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ABSTRACT

Gauge Theoretic Aspects of the Geometric Langlands Correspondence

Chris Elliott

In their revolutionary 2006 paper, Kapustin and Witten described a fascinating bridge between

geometric representation theory and the quantum theory of supersymmetric gauge fields. They

explained how, by performing a suitable topological twist, one can obtain categories of sheaves on

moduli stacks of holomorphic and flat G-bundles as categories of boundary conditions in supersym-

metric gauge theories, and why the physical phenomenon of S-duality should yield a conjectural

equivalence of categories known as the geometric Langlands correspondence. In this thesis, I begin

to make some of the structures introduced by Kapustin-Witten and other theoretical physicists

mathematically rigorous, with the eventual aim of systematically using the huge amount of struc-

ture possessed by the panoply of supersymmetric gauge theories in the theoretical physics literature

to draw new insights about geometric representation theory. The present work consists of two dis-

tinct approaches. Firstly I give a construction of a generalization of abelian gauge theories using

the mathematical structure of a factorization algebra, and explain how S-duality for these theories

can be described as a version of the Fourier transform. Then, I explain how to construct classical

supersymmetric gauge theories using derived algebraic geometry, introduce an appropriate notion

of twisting for such theories, and prove that the twists introduced by Kapustin and Witten yield

the moduli stacks of interest for the geometric Langlands correspondence.
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CHAPTER 1

Introduction

1.1. Introduction to S-Duality

We will begin this thesis somewhat philosophically, with a discussion of what it should mean for

a pair of quantum field theories to be “dual”. Roughly speaking, when physicists speak about a

duality, they mean a pair of prequantum field theories (by which I mean classical field theories

equipped with some additional data, including a specific action functional with specified values for

coupling constants, that determines a choice of quantization) along with an equivalence of their

quantizations. For example, consider the following definition of duality, from a physical point of

view.

Definition 1.1.1. [Tes16] A pair of theories (Φ, τ, Sτ ) and (Φ′, τ ′, S′τ ′) given by a space of fields

and an action functional depending on some auxilliary parameters τ or τ ′ are dual if there exists

a moduli space M of quantum field theories having boundary points z0 and z′0, coordinates τ0 and

τ ′0 on M near these boundary points, and maps f : Obs → O(Φ) and f ′ : Obs′ → O(Φ′) from the

local observables near z0 and z′0 such that there exist equivalences of asymptotic expansions

〈O〉z ∼=
∫
Dφe−Sτ0 (φ)f(O)(φ, τ0)

and 〈O〉z ∼=
∫
Dφ′e

−S′
τ ′0

(φ′)
f ′(O)(φ′, τ ′0)

near z0 and z′0 respectively.

Making this definition precise relies on a number of things, not least an appropriate definition of a

quantum field theory and an appropriate definition for the path integral expressions given on the
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right hand of the above equivalences. Nevertheless it captures the idea for what sort of thing a

duality should be: a pair of apparently distinct prequantum field theories which nonetheless, when

quantized, describe equivalent physics. Taking the non-rigorous parts for granted, definition 1.1.1

admits a neat simplification in the case where the moduli space M is a single point.

Example 1.1.2. A pair of prequantum theories (Φ, τ, Sτ ) and (Φ′, τ ′, S′τ ′) are dual if there is a

correspondence

Obs
f

{{

f ′

##

ObsΦ ObsΦ′

where ObsΦ and ObsΦ′ are quantizations of the two classical theories, and where f(O) and f ′(O)

have the same expectation value for each observable O ∈ Obs.

This thesis will attempt to capture, in a mathematically rigorous way, certain aspects of a particular

duality called S-duality, which is deeply intertwined with topics of modern research interest in the

field of geometric representation theory. In the rest of this section we’ll describe the idea, and some

of the history, of S-duality. Then we’ll go on to talk about geometric representation theory, and

more specifically the geometric Langlands program, and the connection – introduced by Kapustin

and Witten – between these two disparate fields.

There are many surveys of S-duality (also called electric-magnetic duality, or Montonen-Olive

duality) in the literature, for example [Kap08,Vec97,Oli96,Har96,FO98,Kne99]. I won’t try

to reproduce the full story in this introduction, but I’ll try to at least explain what the classical

idea is – what S-duality is and why one might conjecture its existence – as well as hinting at some

of the theory’s more modern developments.
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1.1.1. Classical Electric-Magnetic Duality

It is obligatory to begin our story with the familiar form of Maxwell’s equations in the vacuum 1:

∇ · E = 0 ∇ ·B = 0

∇× E = −∂B
∂t

∇×B =
∂E

∂t

where E and B are the electric and magnetic fields: time dependent vector fields on R3. Using

the metric on R3 to identify E and B with a time dependent 1- and 2-form on R3 respectively, one

can equivalently write these equations in terms of the electromagnetic field strength, the 2-form

F = E ∧ dt+B ∈ Ω2(R4) 2,

dF = 0 d∗F = 0.

One observes that these equations admit a very natural symmetry, namely the symmetry E 7→

B,B 7→ −E, or equivalently the Hodge star operator ∗ : Ω2(R4) → Ω2(R4). This symmetry is

broken as soon as one introduces background charge and current distributions ρ and j: Gauss’ law

becomes ∇ · E = ρ, and Ampère’s law becomes ∇×B = ∂E
∂t + j.

This broken symmetry can be repaired if one also introduces magnetic charge and current distri-

butions µ, k coupled to the magnetic field, and ask for the symmetry to also send ρ 7→ µ, µ 7→

−ρ, j 7→ k, k 7→ −j. This means in particular that the integral of B over a sphere in space need

no longer equal zero, so allows for the existence of magnetic monopoles.

It’s natural to ask whether such a theory of gauge fields and particles carrying both electric and

magnetic charges can admit a quantization. Furthermore, if it does, does there exist a duality of

quantum field theories based on this classical symmetry? More specifically, in the terminology of

definition 1.1.1, does there exist a duality where f ′(O) = ∗ ◦ f(O) where ∗ is the pushforward

1Here, and throughout this introduction, we’ll work in natural units where c = ~ = 1.
2This interpretation is natural from the point of view of the Lorentz force law governing the trajectory of a charge
particle through an electromagnetic field, which says that the force on a particle moving with velocity v is given by
the vector field dual to the 1-form ιvF .
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along this symmetry of classical theories? This question has been considered at least since the

1930’s, when Dirac published a very influential paper [Dir31] demonstrating that if one tries

to quantize the theory of a single charged particle with charge e in a classical electo-magnetic

potential corresponding to a magnetic monopole of magnetic charge f (i.e. a solution to Maxwell’s

equations where the magnetic charge distribution µ is given by f times a delta function at the

origin), then a quantization can only exist if the product ef of the charges lies in the lattice 2πZ.

Before we address the second part of the question, let’s explain how to generalise this story to

Yang-Mills theory for non-abelian gauge groups.

1.1.2. Montonen and Olive’s Proposal

While Dirac’s construction of a monopole state in classical electro-magnetism is fairly straight-

forward, a bit more ingenuity is required to demonstrate the existence of such states in non-

abelian gauge theories. One attractive construction is originally due to ‘t Hooft [tH74] and

Polyakov [Pol74] (independently), originally for the gauge group SU(2) (or SO(3)). I’ll explain

briefly how this solution arises, following the exposition in the surveys of di Vecchia and Figureoa-

O’Farril [Vec97, FO98]. We consider a classical Yang-Mills-Higgs theory: that is, Yang-Mills

theory with gauge group SU(2) coupled to an adjoint valued scalar field φ with potential

V (φ) =
λ

4

(
|φ|2 − α2

)2
where λ and α are non-zero constants (the “Mexican hat” potential). The Higgs mechanism breaks

the gauge symmetry to a maximal torus H ⊆ SU(2). One observes that after symmetry breaking

the SU(2) gauge boson breaks up into a massless U(1) gauge boson – which we might call the

photon – along with two bosons with charge 1 and −1 and mass αe, which we call W-bosons. Here

e is the gauge coupling constant.
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Polyakov and ’t Hooft proposed a solution to the classical equations of motion of this theory using

a certain ansatz for a spherically symmetric solution, which we’ll write in index notation. Here

a = 1, 2, 3 index a basis for su(2), and i, j = 1, 2, 3 index a basis for a codimension 1 subspace of

spacetime.

φa(x) =
xa

e|x|2
H(ξ)

A0
a(x) = 0

Aai (x) = − xj

e|x|2
εaij(1−K(ξ)).

Here H and K are smooth real-valued functions of ξ = αe|x| satisfying certain natural boundary

conditions constraining their behaviour in the limits ξ → 0 and ξ → ∞, ensuring that the total

energy of a solution satisfying this ansatz is finite. If one plugs this ansatz into the equations of

motion, one finds a pair of coupled second order ordinary differential equations:

ξ2d
2K

dξ2
= KH2 +K(K2 − 1)

ξ2d
2H

dξ2
= 2K2H +

λ

e2
H(H2 − ξ2).

While these equations generally do not admit closed form solutions, Jaffe and Taubes [JT80]

proved that they do in fact admit solutions satisfying the appropriate boundary conditions. These

solutions are usually called ’t Hooft-Polyakov monopoles.

Example 1.1.3. One obtains a special example, which we can express in closed form, in the limit

λ→ 0 (sometimes called the “Prasad-Sommerfield limit”). In this case we obtain a solution to the

classical equations of motion using the ‘t Hooft-Polyakov ansatz of the form

H(ξ) = ξcoth(ξ)− 1, K(ξ) = ξcosech(ξ).

This solution is sometimes called a BPS monopole, for reasons we’ll explain shortly.
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To see why the ‘t Hooft-Polyakov solution to the classical equations of motions describes a mono-

pole, observe that we can extract the part of the gauge field corresponding to the photon as the dot

product Aaφ
a. The condition that A0

a is identically zero ensures that the electric field associated to

this configuration vanishes. However, in the limit ξ →∞, the total electromagnetic field strength

tends to

Fij =
1

α
φa∂jA

a
i

→ −1

e

xa

|x|
∂j

(
xk

|x|2

)
εaik

= − xk

e|x|3
εijk

using the condition that K → 0 and H/ξ → 0 as ξ →∞. This has the property that distinguishes

a magnetic monopole: the electric field vanishes, and when one computes the flux of the magnetic

field through any sphere around the origin, one obtains a positive number, which – as the radius

goes to infinite – converges to f = 4π
e . Note that this magnetic charge automatically satisfies the

Dirac quantization condition, since fe = 4π ∈ 2πZ.

Now, these monopole solutions are designed to have finite energy, or equivalently finite mass. This

mass has a lower bound called the Bogomol’nyi-Prasad-Sommerfield (BPS) bound : one checks that

E =

∫
R3

1

2

(
EiaE

i
a +Ba

i B
a
i + ∂0φ

a∂0φ
a + ∂iφ

a∂iφ
a
)

+ V (φ)dx

≥
∫
R3

1

2
(Ba

i B
a
i + ∂iφ

a∂iφ
a) dx

≥
∫
R3

∂i(Ba
i φa)dx

where B is the magnetic field strength. By Stokes’ theorem and using the expression for φ in our

ansatz, this can be thought of as the surface integral α
∫
S2
∞
B · ds, where S2

∞ is the “sphere at

infinity” (more precisely, this integral is equal to the limit of the surface integrals over spheres of

increasing radius). Thus the BPS bound says that E ≥ αf = 4πα
e by the observation of the previous

paragraph. It’s easy to see when the BPS bound is saturated: when E = ∂0φ = Ba
i −∂iφa = 0, and
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λ = 0. In particular, this explains why the solution of example 1.1.3 was called a BPS monopole:

its mass saturates the BPS bound, and is equal to αf .

Having explained a construction of monopoles for G = SU(2), let’s explain how to generalise this

to other gauge groups. One can analyse the spectrum of particles in Yang-Mills-Higgs theory for

a general reductive G in much the same way as we did for SU(2). The Higgs mechanism still

breaks the gauge symmetry to a maximal torus H ⊆ G, leaving r = rank(G) massless bosons, and

dim(G)− r massive W -bosons. These W -bosons are charged for the H-gauge symmetry: there is

a W -boson associated to each root, whose (electric) charges are given by the diagonal action of H

on the root space. The mass of a W -boson is given by αe|q|, where q ∈ h∗ is the electric charge of

the boson.

Given a Lie algebra homomorphism c : su(2) ↪→ g, we can construct an ’t Hooft-Polyakov monopole

solution to the Yang-Mills-Higgs theory with gauge group G. To do this, we simply take a monopole

solution for the group SU(2), and take its image under the induced map from SU(2) gauge fields

and adjoint-valued scalars to G-valued ones (although we might need to be modify this solution to

ensure it still satisfies the appropriate boundary conditions, as done by Weinberg [Wei80]). Given

such an embedding, the magnetic charge corresponds to an element of the Cartan subalgebra h,

by taking the image of the SU(2)-magnetic charge under the restricted embedding u(1) ↪→ h. The

Dirac quantization condition ensures that this magnetic charge is not just any element of h, but

an element of the coroot lattice.

For a general gauge group, the BPS bound says that the mass, or energy, is bounded by E ≥ α|m|,

where m is the magnetic charge of a monopole state. So let’s summarise what we’ve learned about

W-bosons and BPS monopoles in the Yang-Mills-Higgs theory for a gauge group G in table 1.1.

Montonen and Olive observed that the masses and charges of the BPS monopoles match the masses

and charges of the W-bosons in a dual theory: the Yang-Mills-Higgs theory but for the Langlands

dual group G∨ – a Lie group so that the coroot lattice of G∨ is the root lattice of G, and vice
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W-Boson BPS Monopole

Charge root q ∈ h∗ coroot m ∈ h

Mass αe|q| αf |m|

Table 1.1. Masses and charges of electrically and magnetically charged states. Here
f = 4π

e .

versa – and with the electric and magnetic couplings e and f are interchanged. This group is

characterized by the following theorem, a proof of which can be found in standard textbooks on

algebraic groups, e.g. Springer [Spr98].

Definition 1.1.4. A root datum is a quadruple (X∗,∆, X∗,∆
∨), where X∗ is a finite rank lattice

with dual lattice X∗ and ∆ ⊆ X∗ and ∆∨ ⊆ X∗ are finite subsets, along with a bijection ∆→ ∆∨

that we denote by α 7→ α∨, satisfying the following conditions.

(1) For each α ∈ ∆, 〈α, α∨〉 = 2.

(2) For each α ∈ ∆, the map β 7→ β − 〈β, α∨〉α permutes the elements of ∆, and similarly

the map β∨ 7→ β∨ − 〈β∨, α〉α∨ permutes the elements of ∆∨.

If additionally ∆ does not contain 2α for any α ∈ ∆, the root datum is called reduced.

Theorem 1.1.5. We can associate to every reduced root datum (X∗,∆, X∗,∆
∨) a unique complex

reductive algebraic group G so that X∗ is the lattice of characters G→ U(1), containing the roots

∆ ⊆ X∗, and X∗ is the lattice of cocharacters U(1)→ G, containing the coroots ∆∨ ⊆ X∗.

Definition 1.1.6. The Langlands dual (also called the GNO dual or the magnetic dual in the

physics literature) of a group G with root datum (X∗,∆, X∗,∆
∨) is the unique group G∨ with root

datum (X∗,∆
∨, X∗,∆).

Recall that each complex reductive algebraic group has a unique compact form, up to isomorphism,

and every compact connected Lie group arises in this way, so we can just as well think of the
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GC G G∨ G∨C
GL(n;C) U(n) U(n) GL(n;C)
SL(n;C) SU(n) PSU(n) PGL(n;C)

SL(mn;C)/Cm SU(mn)/Cm SU(mn)/Cn SL(mn;C)/Cn
SO(2n+ 1;C) SO(2n+ 1) Sp(n) Sp(2n;C)

SO(2n;C) SO(2n) SO(2n) SO(2n;C)
Spin(2n+ 1;C) Spin(2n+ 1) Sp(n)/C2 Sp(2n;C)/C2

Spin(4n;C) Spin(4n) Spin(4n)/(C2 × C2) Spin(4n;C)/(C2 × C2)
Spin(4n+ 2;C) Spin(4n+ 2) Spin(4n+ 2)/C4 Spin(4n+ 2;C)/C4

Spin(8n;C)/C1
2 Spin(8n)/C1

2 Spin(8n)/C1
2 Spin(8n)/C1

2

Spin(8n;C)/C2
2 Spin(8n)/C2

2 Spin(8n)/C2
2 Spin(8n;C)/C2

2

Spin(8n+ 4;C)/C1
2 Spin(8n+ 4)/C1

2 Spin(8n+ 4)/C2
2 Spin(8n+ 4;C)/C2

2

E6 E6 E6/C3 E6/C3

E7 E7 E7/C2 E7/C2

E8 E8 E8 E8

F4 F4 F4 F4

G2 G2 G2 G2

Table 1.2. Compact connected and complex reductive groups and their Langlands
duals. Here Cn denotes the cyclic group of order n. The group Spin(4n) has
center C2 × C2, we write the two factors as C1

2 and C2
2 . The group SO(4n) is the

quotient by the diagonal subgroup. This table is adapted from the lecture notes of
Figueroa-O’Farril [FO98, Table 6.4].

Langlands dual of a compact connected Lie group. In table 1.2 we present the Langlands duals

of various compact and complex groups. We can see from the table, for example, the general

phenomenon that Langlands duality exchanges the simply connected and adjoint forms associated

to a simple Lie algebra.

We can now state Montonen and Olive’s conjecture.

Conjecture 1.1.7 (Montonen-Olive Duality). There exists a duality between quantum field the-

ories quantizing the classical Yang-Mills-Higgs theories with gauge groups G and G∨, in the BPS

limit λ → 0. This duality interchanges quantum states corresponding to W-bosons and BPS

monopoles.



19

1.1.3. S-Duality for Supersymmetric Gauge Theories

There are two potential obstructions to the existence of Montonen and Olive’s duality: the fact

that the monopole does not appear to have the correct spin (spin 1, to match the gauge boson

of the dual theory), and the fact that the masses of the particles and the monopoles may be

renormalized. In this section we’ll explain how both of these problems are resolved when we

consider not an ordinary Yang-Mills-Higgs theory, but a supersymmetric Yang-Mills theory.

The data of a quantization of the classical Yang-Mills-Higgs theory includes, in the perturbative

path integral approach to quantization formalized by Wilson, a family of effective theories at each

energy scale, compatible with the renormalization group flow. In particular, parameters like the

mass of a particle receive quantum corrections – in any given effective theory one will generally

have to modify the values of these parameters to preserve compatibility with the renormalization

group. In order for Montonen-Olive duality to hold, the equality of the masses of electrically and

magnetically charged states should hold now only in the classical theory, but also in the effective

theories at different energy scales. There is, however, no reason why it should be possibile to

arrange this.

It is possible to get around this problem by extending the classical theory with which we work. The

idea that in a supersymmetric theory the quantum corrections to the mass formula might vanish

– i.e. that the masses of W-bosons and monopole states might not flow under renormalization –

was first discussed by d’Adda, Horsley and di Vecchia [dHDV78], who described BPS monopole

solutions in N = 2 super Yang-Mills and showed that its mass does not admit quantum corrections

at the one loop level. Witten and Olive [OW78] extended their result, and showed that the mass

spectrum in these N = 2 theories does not admit quantum corrections at any level: that the

classical formula holds exactly. As such, the problem discussed above does not arise.

