satisfied, so it suffices to check that the curvature lies
in ker(σ)∧Ω1(E). Here the symbol σ is the projection ρ, so FA is in the kernel of σ if and only if it’s orthogonal to
the kernel of ρ. Atiyah, Hitchin and Singer check that, with respect to the decomposition of the space of 2-forms as
an SO(4)-representation, the component corresponding to ker(ρ) is exactly the (2, 0)-component, so the curvature
condition is exactly the vanishing of the negative Weyl tensor, as required.
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Examples 2.9. 1. The twistor space of S4 is CP3. The twistor map has a nice description, by identifying S4

with HP1: there’s a map CP3 → HP1 given by identifying C4 with H2, and sending a complex line L in C4 to
L⊗C H. This map is a fibration, and its fiber over a quaternionic line is the space of complex lines inside it,
which is isomorphic to CP1.

2. The twistor space of R4 is obtained by removing a complex line “at infinity” from CP3. We note that even
though R4 can be given a complex structure, the twistor map CP3 \ CP1 is not holomorphic for any choice.

3. The twistor space of CP2 is the variety Fl(C3) of complete flags in C3. The twistor map here is the obvious
forgetful map from flags to lines, whose fiber is given by the space of planes over a given line, isomorphic to
CP2.

4. In fact twistor spaces can be characterised. It turns out that a complex 3-fold arises as the twistor space for
some self-dual Riemannian 4-manifold if and only if it admits a holomorphic foliation by complex projective
lines, and has an antiholomorphic involution which restricts to the antipodal map on each line.

2.2 The Penrose-Ward Correspondence

Having defined the twistor space, let’s talk briefly about why the Penrose-Ward correspondence is true. First recall
a fact that Pyongwon proved in his lectures.

Proposition 2.10. If X is a complex manifold, and P → X is a smooth principal G-bundle with connection A
such that the curvature of A is a gP -valued (1, 1)-form, then P has a unique holomorphic structure with ∂-operator
given by A.

We use this result to show that if (P,A) is a G-bundle with self-dual connection on a self-dual 4-manifold X, then
(p∗P, p∗A) is a holomorphic G-bundle on Tw(X). It suffices to check that if A is self-dual p∗A has curvature of
type (1, 1). Indeed, when we pull back a self-dual 2-form on X we obtain an anti-self-dual horizontal 2-form on
Tw(X) with respect to the hermitian metric. It’s anti-self-dual rather than self-dual because the complex structure
we defined on horizontal forms has the opposite orientation to that of X. One then verifies in local coordinates
that anti-self-dual 2-forms on a Hermitian surface are all, in particular, (1, 1)-forms.

To complete the proof it’s necessary to verify that all holomorphic structures arise in this way. Atiyah, Hitchin and
Singer do this by observing that a holomorphic connection on twistor space Tw(X) is always covariant constant
along the fibers of p, so comes from a connection on X, then noting that (1, 1)-forms on Tw(X) that are pulled
back from 2-forms on X are necessarily pulled back from self-dual 2-forms.

3 Supersymmetric Version

We conclude this talk with a bried discussion of the supersymmetric version of the Penrose-Ward correspondence.
For simplicity we’ll restrict to the case where X = R4. It’s possible to consider other 4-manifolds, but for any
specified amount of supersymmetry there are geometric restrictions on exactly when it makes sense to talk about
supersymmetric Yang-Mills theory. The main theorem is due to Boels, Mason and Skinner [BMS07], but I learned
about it from a paper of Costello [Cos11].

Definition 3.1. Super projective space CPm|n is the moduli space of one-dimensional subspaces in the Z/2-graded
vector space Cm+1|n, where the superscript m + 1|n denotes a space with m + 1 even dimensions and n odd
dimensions. Concretely, it’s the total space of the vector bundle O(1)⊗ Cn, placed in odd degree.

One can check that the bundle of holomorphic m-forms on CPm|n is isomorphic to O(n−m− 1). In particular, if

n = m+ 1 then this bundle is trivializable, and CPm|n is Calabi-Yau.
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Theorem 3.2. The N = 4 self-dual super Yang-Mills theory on R4 arises by compactification of holomorphic
Chern-Simons theory on CP3|4 \ CP1: the complement of a line in “super twistor space”.

This is actually a theorem in the stronger sense I mentioned in remark 2.6 part 2. Checking it is quite a neat
calculation which I discuss in my paper with Philsang Yoo [EY15, section 3.3], following an argument presented by
Ward and Wells [WW91]. One can see the appearance of all the fields that appear in physicists’ descriptions of this
super Yang-Mills theory: a self-dual gauge field, 4 spinor fields and 6 adjoint valued scalar fields.

Remark 3.3. There are versions of this theorem that recover other super Yang-Mills theories, including those with
a choice of matter multiplet.
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