We defer a detailed description of what supersymmetric Yang-Mills theories actually are to chap-

ter 8, especially section 8.2 in the second part of this thesis. Roughly speaking, super Yang-Mills
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theories are extensions of Yang-Mills theories, where we introduce additional fields in order to

promote the action of the Poincaré group to the action of a Z/2-graded extension by a spinor rep-

resentation, a “super Poincaré group”. In N = 2 theories – those where the spinor representation

has two irreducible summands – the fields include a g-valued scalar with a quartic potential, which

plays the role of the Higgs field in the ordinary Yang-Mills-Higgs theory.

The problem remains that, even in N = 2 theories, the W-boson and BPS-monopole states appear

to have different spins, i.e. they transform differently under the action of the super Poincaré

group, which means that Montonen and Olive’s conjecture still can’t be valid (we refer to sections

2.3.3 and 2.3.4 of Figueroa-O’Farril [FO98] for details). Osborn [Osb79] demonstrated that this

problem was also resolved if we pass from N = 2 to N = 4 super Yang-Mills theory. This motivates

an improved form of Montonen and Olive’s conjecture.

More modern, supersymmetric formulations of Montonen-Olive duality are more often called “S-

dualities” (this term was used by Schwarz and Sen [SS93] in 1993 in the context of string theory,

but it’s possible that the name is older). ‘S’ here is short for “strong-weak”: since S-duality inverts

the gauge coupling constant, strongly coupled theories can have weakly coupled duals, allowing

the calculation of correlation functions in the strongly-coupled theory using perturbative methods.

Conjecture 1.1.8 (S-duality). There exists a duality between quantum field theories quantizing

the classical N = 4 super Yang-Mills theories with gauge groups G and G∨.

1.1.4. Abelian Duality

In the case where the gauge group G is abelian, pure Yang-Mills theory is free, so even without

supersymmetry there’s no concern about quantum corrections to the mass formula, and one con-

jectures that there exists a duality between Yang-Mills theory with gauge group given by a torus

H, and Yang-Mills theory with gauge group the dual torus H∨. This simple instance of electric-

magnetic duality was called abelian duality by Witten in his 1995 paper on the subject [Wit95a],
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in which he addresses a relationship between the partition functions of abelian pure Yang-Mills

theories on a compact 4-manifold. This relationship, and generalizations to higher degree, were

also studied by Verlinde in [Ver95].

Analogues of this duality in lower dimensions have also been investigated in the physics literature,

for instance the T-duality between sigma models with dual torus targets on a 2-manifold, and a

duality between sigma models and abelian gauge theories on a 3-manifold (these are described in

[Wit99]. Explicit calculations of duality for the partition functions in three dimensions have been

performed by Prodanov and Sen [PS00] and by Broda and Duniec [BD04], and a detailed analysis

of duality for more general observables was recently performed by Beasley [Bea14b, Bea14a]).

These theories are the lowest-dimensional examples of a sequence of theories, whose fields model

connections on higher torus bundles, models for which have been described by Freed [Fre00] using

ordinary differential cochains to model the fields. The quantizations of these theories were further

studied by Barbón [Bar95], who discussed abelian duality for the partition functions in higher

degree theories, and Kelnhofer [Kel09], who explained how to compute the vacuum expectation

values of gauge invariant observables in these theories using the language of ordinary differential

cochains.

In part 1 of this thesis, we will prove a version of abelian duality for this family of theories. The

statement we establish follows the paradigm of example 1.1.2, where we model quantum field

theories as factorization algebras, using the techniques of Costello and Gwilliam [Gwi12,CG15].

Theorem 1.1.9. Let X be a compact Riemannian n-manifold. There exists a correspondence of

factorization algebras of the form

(ObsΩp)0

r

zz

r′

%%

Obsq
p,R Obsq

n−p, 1
2R
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where Obsq
p,R is the quantization of the factorization algebra of classical observables in a generalized

Maxwell theory whose fields are connections on (p− 2)-gerbes for the group R/2πRZ. Observables

which are incident, i.e. images of the same observable in (ObsΩp)0(U) under the two maps, have

the same expectation value.

In chapter 6 we’ll explain what exactly (ObsΩp)0 is, and what the maps r and r′ are, and argue that

a large family of interesting observables (generalizations of Wilson and ‘t Hooft loop operators) lie

in the images of r and r′.

1.1.5. Modern Topics

We’ll conclude this section with a brief discussion of how the S-duality conjecture for N = 4 gauge

theories has developed since it was first stated in the late 1970’s. A great deal of the development

of the subject relies on ideas from string theory; indeed S-duality is believed to arise as a low

energy limit of a duality between string theories. This introduction will not attempt to explain

any of these ideas (since I don’t understand them myself); instead we’ll focus on topics that can

be understood purely from the point of view of field theory.

Firstly, the S-duality transformation can be promoted to a family of symmetries indexed by the

modular group SL(2;Z). To do this, note that one can add a topological term of the form

θ
∫
FA ∧ FA to the super Yang-Mills action functional without affecting the classical equations

of motion. The quantization of these theories are now related by an additional, trivial symmetry,

corresponding to the symmetry of the classical theory that shifts θ 7→ θ + 1. Combining the ordi-

nary Yang-Mills coupling constant e and the new parameter θ into a single element τ = θ
2π + i4π

e

in the complex upper half-plane, one finds that S-duality and this new trivial symmetry combine

to generate a copy of SL(2;Z), where the two symmetries correspond to the matrices

t =

 0 1

−1 0

 and u =

1 1

0 1

 ∈ SL(2;Z).



23

An important antecedent of the work of Kaputin and Witten (which we’ll discuss below) is a 1994

paper of Vafa and Witten [VW94] which proposed evidence for S-duality, by arguing that it held

for a certain twist of the full supersymmetric theory. The idea of twisting a classical field theory

(which we discuss in detail in chapter 8) was introduced by Witten in an earlier paper [Wit88a].

Witten’s idea was that, in a supersymmetric field theory, if one chooses a supersymmetry Q such

that [Q,Q] = 0 and restricts attention to the Q-cohomology of the algebra of observables, all

symmetries of the form [Q,Q′] will act trivially. If one chooses Q appropriately, all translations

take this form, so observables in the Q-cohomology are translation invariant, and the resulting

theory of such observables is physically comparatively simple, and mathematically often closely

connected to the theory of well-studied topological invariants.

Vafa and Witten argued that, in a certain twist of N = 4 super Yang-Mills theory, the partition

function coincides with generating functions for the Euler characteristic of the moduli space of

instantons. They then investigate these Euler characteristics for various gauge groups, and various

4-manifolds, and prove that they are modular, i.e. SL(2;Z)-invariant. This provides some evidence

for the S-duality conjecture, but more importantly for the purposes of this thesis provided an early

link between S-duality of gauge theories and topics in the geometry of moduli spaces.

An intriguing proposal for the origin of S-duality was made by Witten first in 1995 [Wit95b], and

elaborated upon in several later papers [Wit04a,Wit09]. Witten suggested that there should exist

a six-dimensional (2, 0)-superconformal quantum field theory, which includes a “self-dual higher

gauge field” with semisimple simply-laced gauge group G – mathematicians have recently taken to

referring to this theory as “Theory X” 3. This quantum field theory does not generally arise as the

quantization of a classical field theory in the usual sense: it does not admit an action functional.

From a mathematical point of view this six-dimensional theory is highly speculative, and there

isn’t currently a mathematically satisfying description of almost any aspect of it. Nevertheless,

if we assume its existence we can start to conjecture the existence of many interesting properties

3As in, for example, the proposal for the 2012 NSF grant DMS-1342948, entitled “In and Around Theory X”.
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of and dualities between quantum field theories of lower dimension. For example, one obtains an

N = 4 super Yang-Mills theory by dimensionally reducing theory X along a torus; Witten proposed

that S-duality for such theories should arise as follows. By dimensionally reducing along different

tori, one obtains a family of four-dimensional quantum field theories parameterized by the upper

half plane, thought of as the Teichmüller space T1,0. Inside the upper half-plane one can choose a

fundamental domain for the group SL(2;Z), and each element of this group then yields a duality

between points on the boundary, as in definition 1.1.1. In particular, the standard elements t

and u ∈ SL(2;Z) correspond to the S-duality transformation, and a shift of the topological term

respectively. One immediately observes that this perspective leads to a wide family of S-dualities

corresponding to elements of general mapping class groups, by dimensionally reducing theory X

along curves of higher genus. These dualities were first discussed by Gaiotto [Gai12]. They relate

gauge theories with N = 2 supersymmetry called theories of class S, that generally fail to admit

Lagrangian descriptions unless all the simple factors of the gauge group G have rank 1.

Finally, we should briefly mention recent work of Gaiotto and Witten, in which they describe

an interpretation of S-duality as a 3-dimensional domain wall between 4-dimensional theories

[GW09b,GW09a]. In [GW09b] Gaiotto and Witten construct certain boundary conditions in

N = 4 super Yang-Mills theories that are invariant under exactly half of the supersymmetries

(half BPS boundary conditions), characterized by certain data, including an sl2-triple in the Lie

algebra of the gauge group. In [GW09a], they go on to discuss S-duality for boundary conditions

in N = 4 theories, using a theory with a codimension 1 defect invariant, again, under half of the

supersymmetries, called a “Janus wall”, first introduced by Bak, Gutperle and Hirano [BGH03]

using the AdS/CFT correspondence.

1.2. Introduction to the Geometric Langlands Program

Historically, the original motivation for the geometric Langlands conjecture comes from number

theory: from trying to find the right analogue of the Langlands reciprocity conjecture in the realm
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of complex geometry. Because the objects of interest behave better in a geometric setting, one can

prove stronger results in a cleaner way and hope to eventually transport some ideas from geometry

to number theory. Ngô’s proof [Ngô10] of the fundamental lemma using the geometry of the

Hitchin system is an example of a striking success of this program (explained in an expository

article of Nadler [Nad12]). In this section we will recall and attempt to motivate the heuristic

categorical statement of the geometric Langlands conjecture introduced by Beilinson and Drinfeld.

We will then go on to describe recent work of Arinkin and Gaitsgory [AG12] in formulating a

more precise version of this conjecture.

I will not attempt to give a complete historical overview of the origin of the geometric Langlands

program from number theory, nor will I attempt to give a comprehensive description of the state

of the art of research into the categorical Langlands program. For a survey of the origins of the

geometric Langlands program, along with some of its connections to quantum field theory, one

cannot do better than the excellent surveys of Frenkel [Fre07, Fre10]. We refer the reader to

Arinkin and Gaitsgory [AG12] for details of the modern formulation of the geometric Langlands

conjecture, and Gaitsgory [Gai13] for a proof for the group GL(2), along with a description of a

program by which experts hope to establish the full conjecture.

1.2.1. Motivation from Number Theory

There are many articles surveying the Langlands program in number theory, for example [Tay04,

Kna97]. In this section I’ll give a short summary, in order to motivate the geometric version of

the conjecture. The Langlands program, viewed from a distance, describes a relationship between

two kinds of representation object which can be constructed from a number field F (or, for that

matter, many other kinds of field of number theoretic interest: there are many versions of the

Langlands correspondence). One of these types of object has a purely algebraic flavour, while

the other is defined and studied using techniques from functional analysis. Simultaneously, the
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correspondence relates representation theoretic objects defined using a reductive algebraic group

G on the one side, and its Langlands dual LG on the other 4.

The algebraic objects that appear in the Langlands correspondence are, at least at the simplest

level, representations of the absolute Galois group Gal(F/F ) valued in the group LG. Galois

representations are ubiquitous in number theory (arising, for instance, from the étale cohomology

of algebraic varieties over F ), but their abstract structure is a priori difficult to access, making

results that relate their structure to a different kind of object desirable.

The more analytic objects are slightly more difficult to motivate a priori, but are closely related

to classically studied objects in number theory such as the ideal class group of a number field, and

the ring of modular forms. These are objects called automorphic representations, which we won’t

define carefully, but will try to at least give the flavour of. We define the ring of adèles of a global

field F to be the restricted product

AF =
∏
p

′
Fp

where the product is taken over all places p of F , and where Fp is the formal completion at p (for

instance, if F = Q and p is a prime, these are the p-adic numbers). By the restricted product,

we mean that the image of an adèle under the projection AF → Fp must land in the local ring

Op ⊆ Fp for all but finitely many p. Inside the adèles, we can define the ring of integers O ⊆ AF to

be the product
∏
Op. The automorphic quotient associated to the field F is the double quotient

G(F ) \ G(AF )/G(O).

As we’ll argue below, this double quotient has a natural geometric interpretation as a version of a

moduli space of G-bundles. An automorphic representation is, very roughly, an irreducible unitary

subquotient of the G(AF )-module L2
χ(G(F ) \ G(AF )) of L2-functions twisted by a character χ of

4One should take care: since these groups need no longer be defined over the complex numbers, the definition of the
Langlands dual in the previous section is not quite right. For the definition as written to hold, we need to assume
that our group G is split, i.e. contains a split maximal torus, and even under this assumption one needs to form the
semidirect product with the absolute Galois group of F . Because of this difference, and for compatibility with the
number theory literature, for this section only we’ll write LG for the Langlands dual group of G.
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Z(AF ), where Z is the maximal F -split central torus in G, after equipping the quotient with an

appropriate measure. These representations can be grouped together into “L-packets”, consisting

of representations that are isomorphic as G(Fv)-representations for almost all places v.

With this setup, we can state an (imprecise) version of the Langlands reciprocity conjecture.

Meta-Conjecture 1.2.1 (Langlands reciprocity). Let F be a number field, and let G be a split

reductive algebraic group over F . There is a bijection

{
`-adic representations of Gal(F/F ) valued in LG

}/
∼

OO

��{
L-packets of automorphic representations of G(AF )

}

intertwining the natural symmetries on both sides.

By referring to this as a “meta-conjecture”, I mean to indicate that this should not necessarily be

taken at face value, but as a guiding principal for a great number of more precise conjectures (see

for instance Clozel [Clo90] for a precise version of this conjecture for G = GLn, and Buzzard-

Gee [BG14] for a precise version for a general group). At the very least, in order to make this

precise we would have to define all of our terms, and to identify what exactly these “natural

symmetries” on the two sides should be.

Remark 1.2.2. In a more careful formulation of the Langlands reciprocity conjecture, one might

instead consider representations not of Gal(F/F ), but of Gal(F/F )×SL(2;C). The homomorphism

SL(2;C)→ G∨ is an additional piece of data called an “Arthur parameter”, and the set of elements

which only differ in this parameter is called an “Arthur packet”.

The passage from the Langlands program in number theory to the geometric Langlands program

uses an analogy sometimes called “Weil’s Rosetta Stone” [Wei79]. The idea is the following. There
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are two kinds of global fields: number fields and global function fields, i.e. the function fields of

algebraic curves Σ defined over a finite field Fq. Weil’s analogy relates algebraic properties of these

fields to geometric properties of algebraic curves defined over the field C of complex numbers, using

global function fields as a bridge.

• The places of a number field correspond to the closed points of an algebraic curve (note

that there isn’t an obvious geometric analogue for the collection of infinite places of a

number field).

• The completion of a number field at a place v corresponds to the local field of an algebraic

curve at a point p – the field of functions on a formal punctured neighbourhood of p.

Its ring of integers corresponds to the local ring – the ring of functions on a formal

(unpunctured) neighbourhood of p.

• The automorphic quotient G(F ) \ G(AF )/G(AfF ) of a number field corresponds to the

moduli space BunG(Σ) of holomorphic G-bundles on Σ. To deduce this, first note that

any holomorphic G bundle can be trivialized away from a finite set of points. In other

words, one obtains a trivializing cover by taking small discs around a finite set x1, . . . , xk

of points in Σ, together with the complement Σ \ {x1, . . . , xk}. The set of G-bundles

trivialized on this cover is in bijection with the set of double cosets

G(Σ \ {x1, . . . , xk}) \
k∏
i=1

G(D×xi)/
k∏
i=1

G(Dxi)

by identifying the bundle by its transition functions, modulo different choices of trivial-

ization on the trivializing cover. This can equivalently be written as

G(Σ \ {x1, . . . , xk}) \

 k∏
i=1

G(D×xi)×
∏

x 6=xi∈Σ

G(D×x )

 /
∏
x∈Σ

G(Dx).

Now, allowing the set {x1, . . . , xk} to vary through all finite subsets of Σ and replacing

our discs by formal discs, we obtain a description of the set of all G-bundles on Σ as a
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set of double cosets. Namely

G(Σ \ {x1, . . . , xk}) \
∏
x∈Σ

′
G(D×x )/

∏
x∈Σ

G(Dx)

where the restricted product means that the G-valued function extends across the punc-

ture for all but finitely many points. Since we can view G(D×x ) as the points of G valued

in the local field at x, and G(Dx) as the points of G valued in the local ring, we observe

that this set is exactly analogous to the set of points of the automorphic quotient.

• Galois extensions of the number field F correspond to Galois covers of the curve Σ.

• The absolute Galois group of F corresponds to the fundamental group of Σ.

• G∨-valued Galois representations of F correspond to G∨-valued representations of the

fundamental group of Σ, or equivalently locally constant sheaves on Σ with aG∨-structure.

This gives us a geometric analogy for the main objects appearing in the Langlands conjecture. The

remaining ingredient needed to pass from the Langlands reciprocity conjecture to the geometric

Langlands conjecture is called the Grothendieck “function-sheaf” or “fonctions-fasciceaux” dictio-

nary. This is an example of categorification, in which we replace the functions on the automorphic

quotient by constructible sheaves, or D-modules. Over the complex numbers, the set-theoretic

geometric Langlands correspondence takes the following form.

Conjecture 1.2.3. There is a natural bijection

{irreducible G∨-local systems on Σ}/∼ ↔ {Hecke eigensheaves on BunG(Σ)}

sending L to an eigensheaf with eigenvalue L.

Hecke eigensheaves here are D-modules that satisfy a particular equation, prescribing the action

of local “Hecke” operators. We refer to Frenkel [Fre07] for an exposition of exactly what Hecke

eigensheaves are – we’ll shortly give another, stronger form of the conjecture which we’ll state

precisely. A version of conjecture 1.2.3 goes back to Drinfeld, who stated and proved it for the
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group G = GL2 [Dri83], after which Laumon formulated the conjecture GLn [Lau87]. This

conjecture for GLn was proved by L. Lafforgue [Laf02], and later work of Frenkel, Gaitsgory

and Vilonen [FGV02] combined with a result of Gaitsgory [Gai04] explicitly constructs a Hecke

eigensheaf associated to an irreducible local system in unramified cases. More recently, V. Lafforgue

formulated the conjecture for general reductive groups G, and gave a construction of a map from

left to right [Laf12].

1.2.2. The Categorical Proposal

The above story motivates a geometric version of the Langlands conjecture, where now – thanks

to the fonctions-fasciceaux correspondence – we can ask for the existence not just of a bijection

of sets, but of an equivalence of categories. We’ll begin by stating the most optimistic version

of the geometric Langlands conjecture. We view this as a “meta-conjecture” rather than a true

conjecture: an inspiring story which we hope will lead us to a true statement. Beilinson and

Drinfeld proposed the following statement.

Meta-Conjecture 1.2.4 (“Drinfeld’s best hope”). There is a dg-equivalence

D(BunG(Σ)) ' QC(LocG∨(Σ)),

between the dg-category of D-modules on BunG(Σ) and the dg-category of quasi-coherent sheaves

on LocG∨(Σ), intertwining the natural symmetries on both sides.

Remark 1.2.5. In what follows we’ll sometimes refer to the left- and right-hand sides of this

equivalence as the automorphic and spectral sides of the correspondence respectively. After ex-

plaining the connection to S-duality and mirror symmetry in the next section, we will also refer

to them as the A- and B-sides respectively.

We’ll be more precise about what kind of “natural symmetries” we mean below. This statement

extends earlier set-theoretic statements of the geometric Langlands correspondence, which propose
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a bijection between G∨-local systems L on Σ (i.e. skyscraper sheaves on the right hand side) and

Hecke eigensheaves on BunG(Σ) with eigenvalue L.

If G is abelian, this “best hope” statement is precisely correct, and was proven independently by

Laumon [Lau96] and Rothstein [Rot96]. One can construct an equivalence between the abelian

geometric Langlands categories by a modified Fourier-Mukai transform. If A is an abelian variety,

let A\ denote the moduli space of Gm flat bundles on A. Just like in the ordinary Fourier-Mukai

transform, there’s a Poincaré sheaf on A×A\ – a line bundle with flat connection – which restricts

to (L,∇) on A× {(L,∇)}. Laumon and Rothstein proved that the integral transform associated

with the Poincaré sheaf provides an equivalence of categories

QC(A\)→ D(A),

which gives a version of the abelian geometric Langlands correspondence when one sets A = Jac(Σ),

the Jacobian of Σ. This needs only small modifications to produce the best hope conjecture: on

the A-side, BunGm(Σ) = Jac(Σ)×Z×BGm, and on the B-side LocGm(Σ) = Jac(Σ)\×(pt×A1 pt)×

BGm, so one obtains the abelian geometric Langlands correspondence by observing that D(Z) ∼=

QC(BGm) and D(BGm) ∼= QC(pt×A1 pt).

It turns out, however, that the abelian case is the only example where the best hope conjecture

holds literally. In the rest of this section we’ll discuss the example Σ = P1, or equivalently, the

categories of local operators for the geometric Langlands correspondence. V. Lafforgue [Laf09]

proved that, in the case where Σ = P1 and G is non-abelian, the category QC(LocG∨(P1)) is

equivalent to a proper subcategory of D(BunG(Σ)). “Large” objects in D(BunG(P1)), including

the D-module DBunG(P1) fail to correspond to any quasi-coherent sheaf on LocG∨(P1). This result

follows from a careful discussion of the local version of the conjecture, usually called the geometric

Satake correspondence. In this discussion, we’ll explain what the natural symmetries alluded to

above are.
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To start with, let’s discuss the original version of the geometric Satake correspondence, due to

Mirkovic and Vilonen [MV07].

Definition 1.2.6. The affine Grassmannian of G is the ind-scheme G(K)/G(O), where K = C((t))

and O = C[[t]]. A proof that this is represented by an ind-scheme can be found in lecture notes of

Görtz [Gör10].

Theorem 1.2.7 (Underived Geometric Satake [MV07]). There is an equivalence of abelian cat-

egories

Db
G(O)(GrG)♥ → Rep(G∨)

where Db
G(O)(GrG)♥ 5 is the abelian category of bounded complexes of G(O)-equivariant D-modules

on the affine Grassmannian, where G(O) acts by left multiplication, and where Rep(G∨) is the

category of finite-dimensional representations of G∨. The category Db
G(O)(GrG)♥ admits a monoidal

structure by convolution making this equivalence monoidal.

Mirkovic and Vilonen proved this theorem by showing that the category on the left-hand side is

neutral Tannakian, which – by a theorem of Deligne – means that it is equivalent to the category

of representations of a group scheme. By analysing the structure of the category on the left,

they show that this group scheme is actually a reductive algebraic group, then show that it has

irreducible representations parameterized by dominant coweights of G. This allows them to prove

that the unknown reductive group is actually isomorphic to the Langlands dual group G∨.

Remark 1.2.8. The name “geometric Satake” comes from an analogous theorem in number theory

called the Satake isomorphism. This theorem says that if K is a non-archimedean local field, and O

is its ring of integers, then the set of compactly supported functions on G(K) which are invariant for

the G(O) action on both sides can be naturally made into a ring isomorphic to the representation

ring of the Langlands dual group. This ring is called the spherical Hecke algebra of G.

5We’re writing ♥ here to indicate the heart of the natural t-structure.
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It’s natural to try to promote Mirkovic-Vilonen’s theorem to an equivalence of derived, or dg-

categories, but this turns out to be quite subtle. In particular, while it is possible to form the

derived categories of the abelian categories in theorem 1.2.7 and thus obtain an equivalence of

derived categories, the categories we obtain will not be the categories that naturally locally act

on the geometric Langlands categories. The correct derived version of the geometric Satake cor-

respondence was proven by Bezrukavnikov and Finkelberg [BF08], and is discussed at length by

Arinkin and Gaitsgory [AG12, section 12]. Specifically, they prove that a certain category of

sheaves on the “spectral Hecke stack”

Heckespec
G∨ = BG∨ ×g∨/G∨ BG

∨

is equivalent to the dg-category DG(O)(GrG) as monoidal categories, equipped with the convolution

monoidal structure. We’ll state the theorem here, but some of the notation won’t be introduced

until the next section.

Theorem 1.2.9 (Derived Geometric Satake [AG12, 12.5.5]). There is a canonical equivalence of

monoidal dg-categories

Sat : DG(O)(GrG)→ IndCohN (Heckespec
G∨ ).

To see why a statement of this form is natural, we’ll explain why these categories naturally act on

the geometric Langlands categories. We write D for SpecO, and D× for SpecK – the formal disk

and formal punctured disk. Denote by B the coproduct D tD× D obtained by gluing two formal

disks together along a formal punctured disk – the “formal bubble”. The derived geometric Satake
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correspondence is a local version of the geometric Langlands correspondence because

BunG(B) = G(O) \G(K)/G(O)

and LocG∨(B) ∼= LocG∨(D)×LocG∨ (D×) LocG∨(D)

∼= BG∨ ×g∨/G∨ BG
∨

= Heckespec
G∨

so derived geometric Satake provides an equivalence between D(BunG(B) and sheaves (of a sort

to be elaborated on below) on LocG∨(B).

If we choose a C-point x in Σ, gluing an extra formal neighbourhood near x allows us to form the

diagram

B

��

Σ×D×x D

Σ

;;

Σ

cc

of derived stacks, where the arrows are all given by the natural inclusions (there are two inclusions

Σ ↪→ Σ×D×x D corresponding to the two neighbourhoods of x). By taking algebraic G-bundles, or

flat G∨-bundles, this structure gives us diagrams of the form

BunG(B)

BunG(Σ×D×x D)

OO

ww ''

BunG(Σ) BunG(Σ)
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and

Heckespec
G∨

LocG∨(Σ×D×x D)

OO

ww ''

LocG∨(Σ) LocG∨(Σ).

Therefore, associated to any object in either DG(O)(GrG) or IndCohN (Heckespec
G∨ ), we obtain an

endo-functor of BunG(Σ) or LocG∨(Σ) by the natural convolution. This makes the geometric

Langlands categories into modules for the monoidal geometric Satake categories for each point

x ∈ Σ: we call these local operators at the point x.

With this structure, we can now say what was meant by the natural symmetries in conjecture 1.2.4.

The derived geometric Satake correspondence 1.2.9 makes both sides into modules for DG(O)(GrG),

say. We require that the geometric Langlands equivalence is an equivalence of module categories

for this structure.

Remark 1.2.10. V. Lafforgue [Laf09] deduced a version of the geometric Langlands correspon-

dence for Σ = P1 from the geometric Satake correspondence. He showed that the geometric

Langlands categories for P1 are torsors for the geometric Satake categories. That is, if we choose

an object in the geometric Langlands category, the action of the geometric Satake category on

this object defines an equivalence of dg-categories. Lafforgue’s result was not quite of the form

of theorem 1.2.9, but instead used an equivalence between QC(LocG∨(B)) and a subcategory of

D(BunG(B)) of objects satisfying a support condition.

1.2.3. Arinkin and Gaitsgory’s Conjecture

In this section we’ll explain a corrected form of the geometric Langlands conjecture due to Arinkin

and Gaitsgory [AG12], and using the derived geometric Satake correspondence described above.
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Arinkin and Gaitsgory’s correction is motivated by compatibility with an additional piece of struc-

ture that the geometric Langlands correspondence should possess: compatibility with geometric

Eisenstein series functors.

Let P ⊆ G be a parabolic subgroup, and let L = P/U be the associated Levi subgroup, where U

is the unipotent radical of P . One can construct a natural functor between the categories on the

automorphic side of the Langlands correspondence for the groups L and G.

Definition 1.2.11. The geometric Eisenstein series functor EisP : D(BunL(Σ)) → D(BunG(Σ))

is the pull-push operator p!q
∗ of D-modules associated to the diagram

BunP (Σ)
q

xx

p

&&

BunL(Σ) BunG(Σ).

This functor has a Langlands dual: there is a parabolic P∨ ⊆ G∨ whose associated Levi subgroup

is L∨ allowing us to make the following definition.

Definition 1.2.12. The geometric Eisenstein series functor EisP
∨

spec : QC(LocL∨(Σ))→ QC(LocG∨(Σ))

is the pull-push operator pspec,∗q
!
spec of sheaves associated to the diagram

LocP∨(Σ)
qspec

xx

pspec

&&

LocL∨(Σ) LocG∨(Σ).

An expected property of the geometric Langlands correspondence, motivated by an example of

Langlands functoriality in number theory, is that it intertwines these two geometric Eistenstein

series functors. However, there’s an immediate problem with this condition: the automorphic

Eisenstein functor sends compact objects to compact objects (this was proven by Drinfeld and
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Gaitsgory [DG11]), but the spectral functor does not. Therefore there cannot exist an equivalence

as in the best hope conjecture 1.2.4 that intertwines the Eisenstein series functors.

The first step we will therefore take, following Arinkin and Gaitsgory, is to replace quasi-coherent

sheaves by “ind-coherent sheaves”. The category IndCoh(X) of ind-coherent sheaves is the ind-

completion of the category of coherent sheaves on X (as discussed extensively by Gaitsgory, e.g.

in [Gai11a]). The main advantage to this step is that the structure of IndCoh, for example the pull

and push functors associated to morphisms of stacks, is better behaved than that of QC on singular

stacks, such as LocG(Σ). For instance, for IndCoh but not QC there is a !-pullback functor right

adjoint to the *-pushforward which sends compact objects to compact objects. The motivation for

this modification is extensively discussed in Gaitsgory’s article on the subject [Gai11a], as well as

by Arinkin and Gaitsgory.

This modification fixes the problem with compact generation, but we know by analysis of the exam-

ple of P1, as demonstrated by V. Lafforgue and discussed in the previous section, that the category

IndCoh(LocG∨(Σ)) is too large to be equivalent to D(BunG(Σ)). Arinkin and Gaitsgory used the

theory of singular support to fix this, by finding a minimal subcategory of IndCoh(LocG∨(Σ))

where the geometric Eisenstein series functor is well-behaved. This subcategory is generated by

the images of QC(LocL∨(Σ)) under the geometric Eisenstein series functors, using a suitable (not

the näıve) embedding of QC in IndCoh [AG12, Corollary 13.3.9].

Theorem 1.2.13 ( [AG12, Corollary 13.3.9]). The category QC(LocG∨(Σ)) and the images of

QC(LocL∨(Σ)) under the geometric Eisenstein series functors for proper parabolic subgroups to-

gether generate the category of ind-coherent sheaves on LocG∨(Σ) with nilpotent singular support.

The singular support of a sheaf in IndCoh(X) is a conical Zariski-closed subset of the degree 0

part of the shifted cotangent bundle Sing(X) = H0(T ∗[−1]X) (the scheme of singularities of X).

Arinkin and Gaitsgory introduce the notion of support for an arbitrary triangulated category acted

on by a dg-algebra, based on work of Benson, Iyengar and Krause [BIK08]. The singular support
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of an ind-coherent sheaf is its support as a module for the even Hochschild cohomology of X, which

receives a canonical map from O(Sing(X)).

In the case where X = LocG∨(Σ), the scheme of singularities can be described explicitly. Its set

of closed points looks like

Sing(LocG∨(Σ)) = {(P,∇, φ) : (P,∇) ∈ LocG∨(Σ) and φ is a flat section of gP }.

This is, the subcategory of sheaves with nilpotent singular support is the full subcategory of sheaves

whose singular support lies in the global nilpotent cone, i.e. the conical subspace of Sing(LocG∨(Σ))

where φ is required to be nilpotent.

Remark 1.2.14. This subcategory can be (partially) motivated number theoretically, which

Arinkin and Gaitsgory describe in the introduction to their paper. In the Langlands reciprocity

conjecture, as we mentioned in remark 1.2.2, one may have to choose not just a Galois representa-

tion, but also a homomorphism SL(2;C)→ G∨. In particular, this homomorphism corresponds to

a choice of nilpotent element in the Lie algebra g∨ (the image of the standard element e ∈ sl(2;C)).

Thus, when one develops a geometric analogue of the spectral side of the Langlands correspondence

one guesses that one needs not only to choose a flat G∨-bundle, but also a nilpotent section. The

category of ind-coherent sheaves automatically includes this data, as the singular support lies in

the stack parameterising such data, but the condition of nilpotence has to be imposed by hand.

1.3. The Approach of Kapustin and Witten

In this section I’ll review some of the main ideas in Kapustin and Witten’s work [KW06] drawing

an explicit bridge between S-duality for N = 4 Yang-Mills theory and the geometric Langlands

correspondence. We can split the approach into several steps.

(1) First, N = 4 theories admit a family of topological twists indexed by points in the Riemann

sphere CP1. S-duality interchanges these twisted theories by acting by the antipodal map,
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not on the sphere indexing twists, but on a sphere indexing a rational combination of the

twisting parameter and the coupling constant. Kapustin and Witten call this combined

parameter the canonical parameter, denoted by Ψ. Twisted theories at the special values

Ψ = 0 and ∞ are independent of the coupling constant.

(2) S-duality between twisted theories corresponding to these special values reduces to a

duality of the 2-dimensional topological quantum field theories obtained by compactifying

on a Riemann surface Σ. These theories coincide with the A- and B-models with target

the Hitchin system, equipped with two different complex structures.

(3) Thus, S-duality exchanges A-branes and B-branes on the Hitchin moduli space, in these

two structures, and for Langlands dual gauge groups. The categories of A- and B-branes

can be identified with D(BunG(Σ)) and QC(LocG∨(Σ)) respectively, so S-duality provides

an equivalence of these categories.

(4) After choosing a point x in Σ, there is an action of line operators through x in the two

twisted theories on the categories of boundary conditions, and S-duality intertwines these

two actions. These actions can be identified with the action of Hecke operators and

tensoring operators respectively.

From a mathematical point of view, there are many parts of Kapustin and Witten’s work which

are unsatisfying (beyond the fact that non-perturbative quantum field theories like N = 4 super

Yang-Mills aren’t currently objects with a complete mathematical model). We’ll discuss some of

these issues below.

1.3.1. The Family of Kapustin-Witten Twists

Witten introduced the notion of a topological quantum field theory, and of a topological twist of

a classical or quantum field theory in the context of N = 2 gauge theories [Wit88a], though

the physical perspective on twisting was algebraically formalized by Eguchi and Yang [EY90].

A theory is called topological if its observable quantities depend only on spacetime as a smooth
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manifold and not, for instance, on a choice of metric. This might, but needn’t necessarily, arise

because the action functional is manifestly metric independent. Witten’s idea was that, on flat

spacetime, topological field theories can be constructed from general theories whenever there’s

a symmetry Q such that all translation symmetries are of the form [Q,Q′] 6, by passing to the

Q-cohomology of the observables. In this twisted theory all translations necessarily act trivially,

making the theory necessarily metric independent, and such theories can be extended to metric

independent theories on curved spacetimes. We’ll discuss what it means to twist a classical field

theory on Rn, in a general, abstract setting, in chapter 8.

The main source of symmetries Q to twist by is supersymmetry. By analysing supersymmetry

algebras one can identify exactly which supersymmetries have the desired property – that all

translations are Q-exact – and therefore characterise the possible twists of supersymmetric clas-

sical field theories. Kapustin and Witten identified one particular family of twists in the N = 4

supersymmetry algebra indexed by CP1. That is, they identified two linearly independent sym-

metries QA and QB such that any linear combination λQA + µQB has the desired property. The

twisted theory only depends on Q up to scale, so we can think of these twists as varying in a CP1.

Denote the choice of twist by a parameter t in the projective line.

It will be convenient to combine t and the coupling constant for our super Yang-Mills theory. If

τ = θ
2π + i4π

e is the complexified coupling constant, we define the canonical parameter Ψ by

Ψ =
τ + τ

2
+
τ − τ

2

(
t− t−1

t+ t−1

)
.

Kapustin and Witten argue that the twisted theory does not depend on t and τ independently,

but only on this complexified coupling constant. Further, they argue that S-duality interchanges

twisted gauge theories with antipodal values of the parameter Ψ, i.e. it exchanges theories with

dual gauge groups, and parameters Ψ and − 1
Ψ

7.

6Witten expressed this in slightly different language: he talked about the stress-energy tensor being Q-exact.
7Strictly speaking this is only correct when G is simply laced. For general groups S-duality is expected to exchange
parameters Ψ and − 1

ngΨ
where ng is the lacing number: the ratio of the lengths of a longest and shortest root.
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From the point of view of geometric Langlands, we’ll be interested particularly in the special values

Ψ = 0 and ∞. We observe, from the definition of Ψ, that when Ψ = ∞ then t = ±i, and τ is

unconstrained. Likewise, if Ψ = 0 then if we additionally suppose that θ = 0 then t = ±1 and e is

unconstrained. So, if we don’t introduce a topological term into our theory these special twisted

theories are independent of the coupling constant e.

1.3.2. Compactification to Two Dimensions

Kapustin and Witten’s second idea is to consider the compactification of these twisted theories

along a compact Riemann surface Σ, and identify the resulting two-dimensional theories as topo-

logically twisted supersymmetric sigma-models with a certain, interesting, target. The idea of

compactification is straightforward: given a fibration p : X → Y and a classical field theory on

X, we obtain a classical field theory on Y whose phase space on an open set U ⊆ Y is the phase

space of the original theory on p−1(U) (we discuss this at the beginning of chapter 9). While the

original N = 4 theory was only defined on flat space, after twisting it makes sense on a more

general 4-manifold. In particular, one can define the twisted theories on Σ × U , and compactify

along the projection Σ× U → U .

The 2d theories one obtains are very interesting from the point of view of geometric representation

theory. Kapustin and Witten argue that the compactification of the CP1 of topologically twisted

N = 4 theories along this map is a CP1 of topologically twisted N = (2, 2) supersymmetric sigma

models whose target is MG(Σ): the Hitchin moduli space. The twisted theories depend on a

choice of Kähler structure on this moduli space. This Kähler structure also varies in the CP1 of

available structures (since the Hitchin space is hyperkähler) as Ψ varies.

At the special points Ψ = 0 and ∞, the structures one chooses identify MG(Σ) with the moduli

space T ∗BunG(Σ) of Higgs bundles on Σ, and the the moduli space LocG(Σ) of principal G

bundles with flat connection respectively. The twisted theories one obtains at these special points
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are the A- and B-models respectively, first defined by Witten in 1988 [Wit88b]. Therefore after

twisting and compactification, S-duality relates the A-model with target T ∗BunG(Σ), and the

B-model with target LocG∨(Σ). These moduli spaces are supposed to be T-dual, so S-duality

has compactified to T-duality, or mirror symmetry (Strominger, Yau and Zaslow explained the

relationship between these two concepts [SYZ96]) for the Hitchin fibration. Viewing geometric

Langlands as a consequence of (homological) mirror symmetry for the Hitchin fibration pre-dates

the work of Kapustin and Witten: it was first proposed by Hausel and Thaddeus [HT03], and has

been further pursued by Donagi and Pantev [DP12] who proved a classical limit of the geometric

Langlands correspondence from this point of view.

1.3.3. Branes and Line Operators

It remains to explain how to recover the categories that appear in the geometric Langlands corre-

spondence from these 2d quantum field theories. Kapustin and Witten argue that these categories

occur as categories of branes in the two theories, i.e. A-branes for the stack T ∗BunG(Σ), and

B-branes for LocG∨(Σ).

The notion of a brane in a quantum field theory is, heuristically, an enhancement of the näıve

idea of a boundary condition. In a classical field theory, for the moment viewed as a system of

differential equations, one can consider the set of possible boundary conditions for solutions to

the equations of motion on a manifold with boundary (for 2d theories one generally considers a

half-plane). In addition one can imagine coupling the equations of motion to an auxilliary theory

defined on the boundary (see for instance [HKK+03, Chapter 19] for a discussion of what this

means).

Given a pair of branes B1,B2 in an n-dimensional quantum field theory associated to an (n− 2)-

manifold M , one can consider the Hilbert space HB1,B2 of states on M × [0, 1] where one imposes

the boundary conditions and couples to the boundary theories associated to B1 and B2 on the two
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boundary components. What’s more, gluing together states on two such manifolds yields a linear

map HB1,B2 ⊗ HB2,B3 → HB1,B3 . The idea (due, in the physics literature, to Douglas [Dou01])

is that these Hilbert spaces and structure maps will combine to form a linear category of branes,

where HB1,B2 is the space of morphisms from B1 to B2.

An alternative – more mathematically rigorous – perspective is provided by the notion of extended

topological quantum field theory, as developed most notably by Lurie [Lur09b], following ideas

of Lawrence, [Law93], Freed and Quinn [FQ93, Fre93] and Baez and Dolan [BD95]. In an

extended n-dimensional TQFT, one associates a category, thought of as the category of branes

along a specified boundary type, to an n− 2-manifold, so in particular in two dimensions there is

a unique category associated to the point. According to the cobordism hypothesis (see [Lur09b])

the entire 2d TQFT can be reconstructed from the data of the category associated to the point.

We do not expect that the two-dimensional theories described above quite fit into this mathematical

framework – they do not appear to be truly topological in the mathematical sense. One expects

that they might be something more like “topological conformal field theories” in the sense of Eguchi

and Yang [EY90], and indeed Costello has demonstrated how to construct TCFTs from A- and

B-models [Cos07]. However, for targets like LocG∨(Σ), which is neither smooth nor compact, even

this structure is likely to be too strict. I’ll discuss some approaches to axiomatizing these quantum

theories, especially on the B-side, in chapter 12.

So, accepting for now that we won’t be rigorously defining the categories of branes in our theories,

what should we expect the categories to be, from a physical point of view? On the B-side there’s

a standard answer: the derived category of coherent sheaves (on the target of the sigma model).

There are basic B-branes corresponding to Dirichlet boundary conditions – imposing the condition

that the support of a field should land in a certain (complex, closed) subspace of the boundary. By

coupling to a gauge theory on the boundary these objects also involve a choice of vector bundle

over this subspace. The category of coherent sheaves is therefore viewed as a natural category of

fundamental B-branes, containing in particular the pushforwards of vector bundles along closed
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embeddings. Douglas [Dou01] gave a physical motivation for the appearance of the derived

category, as proposed by Kontsevich as part of his homological mirror symmetry conjecture. One

problem with this approach from the mathematical point of view is that it’s not clear how to

distinguish categories that differ in their “functional analysis”, by which I mean that it’s hard

to motivate the different between perfect, quasi-coherent, coherent and ind-coherent complexes of

sheaves: one must simply make a choice, which may not be compatible with duality.

On the A-side, there are also standard objects corresponding to Dirichlet boundary conditions

associated to Lagrangian subspaces of the target, coupled to a certain kind of gauge theory. The

usual physical argument says that the Hilbert spaces in the A-model associated to a pair of branes

are given by Floer cohomology groups, and therefore the category of A-branes is a version of the

Fukaya category. In Kapustin and Witten’s paper, they argue that in fact, in the case of the

theory dimensionally reduced from 4-dimensions, one can identify the category of A-branes with

the category of D-modules on BunG(Σ), roughly by identifying this category with the category of

modules for a “canonical coisotropic brane”, then identifying this brane with the sheaf of differential

operators. Of course, just as on the B-side there are issues of functional analysis: one must choose

exactly what category of modules one considers.

We observe that the equivalence that S-duality implies agrees with the equivalence we’re led to

by homological mirror symmetry. While the category on the A-side of mirror symmetry is a

version of the Fukaya category, a theorem of Nadler-Zaslow [NZ09] and Nadler [Nad09] provides

an equivalence between a version of the Fukaya category of the cotangent bundle T ∗X of a real

analytic manifold and the category of D-modules on X. As such, either S-duality for twisted

N = 4 gauge theories or mirror symmetry for twisted supersymmetric sigma models leads to the

geometric Langlands conjecture, at least in its “best hope” form.

Kapustin and Witten also explained how one of the most important pieces of structure in the

geometric Langlands conjecture arise from 4d gauge theory: the action of the local categories – of

Hecke and tensoring operators – at a point x ∈ Σ as we discussed in section 1.2.2 above. They
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argued that this action corresponds to the action of line operators along a line orthogonal to Σ

through x. Specifically, they argue that the category Rep(G∨) is equivalent to the category of

Wilson operators in the B-twisted theory, and that the spherical Hecke category is equivalent to

the category of ‘t Hooft operators in the A-twisted theory. It’s worth noting that this description

is natural from the point of view of 4d supersymmetric gauge theory, not from the point of view

of the dimensionally reduced 2d theory; this is one of the main advantages of thinking of geo-

metric Langlands as originating from S-duality of 4d gauge theories, rather than T-duality of 2d

supersymmetric sigma models into the Hitchin system.

1.3.4. Remaining Mathematical Questions

Although Kapustin and Witten’s argument is deep and inspiring, there are problems that must be

addressed in any mathematical approach to the study of the geometric Langlands program that

draws from it.

(1) We’ve already hinted at one problem, when we talked about “functional analysis” issues

with the definition of the category of B-branes above. Kapustin and Witten’s approach

suggests an equivalence along the lines of the “best hope” conjecture 1.2.4. However, as

we saw, the best hope conjecture is false, and to make a plausible conjecture one needs to

modify the categories of sheaves one uses, for example in the way proposed by Arinkin and

Gaitsgory that we discussed in section 1.2.3. Correcting this involves making appropriate

functional analytic choices in the construction of the categories of branes, but it appears

that one must make different choices on the two sides of S-duality. We discuss some ideas

and work in progress towards this aim in chapter 13.

(2) The whole story discussed by Kapustin and Witten fundamentally lives in the world

of analytic geometry, for instance their A-branes are D-modules on the moduli space

of analytic G-bundles on a Riemann surface. For this reason, they don’t distinguish

between the moduli spaces of flat connections and of local systems, which are not complex
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algebraically isomorphic. On the other hand, the categories in the geometric Langlands

correspondence do depend on the algebraic structure of an algebraic curve, in a way that

the character variety, or more generally the moduli stack of G-local systems, does not. As

such, we can’t expect to deduce the geometric Langlands correspondence as it’s usually

stated from Kapustin and Witten’s arguments without some additional, algebraic, input.

We address this issue in part 2 of this thesis, in which we construct the classical moduli

spaces of the Kapustin-Witten twisted N = 4 theories as derived algebraic stacks. In

particular, we recover the moduli spaces that appear in the geometric Langlands program

from a classical field theoretic construction, complete with their algebraic structures. We

see an interesting phenomenon occur: the N = 4 theories naturally splits into 2 + 2

(real) directions, namely the directions we dimensionally reduce along and the remaining

directions. The theory we construct involves a choice, as to whether to think of these

directions as complex algebraic (de Rham directions), or as real and topological (Betti

directions). From a physical point of view it is most natural to keep all the directions de

Rham. To recover the usual geometric Langlands correspondence it seems most natural

to make two of the directions Betti (though we don’t have a good physical motivation for

this). One might try making all four directions Betti: we expect that the resulting story

will correspond to the “Betti Langlands” correspondence recently proposed by Ben-Zvi–

Nadler [BZN16] and Ben-Zvi–Brochier–Jordan [BZBJ15].

1.3.5. Extensions and Generalizations

The ideas of Kapustin and Witten’s paper have been extended and elaborated upon in many ways

since their 2006 paper, by both of the authors along with many other researchers. In this section

we’ll discuss a few of those elaborations, especially those that are particularly relevant either for

the geometric Langlands program or for the topics presented in this thesis.
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One extremely important topic which, so far, we’ve barely addressed, is the idea of ramification.

From the geometric point of view ramification means that we allow not just ordinary G-bundles on

Σ, but also those with some kind of singularity at a discrete set of points. The simplest possibility

is that these singularities are simple poles, so that – for instance – flat sections have polynomial

growth near a pole (we say that the bundles have parabolic structure at a finite set of points). This

type of ramification is called tame, and is analogous to the condition in number theory that the

Langlands parameter Gal(F/F ) → G∨ factors through the quotient of the Galois group by the

wild inertia.

Gukov and Witten [GW06] described an extension of the S-duality approach to geometric Lang-

lands to explain a form of the geometric Langlands correspondence with tame ramification. They

discuss S-duality in the presence of certain surface operators along surfaces N transverse to the

Riemann surface Σ. Classically, these operators are ‘t Hooft type operators, where one imposes

that the scalar field corresponding to the Higgs field has a simple pole along N , with a fixed residue.

In the dimensionally reduced quantum theory, this has the result of replacing the Hitchin system

in the target of the supersymmetric sigma model with a different moduli space, with parabolic

structure at a finite set of points. Gukov and Witten argue that S-duality interchanges such theo-

ries with different residues; the theory they discuss is reminicent of Simpson’s non-abelian Hodge

theory on curves with parabolic structure [Sim90]. Gukov and Witten also discuss local operators

in the tamely ramified theory. This theory has been studied (on the A-side) in geometric repre-

sentation theory by Gaitsgory [Gai01], who described the action of unramified local operators on

tamely ramified local operators.

Witten also has a proposal which would allow the analysis of duality for more general “wild”

ramification (where we allow poles of order greater than one) [Wit08]. Witten’s idea is to generalise

the above by introducing surface operators along 2-manifolds N where now one prescribes the Higgs

field φ to have a singularity along N which has not just a fixed residue, but a fixed z−k term for
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1 ≤ k ≤ n, required to land in a fixed Cartan subalgebra of the gauge Lie algebra. These higher

order residues have an interpretation in terms of Stokes data.

In a different direction, but more directly relevant for this thesis, Kapustin [Kap06] described

an N = 2 version of the Kapustin-Witten argument discussed in this section. He investigated a

particular twist which is self-dual and holomorphic-topological, i.e. topological in two directions

and holomorphic in the other two. We use twists of this form in an essential way in our approach

to the A-twist in section 10.3. We also discuss some ideas regarding the extension of this approach

to geometric Langlands to N = 2 theories, and connections to Gaiotto duality for theories of class

S in chapter 14.

Finally, we should mention the 2010 work of Kapustin, Setter and Vyas [KSV10], in which they

give descriptions of the full categories of line and surface operators in the B-twisted N = 4 theory,

and in the abelian A-twisted theory (see also the thesis [Set13] of K. Setter).

1.4. Outline of this Thesis

The first part of the thesis is concerned with abelian duality. We will define factorization algebras of

quantum observables in generalized Maxwell theories, and prove the existence of a correspondence

between dual theories that preserve the expectation values of observables. In chapter 3 we begin

by describing the general formalism we use to construct the factorization algebra of quantum

observables, starting from a sheaf of fields and an action functional. This formalism (based on that

of Batalin-Vilkovisky) was developed by Costello and Gwilliam [CG15] [Gwi12] as a formulation

of quantization techniques common in the physics literature (described for instance in Witten’s

expository note [Wit90]) as homological algebra. While we only use the theory for free theories

here (their methods can also be used to study the perturbative parts of interacting theories), we do

need to allow for spaces of fields that are neither linear nor connected, so we go over the formalism

with a certain amount of care.
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Having set up the abstract theory we construct the main objects of study in chapter 4: the

factorization algebras of observables in generalized Maxwell theories. These are free quantum field

theories whose fields model connections on higher principal torus bundles, whose action functional

generalises the Yang-Mills action. These theories are closely related to simpler free theories – where

the fields are just p-forms and the action is just the L2 norm – by mapping a connection to its

curvature. Observables of interest (such as Wilson and ’t Hooft operators in abelian Yang-Mills)

factor through the curvature, so in a sense “come from” this simpler theory. As such we can prove

results about the expectation values of observables purely in the world of curvatures.

The theory of expectation values arises naturally from the factorization algebra formalism. In

chapter 5 we describe how to abstractly define expectation values of gauge invariant observables

by viewing the observables as living in a cochain complex with canonically trivialisable cohomol-

ogy. To compute expectation values we use classical physical techniques: Feynman diagrams and

regularization. Since the theory is free these methods are very well-behaved, and encode results

about convergent sequences of finite-dimensional Gaussian integrals.

To conclude the first part, in chapter 6 we introduce abelian duality for observables in our theories

as a Fourier dual. This also admits a diagrammatic description, but we prove that duality preserves

expectation values using a Plancherel’s theorem at each regularized level. It is worth remarking

that there are three different “levels” of factorization algebra necessary to make sense of Fourier

duality for observables in the generalized Maxwell theory. The dual itself is defined for a theory

where the fields consist of all p-forms, but at this level duality doesn’t preserve expectation values.

An observable in this theory restricts to an observable in a theory where the fields consist of

only closed p-forms and at this level duality does preserve expectation values. However in order to

define a dual we now need to choose an extension from an observable acting on closed p-forms to an

observable acting on all p-forms. We can phrase this in terms of a correspondence of factorization

algebras: observables are called incident if they are the images of the same observable under a

pair of restriction maps (to the closed p-form theory and its dual). The third level is that of the
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generalized Maxwell theory we’re really interested in. On an open set we can construct a map from

observables in the closed p-form theory to observables in the generalized Maxwell theory, which

is an isomorphism of local sections of the factorization algebra if the open set is contractible, for

instance. This gives us a way of defining a dual of a local observable in the original generalized

Maxwell theory.

The second part of the thesis deals with N = 4 super Yang-Mills theory specifically. We describe

a construction, now classically, of twists of N = 4 theories that include Kapustin and Witten’s

P1 of topological twists, and prove that the moduli spaces of solutions to the classical equations

of motion in these theories recover the moduli spaces that appear in geometric Langlands. We

begin in chapter 8 by setting up the formalism for twists of supersymmetric field theories that

we’ll use in the rest of the document. We describe the N = 4 supersymmetry algebra in four

dimensions and its square-zero supercharges: the holomorphic supercharges for which half of the

translations are exact, and the topological supercharges for which all the translations are exact.

In particular, we’ll describe the A and B topological supercharges whose corresponding twists

are discussed by Kapustin and Witten. The A supercharge is approximated by a C× family

of holomorphic-topological supercharges for which three translation directions are exact. After

performing a holomorphic twist all of these supercharges admit descriptions as vector fields on

a superspace of form C2|3, which we’ll describe, allowing us to generalize the twisted theories to

classical field theories on curved manifolds. The background on supersymmetry algebras which we

refer to is reviewed in appendix A.

We proceed by defining classical field theories, both locally and globally, in the language of derived

algebraic geometry. We discuss what it means to twist a classical field theory by an action of the

supergroup C×nΠC: examples of such twisting data arise naturally from square-zero supercharges

in a supersymmetric field theory. Twists of non-perturbative field theories are defined as one-

parameter deformations that are compatible with the perturbative twists described by Costello

[Cos11a] when we restrict to the tangent complex. There are natural constructions of twists
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using results of Gaitsgory and Rozenblyum that identify derived stacks with formal maps from a

base derived stack X with Lie algebroids on X .

In chapter 9 we review the main constructions of N = 4 supersymmetric gauge theories. We begin

by introducing the language of compactification and (informally) dimensional reduction for classi-

cal field theories. The first construction is sketched at a lower level of rigor: dimensional reduction

from N = 1 super Yang-Mills theory on R10. More rigorous is the construction by compactifi-

cation from holomorphic Chern-Simons theory on N = 4 twistor space, although there are still

subtleties stemming from the non-holomorphicity of the relevant twistor map. We review some

background from twistor theory, and then prove that the linearized BV complex in holomorphic

Chern-Simons yields the linearized BV complex of N = 4 anti-self-dual super Yang-Mills theory

under compactification.

The main results of the second part appear in chapter 10, where we compute the holomorphic,

B- and A-twists of N = 4 super Yang-Mills theory as derived stacks, beginning from the twistor

space perspective. We find the following

Theorem 1.4.1. The moduli space of germs of solutions to the equations of motion in the B-twist

of N = 4 super Yang-Mills near Σ× S1, where Σ is a compact curve, is equivalent to

EOMB(Σ× S1) ∼= T ∗(LLocG(Σ))

as a 0-shifted symplectic derived stack, where LLocG(Σ) is the derived loop space of LocG(Σ).

Theorem 1.4.2. The moduli space of germs of solutions to the equations of motion in the A-twist

of N = 4 super Yang-Mills near Σ× S1, where Σ is a compact curve, is equivalent to

EOMA(Σ× S1) ∼= T ∗((LBunG(Σ))dR)

as a 0-shifted symplectic derived stack, where XdR is the de Rham prestack of X.
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We conclude with a discussion of work in progress, and future directions related to both of these

themes. In section 11 we discuss extensions of the theorem of part 1 to include supersymmetric

abelian gauge theories, in particular in dimension 4. Duality for such theories should have the

abelian version of the geometric Langlands correspondence, sometimes called “geometric class field

theory” as a consequence, provided one can properly understand the interaction between duality

and the twisting parameters. In section 12 we discuss approaches to constructing topological

quantum field theories from the topological classical field theories discussed in part 2, and in

particular how one should obtain the Hochschild homologies of the categories on the two sides of

the geometric Langlands correspondence as the Hilbert spaces of these dual theories. In section 13

we discuss current work in progress explaining the appearance of the singular support conditions

in Arinkin and Gaitsgory from a physical point of view, by restricting attention to boundary

conditions compatible with a particular choice of vacuum condition. Finally in section 14 we

discuss some ideas, currently very speculative, regarding how Gaiotto duality for theories of class

S should yield new conjecture in geometric representation theory.

1.5. Conventions

It will be necessary, mainly for the second part of this thesis, to fix some conventions and notation

regarding derived algebraic geometry. Throughout this paper we’ll work with (∞, 1)-categories,

where between two objects one has a topological space – or a simplicial set – of morphisms. We

won’t use any model-dependent arguments, but to be concrete one may consider the formulation

in terms of quasi-categories, which is most extensively developed by Lurie [Lur09a]. Henceforth,

we will usually just say category when we mean an (∞, 1)-category, use the word functor to mean a

functor of (∞, 1)-categories, and a limit for a limit in (∞, 1)-categories, and so on, unless otherwise

specified. As is usual in the subject, there are a lot of technicalities which must be stated in order

to make subtle arguments, most of which we will omit when possible for simplicity.
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Also throughout the paper (from chapter 4 on) we’ll work over the complex number field C,

although most of the formal arguments would proceed under more relaxed hypotheses.

We won’t offer an extensive exposition for the framework of derived algebraic geometry that we’ll

use. This is justified partially because our arguments are mainly formal, not using any deep result

of algebro-geometric content, and also because there are a few great references, for instance due

to Gaitsgory [Gai11b] [Gai11c] and Toën [Toë05] [Toë14]. For the reader’s convenience, in

appendix B we provide a summary of the aspects of formal derived algebraic geometry that we

take advantage of throughout.

• By a (super) cdga R we’ll always mean a (super) commutative differential graded algebra

over C. We denote the category of such by cdga. We also consider the functor (of ordinary

categories) (−)\ : cdga → cdga by R 7→ R\, where R\ is the underlying graded commu-

tative algebra obtained after forgetting the differential. We use cohomological grading

with respect to which we introduce the full subcategory cdga≤0 ⊂ cdga of cdgas whose

cohomology is concentrated in non-positive degrees. We denote the opposite category to

cdga≤0 by dAff, the category of affine derived schemes, considering an object R ∈ cdga≤0

as the ring of functions on the space SpecR. In particular, a classical affine scheme is an

affine derived scheme.

• By a derived scheme, we mean a ringed space (X,OX) where OX is a sheaf valued in

cdga≤0 such that (X,H0(OX)) is a classical scheme and H i(OX) is a quasicoherent sheaf

over the scheme (X,H0(OX)). By definition, a scheme or an affine derived scheme forms

a derived scheme in an obvious manner and a derived scheme yields a classical scheme

as its classical truncation Xcl := (X,H0(OX)). Note that an affine derived scheme could

have been defined to be a derived scheme whose classical truncation is an affine scheme.

We call the category of derived schemes dSch.

• A prestack X is a functor

X : cdga≤0 → sSet,
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where sSet is the category of simplicial sets. A derived stack is a prestack satisfying

a descent condition with respect to the étale topology and we denote the category of

derived stacks by dSt. In particular, any simplicial set provides a constant derived stack,

and any derived scheme defines a derived stack by its functor of points. That is, if X

is a derived scheme we define the corresponding derived stack whose R-points are the

simplicial set whose i-simplices are HomdSch(Spec(R ⊗ Ω•alg(∆i)), X), where Ω•alg(∆i) is

the ring of algebraic de Rham forms on the standard i-simplex ∆i. The reduced part X red

of a prestack X is the functor cRingred → sSet from reduced commutative rings obtained

by the restriction along the functor cRingred → cdga≤0.

• A derived stack is a derived 0-Artin stack if it is an affine derived scheme. A derived stack

is a derived n-Artin stack if it is realized as a colimit over a smooth groupoid of derived

(n − 1)-Artin stacks. A derived stack is called a derived Artin stack if it is a derived

n-Artin stack for some n. For arguments involving shifted symplectic structures we’ll

need to restrict attention to derived Artin stacks which are locally of finite presentation.

This ensures that the cotangent complex is perfect, hence dualizable.

• For any two derived stacks X , Y, one can define the mapping stack Map(X ,Y) : dAffop →

sSet by U 7→ MapdSt(X × U, Y ). As an example of a mapping stack, one defines the

k-shifted tangent space T [k]X of X to be T [k]X := Map(SpecC[ε],X ), where ε is a

parameter of cohomological degree −k with ε2 = 0. As another example, we define

the loop space LX := Map(S1
B, X), where the Betti circle S1

B is the simplicial set S1

understood as a derived stack.

• For a derived stack X , one defines its category QC(X ) of quasicoherent sheaves as the

limit

QC(X ) := lim
U∈(dAff/X )op

QC(U)

over the opposite category (dAff/X )op of the category of affine derived schemes over X ,

where QC(SpecR) is defined to be the category R-mod of dg modules over R. Similarly,

one defines the category Perf(X ) of perfect complexes using finitely generated dg-modules,
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and the category Coh(X ) of coherent sheaves using bounded complexes with coherent

cohomology. Finally, one defines the category IndCoh(X ) of ind-coherent sheaves on X

as the ind-completion of the category Coh(X ).

• Every derived Artin stack X admits a cotangent complex LX ∈ QC(X ) [TV08][2.2.3.3].

Since X is assumed to be of locally finite presentation, LX is a perfect complex and

hence dualizable, allowing one to define the tangent complex TX := L∗X . We can recover

this tangent complex from the previously defined notion of the tangent space T [k]X

[TV08][1.4.1.9]. The shifted tangent complex TX [k] is obtained as the limit of the objects

T [k]X ×X U over all U ∈ dAff/X , each of which is affine and finitely generated over U so

lies in Perf(U), and therefore the limit defines an object in Perf(X ). One can then define

the k-shifted cotangent stack as the relative spectrum T ∗[k]X := SpecX (Sym(TX [−k])).

• For a prestack X , we define its de Rham prestack XdR to be the functor R 7→ X (Rred).

For a map X → Y of prestacks, we introduce the formal completion Y∧X of Y along X

defined by Y∧X := XdR ×YdR
Y. Note that one recovers the usual notion when X → Y is

a closed immersion of ordinary schemes, justifying the name. If Y = pt, then one obtains

the de Rham prestack XdR. If Y = T ∗[k]X is the k-shifted cotangent stack, then we set

T ∗form[k]X := (T ∗[k]X )∧X for the formal neighborhood of X inside T ∗[k]X .

• A inf-scheme [GRb] is a prestack X whose reduced part X red is a reduced scheme,

and which admits deformation theory in the sense of [GRa] (in particular derived Artin

stacks locally of finite presentation admit deformation theory). A morphism X → Y of

prestacks is inf-schematic if the base change X ×Y SpecR by any affine derived scheme is

an inf-scheme. For instance, any map of prestacks X → Y induces an inf-schematic map

X → Y∧X .
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Part 1

Abelian Duality
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CHAPTER 2

Introduction and Motivation

The aim of this part is to give a detailed account of the phenomenon of S-duality in a very simple

situation, as a duality between families of free quantum field theories, in a way allowing explicit

understanding and computation of the local structure of the duality.

In the context of these generalized Maxwell theories, abelian duality refers to the following phe-

nomenon for generalized Maxwell theories on an n-manifold X:

Theorem 2.0.1. To every gauge invariant observable O in a degree k generalized Maxwell theory

with gauge group T , we can produce a gauge invariant dual observable Õ in the theory of degree

n− k and with gauge group T∨ such that the vacuum expectation values agree:

〈O〉R,T = 〈Õ〉 1
2R
,T∨ .

We do not require X to be compact, so abelian duality makes sense for local observables. As such

we describe abelian duality as a relationship between a pair of factorization algebras modelling

the local quantum observables in the quantum field theories. The duality is compatible with the

structure maps in the factorization algebras, but does not extend to a morphism of factorization

algebras because of an obstruction to defining a dual observable on non-contractible open sets,

where observables may not be determined purely by the curvature of a field. Instead duality arises

as a correspondence of factorization algebras.

Despite the theories being free, duality of observables is still a non-trivial phenomenon to inves-

tigate. The dual of a gauge-invariant observable can have a qualitatively different nature to the

original observable. For instance, in abelian Yang-Mills we verify that the dual of an abelian
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Wilson operator (a holonomy operator around a loop) is an ’t Hooft operator (corresponding to

imposing a singularity condition on the fields around a loop).
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CHAPTER 3

The BV Formalism for Free Field Theories

3.1. The Idea of the BV Formalism

The Batalin-Vilkovisky formalism (hereafter referred to as the BV formalism) gives a description

of the moduli space of solutions to the equations of motion in a classical field theory that is

particularly amenable to quantization. When we quantise following the BV recipe, we will see –

in the case of a free theory – that the Feynman path integral description of the expectation values

of observables naturally falls out. This quantization procedure admits an extension to interacting

theories: see [Cos11b] and [CG15] for details.

We start with a rough description and motivation of the classical BV formalism. In its simplest

form, a classical field theory consists of a space Φ of fields (often the global sections of a sheaf

over a manifold X which we call spacetime), and a map S : Φ → R: the action functional. The

physical states in this classical system are supposed to be those states which extremise the action,

i.e. the critical locus of S: the locus in Φ where dS = 0. This can be written as an intersection,

specifically as

Crit(S) = ΓdS ∩X

where ΓdS is the graph of dS in the cotangent bundle T ∗X, and X is the zero section. The classical

BV formalism gives a model for functions on the derived critical locus of S: that is, more than

just forming the pullback in spaces given by this intersection, one forms a derived pullback in a

homotopy category of spaces, and considers its ring of functions.

We can describe the ring of functions on the derived critical locus explicitly as a derived tensor

product by resolving O(ΓdS) as an O(T ∗X)-module. We choose the Koszul resolution. Explicitly
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this says:

O(ΓdS) ∼
(
· · · // O(T ∗X)⊗O(X)

∧2 TX // O(T ∗X)⊗O(X) TX // O(T ∗X)

)

where TX denote the module of vector fields, and the differential is extended from the map

O(T ∗X) ⊗O(X) TX → O(T ∗X) sending f ⊗ v to fv − fιdS(v) as a derivation with respect to

the wedge product Taking this complex and tensoring with O(X) we find the complex PV(X)

of polyvector fields on X, i.e. exterior powers of the ring of vector fields placed in non-positive

degrees, with the differential −ιdS from vector fields to functions extended to a differential on the

whole complex as a derivation for the wedge product. This model for functions on the derived

critical locus is the BV model for the algebra of classical observables in the Lagrangian field theory.

Now, we motivate the quantum BV formalism by means of a toy example. Let Φ be a finite-

dimensional vector space, and let S be a quadratic form on this vector space. In this toy example,

quantum field theory (in Euclidean signature) boils down to the computation of the Gaussian

integrals

〈O〉 =

∫
ΦO(φ)e−S(φ)/~dφ∫

Φ e
−S(φ)/~dφ

=
1

Z

∫
Φ
O(φ)e−S(φ)/~dφ

for polynomial functions O on Φ (writing Z for the normalizing factor
∫
e−S(φ)/~dφ). Here ~ is a

positive real number and dφ is a volume form on Φ. Equivalently, we can think of this as computing

the cohomology class of a top degree element Odφ in a twisted de Rham complex: the complex

of polynomial differential forms Ω∗poly(Φ) with differential d − 1
~(∧dS). Finally, contracting with

the top form dφ gives an isomorphism of graded vector spaces PV(Φ)[−dim Φ] → Ω∗(Φ), which

becomes an isomorphism of complexes when one gives the space of polyvector fields the differential

D− 1
~ ιdS , where D is the BV operator given by transferring the exterior derivative along the map

ιdφ. Concretely, let x1, . . . xn form a basis for Φ, and let ∂1, . . . , ∂n be the corresponding basis on
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T0Φ. Say dφ = dx1 ∧ · · · dxn. Then

D =

n∑
i=1

∂

∂xi

∂

∂(∂i)
.

If Φ is infinite-dimensional then we can no longer immediately make sense of the original Gaussian

integral (though we can compute it as a suitable limit), nor of “top” degree forms in the twisted de

Rham complex. But the complex PV(Φ) in degrees ≤ 0 and the differential D − 1
~ ιdS still makes

sense, and we can still compute the cohomology class of a degree zero element, thus defining its

expectation value directly. What’s more, we see that, considering instead the isomorphic complex

with differential ~D − ιdS , in the “classical” limit as ~ → 0 we recover the BV description of

the algebra of classical observables. So this explicitly gives a quantization of that algebra. This

quantization is no longer a dg-algebra: the Leibniz identity receives a correction term proportional

to ~ coming from the classical Poisson bracket.

The general BV formalism therefore gives a model for the classical and quantum observables in

a free Lagrangian field theory (i.e. a theory with quadratic action) following this outline. The

classical observables are constructed as an algebra of polyvector fields with the differential ιdS ,

and a quantization is produced by deforming this differential with a BV operator analogous to

the one above. One builds this operator by – approximately – identifying Darboux co-ordinates

on the (shifted) cotangent bundle to the fields and defining an operator using a formula like the

one given above. An easier way to describe this is to use the Poisson bracket on functions on the

shifted cotangent bundle (the so-called antibracket), and to extend this to a BV operator by an

inductive formula on the degree.

3.2. Derived Spaces from Cochain Complexes

When defining a classical field theory on a manifold X, it’s not completely clear what kind of

object one should use to define the “sheaf of fields” of a Lagrangian field theory on X. One can
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build a classical field theory starting from a cochain complex of vector spaces (this is the approach

used by Costello and Gwilliam [CG15]), but this excludes the most natural treatment of many

interesting non-linear examples, such as sigma models. It also doesn’t allow for discrete data in

the space of fields, for instance the choice of G-bundle for fields in Yang-Mills theory. Witten’s

work on abelian duality [Wit95a] shows that this discrete invariant is necessary for the existence

of duality phenomena: one sees theta functions in the partition function of an abelian gauge theory

only after summing over all topological sectors.

We’ll use the following definition of a classical Lagrangian field theory which, while not the most

general definition possible, allows for discrete and non-linear pieces in the fields suitable for the

free theories we will consider.

Definition 3.2.1. A classical Lagrangian field theory on a manifold X consists of a sheaf Φ

of simplicial abelian algebraic groups on X (the fields), and a morphism of sheaves of simplicial

schemes

L : Φ→ Dens

(the action functional) where Dens denotes the sheaf of densities on X, thought of as a sheaf of

abelian groups.

If X is compact then we can integrate global densities. The resulting map S : Φ(X)→ R is called

the action functional. Similarly, we can integrate local compactly supported sections of Φ to define

a local action functional. In the next chapter I’ll explain how to produce the factorization space

of classical observables from this data, but first I’ll explain some ways in which one might produce

such a simplicial abelian group from more näıve data.

Remark 3.2.2. Note that while definition 3.2.1 mixes the world of manifolds with the world of

schemes, the two types of geometry play very different roles. For other applications we could relax

the condition that X is a smooth manifold, and instead allow it to be any site. In contrast, the

condition that the local sections Φ(U) on an open set U form a (simplicial) scheme will be essential.
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Remark 3.2.3. It’s worth noting that we could also define a theory with fermions by allowing Φ

to be instead a sheaf of simplicial abelian super algebraic groups. We won’t need this generality

for the examples of this paper.

Suppose that instead of a sheaf of simplicial algebraic groups, Φ is a sheaf of simplicial abelian

groups on the site

Open(X)×Zar/R

where Zar/R denotes the big Zariski site of R-algebras (equivalently, Φ is a sheaf on X taking

values in a category of sheaves of simplicial abelian groups). One can build a sheaf Φ̃ of simplicial

algebraic groups on X by the following procedure. Fix an open set U ⊆ X. Consider all maps of

simplicial sheaves from a scheme X to Φ(U), and take the homotopy colimit of this diagram in the

category of simplicial schemes. Call the result Φ̃(U), and observe that varying U defines a sheaf of

simplicial abelian algebraic groups on X as required. We could make the same construction over

C instead of R (or for that matter over a more general field), and indeed many of the examples we

consider will be complex-valued theories.

Example 3.2.4. Let V be a sheaf of cochain complexes of vector spaces on X concentrated in

non-positive degrees. Applying the Dold-Kan correspondence, we can think of this as a sheaf of

simplicial vector spaces DK(V ). This induces a sheaf of simplicial vector spaces on the product

site Open(X)×Zar/R by setting

Φ(U,R) = DK(V (U)⊗R R).

We observe that, for fixed U , this sheaf is already representable by the dg-scheme Spec(Sym(V ∨)),

and it’s unnecessary to take a further homotopy colimit. That is to say the homotopy colimit over

all dg-schemes mapping to Φ is trivial.

Example 3.2.5 (Yang-Mills Theory). Let G be a compact connected Lie group. Define a sheaf Φ

of simplicial groups on Open(X)×Zar/R modelling the stack of connections on principal G-bundles:
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set

Φ(U,R) =
⊕
P

(
Ω0(U ; gP )⊗R R[1]→ Ω1(U ; gP )⊗R R

)
where the sum is over principal G bundles P → X up to isomorphism. This gives, under Dold-Kan,

a simplicial sheaf for each U , thus a simplicial scheme upon forming a homotopy colimit. This

simplicial scheme then gives a model for a moduli stack of connections on principal G-bundles,

and allows one to define classical Yang-Mills theory. We’ll generalise this construction in the case

where G is abelian.

Example 3.2.6 (Higher Maxwell Theory). The main objects of study in this paper are a family

of theories generalizing Yang-Mills theory with gauge group U(1), following the description of

generalized Maxwell theory through ordinary differential cochains described in [Fre00]. The fields

in this theory should describe “circle (p− 1)-bundles with connection”, for p some positive integer

(the reason we use p− 1 will become clear later: the “curvature” of a field in such a theory will be

a p-form). The starting point for the description of these theories is the smooth Deligne complex :

a sheaf of cochain complexes of abelian groups on a manifold X given by

Z(p)D(U) = Z[p] �
�

// Ω0(U)[p− 1]
d

// Ω1(U)[p− 2]
d
// · · ·

d
// Ωp−1(U)

∼= C∞(U,R/Z)[p− 1]
−id log

// Ω1(U)[p− 2]
d
// · · ·

d
// Ωp−1(U)

.

or its complexified version

Z(p)D,C(U) = C∞(U,C×)[p− 1]
−id log

// Ω1(U ;C)[p− 2]
d
// · · ·

d
// Ωp−1(U ;C) .

We can extend this complex to a sheaf of cochain complexes of abelian groups (or, by Dold-Kan,

of simplicial abelian groups) whose C-points are the complexified Deligne complex. Indeed, for an

C-algebra R, define a cochain complex

C∞(U ;R×)[p− 1] //
(
Ω1(U ;C)⊗C R

)
[p− 2] // · · · // Ωp−1(U ;C)⊗C R
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where the first map is given by −id log, and the latter maps simply by the de Rham differential in

the first variable. The colimit procedure described above produces a sheaf of simplicial algebraic

groups on U .

We might think of these complexified fields as higher principal C× bundles with connection, or as

higher complex line bundles with connection.

3.3. The Action Functional and the Classical Factorization Space

Once we have the sheaf of fields Φ we can apply the classical BV procedure to build a model

for the derived critical locus of the action that is amenable to quantization. The first step is to

describe the shifted cotangent bundle T ∗[−1]Φ as a derived stack, or – to avoid requiring too much

formalism from derived algebraic geometry – describing the algebra of functions O(T ∗[−1]Φ) as a

cochain complex. Fixing an open set U ⊆ X, the local fields Φ = Φ(U) form a simplicial abelian

algebraic group, so in particular the (shifted) cotangent bundle should be trivialisable. That is,

we define

T ∗[−1]Φ ∼= T ∗0 Φ[−1]× Φ

so O(T ∗[−1]Φ) ∼= O(T ∗0 Φ[−1])⊗O(Φ)

where the first line is only heuristic (though it should be possible to make it precise with the

machinery of derived algebraic geometry). The functions on the shifted cotangent fibre are easy to

describe, because the cotangent fibre is a (dg-) vector space. For any Φ we can define O(T ∗0 Φ[−1]) ∼=

Sym((T0Φ)[1]), so it is only necessary to describe the complex T0Φ. For instance, if Φ is an abelian

variety we have

O(T ∗[−1]Φ) ∼= Sym((Φ⊗Z R)[1])⊗O(Φ).

We’ll describe T0Φ in the examples that we’re interested in this paper in chapter 4. This calculation

gives the ring O(T ∗[−1]Φ) a natural interpretation as a ring of polyvector fields on Φ. Indeed, the
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dg-vector space T0Φ⊗O(Φ) precisely describes vector fields on Φ. Placing this space in degree −1

and taking graded symmetric powers (i.e. alternating powers, by the usual sign rule), we produce

the algebra of polyvector fields on Φ.

Remark 3.3.1. All algebraic constructions with topological vector spaces in this paper take place

in the context of nuclear Frechét spaces (or cochain complexes thereof). For instance, the dual

space V ∨ of a vector space V is always the continuous dual equipped with the strong topology,

and the tensor product is the completed projective tensor product. Likewise, while we identify the

ring of algebraic functions on a space V with the symmetric algebra Sym(V ∨), our constructions

will all extend to the completed symmetric algebra.

Now we introduce the action. Recall that as well as the fields, our Lagrangian field theory data

included a map of sheaves from Φ to the sheaf of densities on X. While it is not, in general,

possible to integrate the resulting local densities, it is possible to define the first variation of this

“local action functional”. One defines a compactly supported 1-form dS on Φ, i.e. an element of

T ∗0 Φc ⊗ O(Φ) ∼= Hom(T0Φc,O(Φ)) where T0Φc denotes the compactly supported tangent vectors:

that is, T0Φ describes a sheaf of cochain complexes on X, and we consider the compactly supported

sections on the set U we have in mind. Then dS is the linear map sending a compactly supported

tangent direction v to the functional

φ 7→
∫
U
L(Lv(φ))

where Lv(φ) denotes the Lie derivative of φ along the vector field v. The compact support condition

ensures that L(Lv(φ)) is a compactly supported density, so the integral is well-defined.

The action functional S describes a modified version of the shifted cotangent bundle by modifying

the internal differential on the functions. After identifying the functions on the shifted cotangent

bundle with polyvector fields the 1-form dS naturally defines a degree one linear operator, namely
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the interior product

ιdS : O(T ∗[−1]Φ)→ O(T ∗[−1]Φ).

More explicitly, the operator is extended as a derivation from the operator T0Φc ⊗O(Φ)→ O(Φ)

given by pairing a vector field with the 1-form dS ∈ T ∗0 Φc ⊗O(Φ).

Remark 3.3.2. If the fields Φ are described by a cochain complex rather than a more general

simplicial or dg-scheme then we can describe the complex O(T ∗[−1]Φ) of polyvector fields and the

classical differential ιdS even more directly. The global functions now form a symmetric algebra

O(T ∗[−1]Φ) ∼= Sym(Φ∨ ⊕ Φ[1])

generated by linear functions and linear vector fields on Φ. We’ll see this later in some examples

of free theories, where the action is encoded by a linear operator Φ→ Φ∨ of degree one.

The above discussion took place for a fixed open set U ⊆ X. Let’s now describe the relationship

between the classical observables on different open sets. We describe locality using the machinery

of factorization algebras, as developed in [CG15]. We recall the basic definitions.

Definition 3.3.3. A prefactorization algebra F on a space X taking values in a symmetric

monoidal category C with small colimits is a C-valued precosheaf on X equipped with Sk-equivariant

isomorphisms

F(U1)⊗ · · · ⊗ F(Uk)→ F(U1 t · · · t Uk)

for every collection U1, . . . , Uk ⊆ X of disjoint open sets.

An open cover {Ui} of a space X is called factorizing if for every finite subset {xi, . . . , x`} of U

there is a collection Ui1 , . . . , Ui` of pairwise disjoint sets in the cover such that {xi, . . . , x`} ⊆

Ui1 ∪ · · · ∪ Ui`.
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Given an open cover of X and a precosheaf F on X we can construct a simplicial object in C called

the Čech complex of F , defined as

Č(U,F) =
∞⊕
k=1

 ⊕
Ui1 ,...,Uik

F (Ui1 ∩ · · · ∩ Uik)[k − 1]


with the usual Čech maps

A prefactorization algebra is a factorization algebra if for every open set U ⊆ M and every

factorizing cover {Ui} of U , the natural map colim Č(U,F)→ F(U) is an isomorphism in C.

Remark 3.3.4. The examples we’ll discuss will all be prefactorization algebras taking values in the

homotopy category of cochain complexes, so isomorphisms are quasi-isomorphisms of complexes.

Definition 3.3.5. The factorization algebra of classical observables associated to the classical

Lagrangian theory (Φ,L) is the factorization algebra Obscl
Φ(U) valued in cochain complexes whose

sections on U are given by the complex O(T ∗[−1]Φ) with differential given by the internal differ-

ential dΦ on O(Φ) plus the classical differential −ιdS.

The fact that this forms a factorization, rather than just a prefactorization, is theorem 4.5.1

in [Gwi12]. It follows from the fact that Φ forms a sheaf, so the global functions O(Φ) forms a

cosheaf.

Finally, we need to address the Poisson structure on the classical observables. This is definition

2.1.3 in [Gwi12].

Definition 3.3.6. A P0-factorization algebra is a factorization algebra F valued in cochain com-

plexes, such that each F(U) is equipped with a commutative product and a degree 1 antisymmetric

map {, } : F(U)⊗F(U)→ F(U) which is a biderivation for the product, satisfies the identity

d{x, y} = {dx, y}+ (−1)|x|{x, dy}

and is compatible with the prefactorization structure.
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We expect such a structure on the classical observables coming from the shifted symplectic structure

on the shifted cotangent bundle, but we can recall a familiar concrete description (the well-known

Schouten bracket on polyvector fields). Firstly, there’s an evaluation map

T0Φ⊗O(Φ)→ O(Φ)

taking an element v ⊗ f to df(v) ∈ O(Φ) (thinking of the tangent vector v ∈ T0Φ as a constant

vector field on Φ). We use this to define the Schouten bracket in low polyvector field degrees:

{1⊗ f1, 1⊗ f2} = 0

{v1 ⊗ f1, 1⊗ f2} = 1⊗ df2(v1) · f1

{v1 ⊗ f1, v2 ⊗ f2} = v2 ⊗ df2(v1) · f1 − v1 ⊗ df1(v2) · f2

This extends uniquely to an antisymmetric degree 1 pairing on the whole algebra of polyvector

fields as a biderivation with respect to, as usual, the wedge product of polyvector fields.

3.4. Quantization of Free Factorization Algebras

From now on we will restrict attention to free field theories, where we can use the intuitive, non-

perturbative notion of BV quantization described in chapter 3.1. Informally, A classical Lagrangian

field theory is free if the action functional is quadratic, so the derivative of the action functional is

linear.

Definition 3.4.1. A classical Lagrangian field theory is called free if the classical differential ιdS

increases polynomial degrees by one. That is, if we filter O(Φ) by polynomial degree and call the

kth filtered piece F kO(Φ), the operator ιdS raises degree by one:

ιdS : Symi(T0Φ[1])⊗ F jO(Φ)→ Symi−1(T0Φ[1])⊗ F j+1O(Φ).
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Now, Let (Φ,L) be a free classical theory, and let Obscl(Φ(U)) be the complex of classical ob-

servables on an open set U . We’ll quantise the local observables by adding a new term to the

differential on this complex: the BV operator, which we’ll denote by D. This operator is built

from the P0-algebra structure on the classical observables, following the method of deformation

quantization for free theories described in [Gwi12].

Define the BV operator D : O(T ∗[−1]Φ(U)) → O(T ∗[−1]Φ(U)) by extending an operator built

from the Poisson bracket. Set D to be zero on O(Φ(U)), and to be given by the Poisson bracket

in degree 1: D = {, } : T0Φ(U) ⊗ O(Φ(U)) → O(Φ(U)), i.e. the map we described above as

“evaluation”. We can then extend this to an operator on the whole complex of classical observables

according to the formula

D(φ · ψ) = D(φ) · ψ + (−1)|φ|φ ·D(ψ) + {φ, ψ}.

An algebra with a differential D and Poisson bracket {, } satisfying a formula like this is called a

Beilinson-Drinfeld algebra, or BD algebra: Beilinson and Drinfeld constructed in [BD04] a family

of operads over the formal disk whose fibre at the origin is the P0 operad. The BD algebra structure

given here is a description of an algebra for a generic fibre of the analogous family defined over all

of C rather than just a formal neighbourhood of the origin.

Example 3.4.2. If Φ is a complex of vector spaces, so the classical observables are given by

Sym(Φ[1]⊕Φ∨), then we can construct the BV operator even more directly. The Poisson bracket,

restricted to Sym≤2 is given by the evaluation map Φ⊗Φ∨ → C from Sym2 to Sym0, and zero oth-

erwise. This extends uniquely to a degree 1 operator on the whole complex of classical observables,

lowering Sym degree by 2 as a BD structure, as above.

Equipped with this operator we can now define the quantum observables.
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Definition 3.4.3. The factorization algebra of quantum observables for the free theory (Φ,L) is

the factorization algebra with local sections on U given by the cochain complex

Obsq(U) = (O(T ∗[−1]Φ(U)), dΦ − ιdS +D)

where dΦ is the differential coming from the internal differential on Φ, ιdS is the classical BV

differential, and D is the quantum BV differential as defined above.

That this procedure really does define a factorization algebra is proved in [Gwi12].

Remark 3.4.4. A more standard thing to write would consider a differential dΦ − ιdS + ~D, and

have the BV operator D defined by a formula like

D(φ · ψ) = D(φ) · ψ + (−1)|φ|φ ·D(ψ) + ~{φ, ψ}

where we’d adjoined a formal parameter ~ to the algebra of classical observables. We’d then obtain

a module flat over R[[~]] which recovered the classical observables upon setting ~ to zero. I haven’t

done this because when working exclusively with free theories it’s possible to work completely non-

perturbatively, i.e. to evaluate at a non-zero value of ~. The duality phenomena I’m investigating

are only visible non-perturbatively (taking into account all topological sectors) so this is necessary,

however we lose the ability to consider the quantum observables in any theory which is not free.

3.5. Smearing Observables

In order to describe expectation values in chapter 5 we need to identify a dense subfactorization

algebra of the classical observables which are well-behaved. To do so, we restrict to a special

setting: where the algebra of functions O(Φ(U)) on the fields is a free commutative dg algebra on

a cochain complex of vector spaces. This includes for instance examples where Φ(U) is modelled

by a complex of vector spaces, or the product of a complex of vector spaces and a compact abelian
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variety. So we can write

O(Φ(U)) = Sym(V )

for some complex V , hence

O(T ∗[−1]Φ(U)) = Sym(T0Φ(U)[1]⊕ V ).

Observe that in fact V ≤ T ∗0 Φ. Indeed, Sym(T ∗0 Φ) = O(T0Φ) which admits an injective map from

O(Φ) (taking the ∞-jet of a global algebraic function).

Now, suppose further that the theory is free. Then as an operator on this symmetric algebra the

classical differential ιdS is non-increasing in Sym-degree. It can be made to preserve Sym-degree by

completing the square (up to a constant factor), and therefore it can be described as the extension

of its linear part, which we’ll denote

Q : T0Φ(U)→ V

to the whole complex, as a derivation. Thus the classical observables are themselved given by the

free cdga on a complex, namely the complex T0Φ(U)[1]
Q→ V . Let’s analyse this complex.

Example 3.5.1. If Φ(U) is a cochain complex of vector spaces (in degrees ≤ 0), then the complex

of classical observables is free on the cochain complex

Φ(U)[1]
Q→ Φ(U)∨.

The smeared or smooth classical observables form a dense subalgebra of Obscl(U), defined using

the data of an invariant pairing on the fields. That is, we require an antisymmetric map of sheaves

of cohomological degree −1

〈−,−〉 : Φ⊗ Φ→ Dens

which is non-degenerate as a pairing on the stalks. This pairing defines a non-degenerate pairing

Φc(U)⊗Φc(U)→ C by integration over U , and hence an embedding T0Φ(U)c ↪→ T ∗0 Φ(U), sending a
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compactly supported vector field to the functional “pair with that vector field”. Since V ⊆ T ∗0 Φ(U)

naturally, we can define V sm to be the intersection V ∩ T0Φ(U)c ≤ T ∗0 Φ(U) (or more precisely, we

form the pullback in the category of cochain complexes of vector spaces).

Definition 3.5.2. The classical smeared or smooth observables on an open set U are defined to

be the free cdga

Obssm,cl
Φ (U) = Sym(T0Φc(U)[1]

Q→ V sm).

If O(Φ(U)) is a free cdga for every open set U ⊆ X then the smooth observables define a subfac-

torization algebra of Obscl
Φ, dense in every degree.

Remark 3.5.3. Again, consider the situation where Φ(U) is a cochain complex of vector spaces.

Then the smooth observables include into all classical observables induced by the inclusion of

complexes coming from the pairing

(
Φ(U)c[1]

Q→ Φ(U)
)
↪→
(

Φc(U)[1]
Q→ Φ(U)∨

)
.

Definition 3.5.4. We call a free classical field theory equipped with an invariant pairing elliptic

if Obscl(U) is a free cdga for every U , and the resulting complex of linear smeared observables

E(X) = T0Φc(X)[1]
Q→ V sm

on the total space of the manifold X is an elliptic complex.

This is a fairly mild assumption that is satisfied in most realistic free physical theories on com-

pact orientable manifolds (and the theory admits an extension to describe classical observables in

interacting theories also, as described in [CG15] and [Cos11a]). We describe some free examples

(which all admit interacting extensions described by Costello and Gwilliam).

Example 3.5.5. (1) Scalar field theories

Let Φ(U) = C∞(U), the sheaf of smooth functions on a compact manifold, and let L be
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the Lagrangian density for a free scalar field of mass m, namely

L(φ) = dφ ∧ ∗dφ−m2φ ∧ ∗φ.

The smeared classical observables in this theory are generated by the elliptic complex

C∞(X)[1]
Q→ C∞(X) where Q = ∆−m2.

(2) Abelian Chern-Simons theory

Let T be a torus, let P → X3 be a principal T bundle on a compact 3-manifold, and

let Φ(U) be the sheaf describing connections on P (where we trivialise the torsor by

choosing a fixed reference connection). Chern-Simons theory on this fixed bundle is

described by the complex Ω∗(U ; t), where t is the (abelian) Lie algebra of T . Taking

a Dolbeault complex on a complex manifold instead of a de Rham complex describes

instead holomorphic Chern-Simons theory (and indeed, in this language it makes sense

to define Chern-Simons theory in any dimension as the theory whose algebra of classical

observables are built from this complex).

(3) Abelian Yang-Mills theory

Let T be a torus, let P → X4 be a principal T bundle on a compact Riemannian 4-

manifold, and let Φ(U) be the sheaf describing connections on P as above. Yang-Mills

theory on this fixed bundle is described by the shifted cotangent to the Atiyah-Singer-

Donaldson complex describing anti-self-dual connections on P , that is, the complex

Ω0(U ; t)
d
// Ω1(U ; t)

d+
// Ω2

+(U ; t)

Ω2
+(U ; t)

d
//

1
99

Ω3(U ; t)
d
// Ω4(U ; t)

in degrees -1 to 2. Here Ω2
+(U ; t) denotes the space of self-dual 2-forms and d+ is the

composition of d with projection onto this space.

We’ll see shortly examples of p-form theories that also fit into this framework.
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Definition 3.5.6. The quantum smeared observables on an open set U are given by the cochain

complex with the same underlying graded abelian group as the classical smeared observables, but

with differential Sym(Q) + D, where D is the smeared BV operator extended from the operator

Sym2(E(U))→ Sym0(E(U)) given by the invariant pairing restricted to E(U) according to the BD

product formula

D(φ · ψ) = D(φ) · ψ + (−1)|φ|φ ·D(ψ) + {φ, ψ}.

The quantum smeared observables embed into the whole complex of quantum observables as a

subcomplex, dense in each degree. To see this one just needs to check that the quantum BV

operators commute with the inclusion, which follows directly from the definitions.
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CHAPTER 4

Generalized Maxwell Theories as Factorization Algebras

Having described the general formalism, I’ll explain the specific theories which we’ll be studying:

the generalized Maxwell theories, a family of theories including as its simplest two examples sigma

models with target a torus and abelian pure Yang-Mills theories.

4.1. Generalized Maxwell Theories

4.1.1. The Classical Factorization Algebra

We already discussed the fields in generalized Maxwell theories in example 3.2.6 of the previous

chapter: we built a sheaf of simplicial abelian algebraic groups Φp from an ordinary differential

cohomology complex Z(p)D. These are the fields in the theories we’ll be interested in. The action

on a compact manifold is defined as the L2-norm of the curvature of a field.

Definition 4.1.1. The curvature map is the map of sheaves of simplicial algebraic groups F : Φp →

Ωp
cl induced from the exterior derivative as a map of sheaves of cochain complexes Z(p)D → Ωp

cl by

the universal property of the homotopy colimit.

With this in mind, we define the Lagrangian density of a local field φ ∈ Φp(U) to be

L(φ) = R2F (φ) ∧ ∗F (φ)

for R a positive real number, using the Riemannian metric on U . If this density is integrable, the

resulting integral is just the L2-norm of F (φ). We call the number R here a coupling constant,

and think of it as the radius of the gauge group circle, pre complexification. We could also have
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produced this scaling by redefining the fields: in our Deligne complex we might have included the

lattice 2πRZ instead of Z, yielding a circle of radius R in the cohomology.

Remark 4.1.2. We can generalise this setting from a circle (or, in the complexified story, C×) to

a higher rank torus T ∼= V/L, where L is a full rank lattice in a real normed vector space V . Let

VC = V ⊗R C and TC denote the complexifications of V and T . The fields in the theory described

above generalise immediately by taking algebraic TC valued functions mapping into the algebraic

de Rham complex with values in VC. There is now a curvature map taking values in Ωp
cl⊗VC, and

we define a Lagrangian density functional by

L(φ) = ‖F (φ) ∧ ∗F (φ)‖2

where ‖ − ‖ is the norm on VC.

In this description, the coupling constants arise from the choice of lattice L ≤ V : for instance we

obtain the theory with coupling constant R above by choosing 2πRZ ≤ R.

The construction of the previous chapter yields a classical factorization algebra of observables from

the above data. I can describe the local sections fairly concretely. We start from the algebra of

polyvector fields

PV (Φp(U)) = Sym(T0Φp(U))⊗O(Φp(U)).

We take each term individually. Functions on the Deligne complex Φp(U) were given as an abstract

homotopy colimit so aren’t easy to describe directly. However, the tangent fibre T0Φp(U) is much

more accessible in that it comes from an actual complex of vector spaces. We find

T0Φp(U) = Ω0(U ;C)[p− 1]→ Ω1(U ;C)[p− 2]→ · · · → Ωp−1(U ;C),

i.e. the shifted truncated de Rham complex, or more precisely the associated simplicial algebraic

group, as in example 3.2.4. The Poincaré lemma tell us that this is quasi-isomorphic to the sheaf

of closed p-forms via the exterior derivative, as a sheaf of cochain complexes.
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Now, we describe the classical differential coming from the action functional (or its first variation

dS). This is an operator T0Φp(U)c → O(Φp(U)), or using the above description, an operator

Ωp−1
c (U ;C)→ O(Φp(U)) that vanishes on exact forms (i.e. a cochain map out of the shifted trun-

cated de Rham complex). We define such an operator via the curvature map F : Φp(U)→ Ωp
cl(U).

This induces a pullback map F ∗ : O(Ωp
cl(U))→ O(Φp(U)). By composing with the curvature map

it suffices to define the classical differential as the map Ωp−1
c (U ;C)→ O(Ωp

cl(U ;C))
F ∗→ O(Φp(U))

α 7→
(
β 7→

∫
U
β ∧ ∗dα

)
7→
(
A 7→

∫
U
FA ∧ ∗dα

)
= ιdS(α).

This functional, sending a field A to
∫
U FA∧∗dα, clearly recovers the first variation of the required

action functional.

4.1.2. The Quantum Factorization Algebra

Now, we know abstractly how to quantise this factorization algebra, but we should see what it

actually means in this context. There’s an evaluation map Ωp−1
c (U ;C) ⊗ O(Φp(U)) → O(Φp(U))

which, again, is defined via the curvature map. We’ll also identify the 1-forms on the fields

Ω1(Φp(U)) with the quasi-isomorphic complex O(Φp(U)) ⊗ Ωp
cl(U ;C)∨. The evaluation map is

given by pairing a vector field on Φp(U) with a 1-form. We can spell this out in two steps:

(1) Start with χ ⊗ f ∈ Ωp−1
c (U ;C) ⊗ O(Φ). We first take the exterior derivative of both χ

and f to yield

dχ⊗ df ∈ Ωp
c,cl(U ;C)⊗ Ω1(Φ(U)) ∼= Ωp

c,cl(U ;C)⊗O(Φp(U))⊗ Ωp
cl(U ;C)∨.

(2) Use the evaluation pairing between Ωp
cl(U ;C)∨ and Ωp

c,cl(U ;C) (that is, between linear

vector fields and linear 1-forms on the fields) to produce a contracted element df(dχ) ∈

O(Φp(U)) as required.
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This evaluation map then extends to a differential on the whole complex of observables by the BD

operator formula: this is the quantum differential in the generalized Maxwell theory.

From now on, when I write Obsq(U) I’m referring specifically to the quantum observables in a

generalized Maxwell theory (which one will generally be clear from context). I’ll write Obsq(U)0

to refer specifically to the gauge invariant degree zero observables: the part of the cochain complex

that refers to actual observables in the usual sense of the word, as opposed to encoding relationships

between observables. The notation doesn’t refer to the entire degree zero part of the cochain

complex, but rather to the subcomplex O(H0(Φ(U))) ≤ Obsq
Φ(U), where the projection Φ(U) →

H0(Φ(U)) induces a pullback map O(H0Φ(U)))→ O(Φ(U)).

For generalized Maxwell theories specifically, the local degree zero observables are given by func-

tions on the 0th hypercohomology of the Deligne complex (which, with our degree conventions, is

the degree p differential cohomology group Ĥp(U)). We compute this using the long exact sequence

on hypercohomology associated to the short exact sequence of sheaves

0→ τ<pΩ
∗
C[p− 1]→ Z(p)D,C → 2πRZ[p]→ 0

yielding H0(U ;Z(p)D) isomorphic to the product of a torus (on which there are no non-constant

global functions, so we can safely ignore it) and the group Ωp
cl,Z(U ;C) of closed p-forms whose

cohomology class lies in the subgroup Hp(U ; 2πRZ) ≤ Hp(U ;C). The calculation is described

in [Bry93], theorem 1.5.3.

4.2. Free Theories from p-forms

In order to do calculations with Maxwell theories we will relate them to much easier free field

theories where the fields are sheaves of p-forms. This will correspond, intuitively, to considering

observables that factor through the curvature map Ĥp(U) → Ωp
cl(U). These theories will be
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especially easy in that the action functional will involve no derivatives at all, so the classical BV

operator is just a scalar.

Definition 4.2.1. Fix 0 < p < n as before. The free p-form theory on X with coupling constant R

is the Lagrangian field theory with sheaf of fields given by the sheaf of vector spaces Ωp and action

functional

SR(α) = R2‖α‖22 = R2

∫
X
α ∧ ∗α

given by the L2-norm. The free closed p-form theory with coupling constant R is the subtheory

with sheaf of fields Ωp
cl – the sheaf of closed p-forms with the same action functional.

We can build classical and quantum factorization algebras directly from this data as a very easy

application of the BV formalism described above: I’ll denote them by Obscl
Ωp , Obsq

Ωp etc, with the

choice of R surpressed. For the general p-form theory we compute

Obscl
Ωp(U) = Sym(Ωp

c(U)[1]
R2ι→ Ωp(U)∨)

where ι is the inclusion of Ωp
c(U) into the dual space given by the L2-pairing. This follows directly

from the construction of the action functional given in chapter 3.3: this operator describes the

first variation of the action functional.

The quantum BV operator D is induced from the evaluation pairing Ωp
c(U) ⊗ Ωp(U)∨ → R. We

can produce a smeared complex of quantum observables using the standard L2 pairing on p-forms

coming from the Riemannian metric on X. That is, we have local smeared quantum observables

given by

(Sym(Ωp
c(U)[1]⊕ Ωp

c(U)), Sym(·R2) +D)

where ·R2 is now just a scalar multiplication operator, and D is the operator extended from the

L2 pairing as a map Sym2 → Sym0 according to the usual BD formula. This complex is quasi-

isomorphic to R for every U . Indeed, by a spectral sequence argument it suffices to check this for

the classical observables, where we’re computing Sym of a contractible complex.
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The closed p-form theory is similar until we smear. That is, the quantum factorization algebra is

given as the complex

Obsq
Ωpcl

(U) = (Sym(Ωp
c,cl(U)[1]⊕ Ωp

cl(U)∨),Sym(R2ι) +D)

where D is induced from the evaluation pairing as above. The theory is not quite the same after

smearing, in particular it is no longer locally contractible. The smeared version of the factorization

algebra is now

Obssm
Ωpcl

(U) = (Sym(Ωp
c,cl(U)[1]⊕ Ωp

c(U)/d∗Ωp+1
c (U)), Sym(R2π) +D)

where now π is the projection Ωp
c(U) → Ωp

c(U)/d∗Ωp+1
c (U), and where D is induced by the L2-

pairing. The embedding Ωp
c(U)/d∗Ωp+1

c (U) → Ωp
cl(U)∨ is given, as usual, by the metric, and we

use the fact that local closed and local coexact forms are orthogonal with respect to the L2-pairing.

This complex is only quasi-isomorphic to R globally, i.e. on compact U where we can use Hodge

theory to identify closed forms as an orthogonal complement to coexact forms

This story all proceeds identically for complex-valued forms, which we’ll use from now on. The

complexification of the closed p-form theory is – by design – closely related to the generalized

Maxwell theory of order p: the complexes of observables are isomorphic on certain open sets, and

one has a natural map on degree zero observables Obsq
Ωpcl

(U ;C)0 → Obsq
p(U)0 for any U . This map

should be thought of as the inclusion of those observables that factor through the curvature map.

Concretely, the map is induced from the map of sheaves of cochain complexes

F : Z(p)D(A)→ Ωp
cl ⊗C A

(the curvature map) for a commutative C-algebra A induced by the derivative. This gives a map

of sheaves of simplicial algebraic groups upon taking homotopy colimits. If U ⊆ X is contractible

then the map of complexes F on the open set U is a quasi-isomorphism, and so the induced map

of simplicial algebraic groups is a homotopy equivalence.
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The map F can be promoted to a morphism of factorization algebras. Indeed, we first extend the

degree zero map to a map on all classical observables by pulling back polyvector fields. Concretely

this is the map

F : Sym(Ωp
c,cl(U ;C)[1])⊗ Sym(Ωp

cl(U ;C)∨)→ Sym(T0Φc(U)[1])⊗O(Φ(U))

given by F ∗ in the second factor and a quasi-inverse d−1 to the quasi-isomorphism of cosheaves

of cochain complexes d : T0Φc → Ωp
c,cl in the second factor. Specifically, on global sections we can

define d−1 : Ωp
cl(X;C) → T0Φ(X) using the Hodge decomposition. This preserves the support of

a form, so restricts to the compactly supported local sections on an open set U , and defines a

quasi-inverse to the quasi-isomorphism of complexes on contractible open sets.

One needs to check that this is compatible with the classical BV operator Q, which requires

observing that the square

Ωp
c,cl(U ;C) //

d−1

��

O(Ωp
cl(U ;C))

F ∗

��

T0Φc(U) // O(Φ(U))

commutes, where the horizontal arrows are those maps defining the Poisson brackets. If, further,

the open set U is contractible then this map defines a quasi-isomorphism of classical observables.

We then need to check that our map commutes with the quantum BV operator; that is, we check

that the triangle

Ωp
c,cl(U ;C)⊗ Ωp

cl(U ;C)
〈−,−〉

//

d−1⊗F ∗
��

C

T0Φp(U)⊗O(Φ(U))

D
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commutes, for D the quantum BV operator in the generalized Yang-Mills theory. This is clear

from the definition of the map D, which first applies the exterior derivative to the linear vector

field and the linear functional, then pairs the result via the L2-pairing. Again, if U is in fact

contractible then the resulting map on local observables is actually a quasi-isomorphism.
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CHAPTER 5

Expectation Values

In this chapter we’ll explain how to compute vacuum expectation values of observables in free

theories where the fields are given by a cochain complex of vector spaces, such as the closed p-

form theories introduced in the previous chapter. While the method does not apply directly to

free theories with a more complicated space of fields, we show that the expectation value can be

computed by functional integrals, which will generalise to more complicated settings like that of

generalized Maxwell theories.

5.1. Expectation Values from Free Quantum Factorization Algebras

For an elliptic theory (Φ,L), consider the complex of global classical observables Obs(X) with

underlying graded vector space O(T ∗[−1]Φ). This cdga is freely generated by a cochain complex,

and its smeared version is assumed to be freely generated by an elliptic complex E as described in

chapter 3.5. Now, Hodge theory gives us a Laplacian operator ∆ : E → E and a splitting in each

degree: Ei = Hi⊕H⊥i , where Hi denotes the finite-dimensional vector space of harmonic elements

in degree i. In particular, we can apply this to the degree zero elements E0, which represent a

linearization of the space of the (degree zero) fields in our theory.

Definition 5.1.1. The Hodge decomposition defines a splitting

E0 =M⊕M⊥

whereM denotes the finite-dimensional space of harmonic fields. We callM the space of massless

modes of the theory, and M⊥ the space of massive modes.
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Remark 5.1.2. In the terminology of Costello’s work on perturbation theory, massless modes

provide an example of non-propagating degrees of freedom, as in [Cos11b, Definition 13.1.1].

The terminology comes from the example of the free scalar field.

Example 5.1.3. Let Φ(U) = C∞(U) with the action for a free scalar field of mass m ≥ 0, i.e.

S(φ) =

∫
X

(
φ∆φ−m2|φ|2

)
dvol .

The complex of smeared quantum global observables here, as remarked upon in 3.5.5 has underlying

graded vector space Sym(C∞(X)[1] ⊕ C∞(X)), classical differential Sym(∆ −m2) and quantum

differential induced from the L2-pairing on functions. The relevant elliptic complex then is the

two-step complex

C∞(X)
∆−m2

→ C∞(X)

in degrees −1 and 0. The cohomology of this complex is finite-dimensional since X is assumed to

be compact, so the m2-eigenspace of the Laplacian is finite-dimensional (or just by Hodge theory,

since the complex is elliptic).

Focusing on the case m = 0, the Hodge decomposition splits C∞(X) in each degree as a sum of

eigenspaces for ∆2, or equivalently as a sum of eigenspaces for ∆. The eigenspaces are the spaces of

solutions to ∆φ = λφ, which we think of as the energy
√
λ pieces of the space of fields (by analogy

with the Klein-Gordon equation in Lorentzian signature). The cohomology is then represented by

the harmonic / massless piece.

From now on we’ll always suppose that the complex E has no cohomology outside of degree zero. We

don’t expect this hypothesis to be necessary, but including it makes the argument below simpler,

and is satisfied by the theories we study in this paper. With this condition relaxed, the expectation

value would involve projecting to the subspace Sym(H0(E)) ≤ H0(Sym E) corresponding to global

degree zero observables.
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Suppose now that we’re considering a theory with no massless modes; for instance, we might

restrict to the subcomplex with M⊥ in degree zero. Then the elliptic complex E is contractible,

therefore the cohomology of Obssm = Sym(E) is isomorphic to Sym(0) = C in degree zero. To see

this is also true for the smeared quantum observables we use a simple spectral sequence argument,

using the filtration of the complex by Sym degree. The BV operator is extended from the map

from Sym2 to Sym0 by the L2 pairing, so in general lowers Sym-degree by two. The E1 page of the

spectral sequence computes the cohomology of the classical complex of smeared observables (i.e.

the cohomology with respect to only the Sym degree 0 part of the differential), and the spectral

sequence converges to the cohomology of the complex of smooth quantum observables (i.e. the

cohomology with respect to the entire differential). Since the E1 page is quasi-isomorphic to C in

degree 0, so must be the E∞ page. Finally we observe that there is a unique quasi-isomorphism

from this complex of smooth observables on U to C characterized by the property that 1 in Sym0

maps to 1. We call this the expectation value map. It takes a degree zero smeared quantum

observable and returns a number.

Remark 5.1.4. The reader might find this assumption surprising, since generalized Maxwell

theories are far from being of this type. However, there is a map onto the generalized Maxwell

theory from a closed p-form theory, which is an elliptic theory with no massless modes, and

the image of this map is dense on contractible open sets. In the last part of this paper we’ll

define expectation values and duals for the observables in the image of this map, using the above

assumptions for the closed p-form theory.

Remark 5.1.5. With the setup we’ve been using, having no massless modes was essential. The

massless modes correspond to the locus in E0 where the action functional vanishes, so the locus

where the exponentiated action is degenerate. Since we’ll be computing expectation values as

a limit of finite dimensional Gaussian integrals it will be important to ensure that there are no

massless modes so that the Gaussian is non-degenerate, and so the finite dimensional Gaussian

integrals give finite answers.
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It might be possible, in a somewhat different formalism, to work with a non-linear space of fields

splitting into a linear space of massive modes and a compact finite-dimensional moduli space of

massless modes. One could then describe an expectation value by integrating out the space of

massive modes over each point in the moduli space of massless modes (using the formalism we will

describe below) to produce a section of a rank 1 local system. If this local system was actually

trivialisable then such a section could be integrated to give a number. Failure of trivialisability

would be an example of an anomaly for a free field theory.

5.2. Computing Expectation Values

The ideas of this chapter are not original, but are merely a recollection of familiar physical tech-

niques, whose analysis is well understood, in the present context. A modern mathematical account

of the relationship between functional integrals, Feynman diagrams and homological algebra can

be found in [GJF12].

5.2.1. Feynman Diagrams for Free Theories

So, let’s fix a free elliptic theory with fields Φ and no massless modes: for instance a p-form or

closed p-form theory on a compact manifold X. The idea of the Feynman diagram expansion is

to compute expectation values of observables in our theory combinatorially. The crucial idea that

we’ll use in order to check that we can do this is that –for smeared observables – the expectation

value map is uniquely characterized. That is, for smeared observables there is a unique quasi-

isomorphism from global smeared observables to C that sends 1 to 1. Therefore to check that

a procedure for computing expectation values is valid it suffices to check that it is a non-trivial

quasi-isomorphism, then rescale so the map is appropriately normalized.
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Take a global degree zero smeared observable O ∈ Sym(Φ(X)0) which is gauge invariant. That is,

we consider observables that can be written as a product of linear observables

O = On1
1 O

n2
2 · · · O

nk
k

where O1, . . .Ok are linearly independent linear smeared observables in Φ(X)0 (not necessarily

gauge invariant themselves), and where O is closed in the classical (or equivalently quantum) com-

plex of smeared observables. This corresponds to gauge invariance because the only differential

from the degree zero observables in either the classical or quantum complexes of smeared observ-

ables comes from Sym of the underlying differential on Φ. Closed elements are observables in the

kernel of Sym(d∨) where d : Φ−1 → Φ0 is the underlying differential, and where the adjoint d∨ is

defined on Φ0 using the invariant pairing on fields. The kernel of d∨ corresponds exactly to the

cokernel of d, which is the space of degree zero observables we think of as invariant under gauge

transformations.

Generally gauge invariant polynomial observables are sums of monomial observables of this form,

and we extend the procedure of computing duals linearly, so it suffices to consider O of this form.

We compute the expectation value of O combinatorially as follows. Depict O as a graph with k

vertices, and with ni half edges attached to vertex i. The expectation value 〈O〉 of O is computed

as a sum of terms constructed by gluing edges onto this frame in a prescribed way. Specifically,

we attach propagator edges – which connect together two of these half-edges – in order to leave no

free half-edges remaining. A propagator between linear observables Oi and Oj receives weight via

the pairing

1

2

∫
X
〈Oi, Q−1Oj〉

where Q is the classical BV operator, Q−1 is defined by inverting Q on each eigenspace for the

corresponding Laplacian (using the non-existence of massless modes), and 〈−,−〉 is the invariant

pairing on smeared observables. A diagram is weighted by the product of all these edge weights.

The expectation value is the sum of these weights over all such diagrams.
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Figure 5.1. One of the terms in the Feynman diagram expansion computing the
expectation value of an observable of form O7

1 O5
2. On the left we see the starting

point, with half-edges, and on the right we see one way of connecting these half-
edges with propagator edges (indicated by dashed lines).

To check that this computes the expectation value, we must show that it is non-zero, and that it

vanishes on the image of the differential in the complex of quantum observables. The former is

easy: the observable 1 has expectation value 1 (so we’re also already appropriately normalized).

For the latter, we’ll show that the path integral computation for degree zero global observables

in Obsq(U)0 arise as a limit of finite-dimensional Gaussian integrals, and that the images of the

quantum BV differential are all divergences, so vanish by Stokes’ theorem.

5.2.2. Regularization and the Path Integral

The classical complex of linear observables in our theory is elliptic, so induces a Laplacian operator

∆ acting on E0 with discrete spectrum 0 < λ1 < λ2 < · · · and finite-dimensional eigenspaces. Let

FkH
0(Φ(X)) denote the sum of the first k eigenspaces: this defines a filtration of the global degree

zero (linearized) fields by finite-dimensional subspaces. We recall a standard result about infinite

dimensional Gaussian integrals.

Proposition 5.2.1. Let O be a smeared global observable. The finite-dimensional Gaussian inte-

grals

1

Zk

∫
FkH0(Φ(X))

O(a)e−S(a)da,

where Zk is the volume
∫
FkH0(Φ(X)) e

−S(a)da, converge to a real number I(O) as k →∞, and this

number agrees with the expectation value computed by the Feynman diagrammatic method.
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Proof. We check that for each k the Gaussian integral admits a diagrammatic description, and

observe that the expressions computed by these diagrams converge to the expression we want. We

may assume as usual that O splits as a product of linear smeared observables O = On1
1 O

n2
2 · · · O

n`
` .

The Oi describe linear operators on the filtered pieces. We can write the Gaussian integral using

a generating function as

∫
FkH0(Φ(X))

O(a)e−S(a)da =
∂n1+···+n`

∂tn1
1 · · · ∂t

n`
`

∣∣∣∣
t1=···=t`=0

∫
FkH0(Φ(X))

e−
∫
X〈a,Qa〉+t1O1(a)···+t`O`(a)da,

provided that k is large enough that upon projecting to F kH0(Φ(X)) the Oi are linearly indepen-

dent. Call this projection O(k)
i . This expression is further simplified by completing the square,

yielding

Zk
∂n1+···+n`

∂tn1
1 · · · ∂t

n`
`

∣∣∣∣
t1=···=t`=0

e
1
2

∫
X〈(t1O

(k)
1 +···t`O

(k)
` ),Q−1(t1O(k)

1 +···t`O
(k)
` )〉

where we’ve identified the linear smeared observables with differential forms. We can now compute

the Gaussian integral diagrammatically. The tn1
1 · · · t

n`
` -term of the generating function is the sum

over Feynman diagrams as described above, where a diagram is weighted by a product of matrix

elements 1
2

∫
X〈O

(k)
i , Q−1O(k)

j 〉 corresponding to the edges. We see that as k →∞ this agrees with

the weight we expect. �

Now we can justify why the expectation value vanishes on the image of the quantum differential.

Let O ∈ Obssm
Φ (X)0 be a smeared degree 0 global observable, and suppose O = dΦV +(D− ιdS)W

is in the image of the quantum differential. The exact term dΦV is zero in H0 of the fields, so it

suffices to consider the W piece. The restriction of W to a filtered piece is a vector field on the

vector space F kH0(Φ(X)), and we can compute the divergence

div(e−S(a)W ) = Oe−S(a),

where the restriction to the filtered piece is suppressed in the notation. So the expectation value of

O is a limit of integrals of divergences, which vanish by Stokes’ theorem, and the expectation value
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is zero. This implies that the procedure described above does indeed compute the cohomology class

of a global smeared observable in the canonically trivialized cohomology.
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CHAPTER 6

Fourier Duality for Polynomial Observables

In its simplest form, Fourier duality is an isomorphism on degree 0 observables in the free p-form

theories: Obsq
Ωp,R(U)0

∼= Obsq
Ωn−p,1/2R(U)0. It will not extend to any kind of cochain maps in

these theories, and in particular will not be compatible with the expectation value maps, but we’ll

show that it is compatible with the expectation values after the restriction Obsq
Ωp,R → Obsq

Ωpcl,R

to the closed p-form theories.

6.1. Feynman Diagrams for Fourier Duality

We’ll construct the Fourier transform in an explicit combinatorial way using Feynman diagrams

extending the Feynman diagram expression computing expectation values. Take a smeared mono-

mial observable O ∈ Obssm
Ωp,R(U)0. As above, we write O as

On1
1 O

n2
2 · · · O

nk
k

where O1, . . .Ok are linearly independent linear smeared observables in Ωp
c(U).

We compute the Fourier dual of O in a similar diagrammatic way to the method we used to

compute expectation values. Depict O as a graph with k vertices, and with ni half edges attached

to vertex i. Now, we can attach any number of propagator edges as before, and also any number

of source terms – which attach to an initial half-edge and leave a half-edge free – in such a way

as to leave none of the original half-edges unused. The source terms have the effect of replacing a

linear term Oi with its Hodge dual ∗Oi, i.e. the observable obtained by precomposition with the
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Hodge star operator. The result is a new observable

(∗O1)m1(∗O2)m2 · · · (∗Ok)mk

where mi is the number of source edges connected to vertex i, now thought of as a degree zero

observable in Obssm
Ωn−p,1/2R(U)0.

Definition 6.1.1. The total Fourier dual observable Õ is the sum of these observables over all

such graphs, where each observable is weighted by the product over all edges of the corresponding

graph of the following weights.

• A propagator between linear observables Oi and Oj receives weight

1

2R2
〈Oi,Oj〉 =

1

2R2

∫
X
Oi ∧ ∗Oj .

• A source term attached to a linear observable O receives weight i/2R2.

Figure 6.1. The Feynman diagram corresponding to a degree 6 term in the Fourier
dual of an observable of form O8

1 O6
2 O6

3. Propagators are indicated by dashed lines
and sources by dotted lines.

From a path integral perspective, these terms have natural interpretations. The Fourier transform

of O can be thought of as the expectation value of an observable of form Oei〈a,ã〉 where a is a field

and ã is its Fourier dual variable. Alternatively, this can be thought of as a functional derivative

of an exponential of form e−S(a)+i〈a,ã〉. The propagator terms arise from applying a functional

derivative to the action term, while the source terms arise from applying it to the second term,

implementing the Fourier dual. The Hodge star in the source term arises from the specific pairing

in the p-form theory, namely the L2 pairing
∫
a ∧ ∗ã.
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Example 6.1.2. To demonstrate the idea, we compute the Fourier dual observable to O4 for O a

linear smeared observable. There is one term with no propagator edges and four sources, six with

one propagator edge and two sources, and three with two propagator edges and no sources. The

dual is therefore

Õ4 =
1

16R8
(∗O)4 − 6

8R6
‖O‖2(∗O)2 +

3

4R4
‖O‖4.

If R2 = 1/2 and ‖O‖ = 1 this recovers the fourth Hermite polynomial He4(∗O).

We can compute the dual of a general global observable by smearing first, then dualizing: the

result is that an observable has a uniquely determined smeared dual for each choice of smearing.

In order to compare expectation values of an observable and its dual, the crucial tool that we’ll

use is Plancherel’s formula, which we can rederive in terms of Feynman diagrams. The first step

is to prove a Fourier inversion formula in this language. In doing so we’ll need to remember that

after dualizing once, the new observable lives in the dual theory, with a different action: therefore

the weights assigned to edges will be different, corresponding to a different value of the parameter

R.

We’ll also use the convention that the second application of the Fourier transform is the inverse

Fourier transform, which assigns weight −i/2R2 to a source edge, but is otherwise identical.

Proposition 6.1.3. A smeared observable O is equal to its Fourier double dual
˜̃O.

Proof. Let O = On1
1 O

n2
2 · · · O

nk
k as above. The Fourier double dual of O is computed as a sum

over diagrams with two kinds of edges: those coming from the first dual and those coming from

the second. We’ll show that these diagrams all naturally cancel in pairs apart from the diagram

with no propagator edges. We depict such diagrams with solid edges coming from the first dual,

and dotted edges coming from the second dual.
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Figure 6.2. A diagram depicting a summand of the Fourier double dual of an ob-
servable of form O7

1 O5
2.

So choose any diagram D with at least one propagator, and choose a propagator edge in the

diagram. We produce a new diagram D′ by changing this propagator edge from solid to dotted or

from dotted to solid.

Figure 6.3. In this diagram we chose the solid leftmost propagator loop (coming
from the first dual), and replaced it by two source terms (solid lines) connected
with a dotted propagator loop coming from the second dual.

It suffices to show that the weight attached to this new diagram is −1 times the weight attached

to the original diagram, so that the two cancel. This is easy to see: the propagator from the first

term contributes a weight 1
2R2

∫
X Oi ∧ ∗Oj . In the second dual, the weights come from the source

terms in the original theory, but the propagator in the dual theory, which contributes a weight

using the dual theory. So the total weight is

2R2

(
i

2R2

)2 ∫
X
Oi ∧ ∗Oj

Which is −1 times the weight of the other diagram, as required.
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Finally, we note that the weight assigned to the diagram with no propagator edges in the Fourier

double dual is 1. Indeed, at each free edge, we have a composite of two source terms, contributing

a factor of
(

i
2R2

) ( −i
2(1/2R)2

)
= 1. �

For further justification for these choices of weights, we should compare this combinatorial Fourier

dual to one calculated using functional integrals (for global smeared observables). We’ll perform

such a check by defining a sequence of Gaussian integrals on filtered pieces, and checking that

they converge to a Fourier dual that agrees with the one combinatorially described above. As

before, F kΩp(X) refers to the filtration by eigenspaces of the Laplacian, this time on the space of

all p-forms, not just closed p-forms.

Proposition 6.1.4. Let O be a smeared global observable. The finite-dimensional Gaussian inte-

grals

Õ(ã) =

(
1

Zk

∫
FkΩp(X)

O(a)e−SR(a)+i
∫
X ã∧ada

)
eS1/2R(ã)

where ã is an (n− p)-form, converge to a smeared global observable which agrees with the Fourier

dual observable computed by the Feynman diagrammatic method.

Proof. We use the same method of proof as for 5.2.1, writing the integral as a derivative of a

generating function. Specifically, for O = On1
1 O

n2
2 · · · O

n`
` we expand

1

Zk

∫
FkΩp(X)

O(a)e−SR(a)+i
∫
X ã∧ada

=
∂n1+···n`

∂tn1
1 · · · ∂t

n`
`

∣∣∣∣
t1=···=t`=0

1

Zk

∫
FkΩ(X)

eSR(a)+
∑
ti
∫
X Oi∧∗a+i

∫
X ã∧ada

=
∂n1+···n`

∂tn1
1 · · · ∂t

n`
`

∣∣∣∣
t1=···=t`=0

e−S1/2R(ã)e
1

4R2

∫
X(t1O(k)

1 +···+t`O
(k)
` )∧∗(t1O(k)

1 +···+t`O
(k)
` )+ i

2R2

∫
X(t1O(k)

1 +···+t`O
(k)
` )∧ã

(by completing the square) and extract the tn1
1 · · · t

n`
` -term. Once again we’re denoting by O(k)

i the

projection of Oi onto the kth filtered piece F kΩp(X). We choose the level in the filtration large
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enough so that the upon projecting to the filtered piece the forms Oi are linearly independent.

One then observes that in the limit as k →∞ the relevant term is given by a sum over diagrams

as described with the correct weights. �

Now, for any open set U ⊆ X we have a restriction map of degree zero local observables

r(U) : Obssm
Ωp(U)0 → Obssm

Ωpcl
(U)0

induced by the projection Ωp
c(U)→ Ωp

c(U)/d∗Ωp+1
c (U). This gives us a candidate notion of duality

in the closed p-form theory. So, we might take a degree 0 observable in the image of r(U), choose a

preimage, compute the dual then restrict once more. Of course, this is not quite canonical, because

the map r(U) is not injective: the resulting dual observable might depend on the choice of preimage

we made. However, in certain circumstances we might be able to choose a consistent scheme for

choosing such a preimage, therefore a canonical duality map. We’ll give such an example in chapter

6.3, but first we’ll prove that for any choice of lift, the resulting dual observable in the Ωp
cl theory

has the same expectation value as the original theory.

Remark 6.1.5. We can also consider duality for closed p-form theories with coefficients in a

vector space V , and – as we’ll observe shortly – generalized Maxwell theories with gauge group a

higher rank torus T = V/L, as mentioned in chapter 4. The theory generalises in a natural way,

with a p-form theory with gauge group T dual to an (n− p)-form theory with gauge group T̂ , the

dual torus. Indeed, there is an identical relationship between the generalized Maxwell theory with

gauge group a higher rank torus and a closed p-form theory where the forms have coefficients in a

vector bundle, and where the classical BV operator is given by the matrix describing the lattice L.

By diagonalizing this matrix the system separates into a sum of rank one theories, with monomial

smeared observables likewise splitting into products of monomial observables in rank one theories

which one can dualise individually.
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6.2. Fourier Duality and Expectation Values

At this point we have two equivalent ways of thinking about both the Fourier transform and

the expectation value map for smeared observables: by Feynman diagrams (which allowed us to

describe the dual locally) and by functional integration (which allow us to perform calculations,

but only globally). We’ll compare the expectation values of dual observables using a functional

integral calculation, in which the restriction to closed p-forms will be crucial.

For an actual equality of expectation values as described above we’ll have to restrict to observables

on a contractible open set U . Recall this is the setting where the local observables in the closed

p-form theory agree with observables in the original generalized Maxwell theory. On more general

open sets connections on higher circle bundles are related to only those closed p-forms with integral

periods. As such there is a map on degree zero observables Obssm
Ωpcl,R

(U)0 → Obsq
R(U)0 for any U ,

which sends a compactly supported closed p-form a to the local observable

A 7→
∫
U
FA ∧ ∗a.

However, this is generally not an isomorphism. Still, from a functional integral point-of-view we

can define the expectation value of such an observable in the generalized Maxwell theory, even

if X has non-vanishing degree p cohomology. Given O ∈ Obssm
Ωpcl,R

(U)0 we extend O to a global

degree zero obervable, and define its expectation value to be

〈O〉R = lim
k→∞

∫
FkΩpcl,Z(X)

O(a)e−SR(a)da

Recall here that Ωp
cl,Z(X) is our notation for the closed p-forms with integral periods. This is the

product of a finite-rank lattice with a vector space, and our filtration is the intersection of this

subgroup with the filtration F kΩp
cl(X) defined previously; this intersection is well-behaved since

the lattice part is contained in the harmonic forms, thus in the intersection of all the filtered pieces.

We notice that if Hp(U) = 0 then this definition agrees with the one we used in chapter 5.2.1, so
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in particular the limit converges. In general, the integrand is dominated in absolute value by the

integrand over all closed p-forms, which we already know converges (since the proof of 5.2.1 still

applies with Oi replaced by |Oi|).

Using this definition (and bearing in mind its relationship to the notion of expectation value

considered above on certain open sets), we’ll prove the main compatibility with duality.

Theorem 6.2.1. Let O be a local observable in Obssm
Ωp,R(U)0, and let Õ ∈ Obssm

Ωn−p,1/2R(U)0 be its

Fourier dual observable. Let r(O) and r(Õ) be the restrictions to local observables in Obssm
Ωpcl

(U)0

and Obssm
Ωn−pcl

(U)0 respectively. Then, computing the expectation values of r(O) and r(Õ), we find

〈r(O)〉R = 〈r(Õ)〉 1
2R
.

Remark 6.2.2. Using the map discussed above we can just as well consider the observables r(O)

and r(Õ) as observables in the appropriate generalized Maxwell theories.

Proof. We know by 6.1.3 that O =
˜̃O, so in particular 〈r(O)〉R = 〈r( ˜̃O)〉R. By the calculation

in Proposition 6.1.4 we can write this expectation value as the limit as k → ∞ of the Gaussian

integrals

1

Zk

∫
FkΩpcl,Z(X)

O(a)e−SR(a)da =
1

Zk

∫
FkΩpcl,Z(X)

˜̃O(a)e−SR(a)da

=
1

Zk

∫
FkΩpcl,Z(X)

∫
FkΩn−p(X)

Õ(ã)e−S1/2R(ã)−i
∫
X ã∧adã da

=
1

Zk

∫
FkΩp(X)

∫
FkΩn−p(X)

Õ(ã)e−S1/2R(ã)−i
∫
X ã∧a δΩpcl,Z(X)(a) dã da

The last line needs a little explanation. The distribution δΩpcl,Z(X) is the delta-function on the

closed and integral p-forms sitting inside all p-forms (restricted to the filtered piece): pairing with

this distribution and integrating over all p-forms in the filtered piece is the same as integrating

only over the relevant subgroup.
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Now, for a fixed value of k, we can reinterpret the final integral above by changing the order of

integration. This computes the Fourier dual of the delta function δΩpcl,Z(X) and then pushes forward

along the Hodge star. The Fourier dual of the delta function is δΩpcocl,Z(X), the delta function on

the group of coclosed p-forms with integral d∗ cohomology class. That is, the external product

δd∗Ωp+1(X) � δHpZ
where HpZ is the lattice in the space of harmonic p-forms corresponding to the

integral cohomology via Hodge theory. Pushing this distribution forward along the Hodge star

yields the delta function δΩn−pcl,Z (X) on the closed (n− p)-forms with integral periods. Therefore

〈r(O)〉R = lim
k→∞

1

Zk

∫
FkΩn−p(X)

Õ(ã)e−S1/2R(ã)δΩn−pcl,Z (X)dã

= lim
k→∞

1

Zk

∫
FkΩn−pcl,Z (X)

Õ(ã)e−S1/2R(ã)dã

= 〈r(Õ)〉 1
2R

as required. �

So to summarise, duality gives the following structure to the factorization algebra of quantum

observables in our theories.

• For each open set U , we have a subalgebra Obssm
Ωpcl,R

(U)0 ≤ Obsq
R(U)0 of the space of

degree 0 local observables. If U is contractible (for instance for local observables in a

small neighbourhood of a point) this subalgebra is dense.

• For a local observable O living in this subalgebra we can define a Fourier dual observable

in Obssm
Ωn−pcl ,1/2R

(U)0. This depends on a choice of extension of O to a functional on all

p-forms, rather than just closed p-forms.

• For any choice of dual observable, we can compute their expectation values in the original

theory and its dual, and they agree. If Hp(U) = 0 then this expectation value map agrees

with a natural construction from the point of view of the factorization algebra.
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We can rephrase the theorem in the language of factorization algebras. Note that Obssm
Ωp(U)0 and

Obssm
Ωpcl

(U)0 form factorization algebras themselves as U varies, concentrated in degree zero. The

inclusion maps Obssm
Ωp(U)0 → Obssm

Ωp(U) and Obssm
Ωpcl

(U)0 → Obssm
Ωpcl

(U) are cochain maps since the

target complexes are concentrated in non-positive degrees, and factorization algebra maps because

the factorization algebra structure maps preserve the degree zero piece. Likewise, the restriction

maps Obssm
Ωp(U)0 → Obssm

Ωpcl
(U)0 clearly commute with the factorization algebra structure maps,

so define a factorization algebra map.

It’s also easy to observe that the Fourier duality map Obssm
Ωp,R(U)0 → Obssm

Ωn−p, 1
2R

(U)0 defines a

factorization algebra map: the degree zero observables are just the free cdga on the local sections

of a cosheaf of vector spaces, so the structure maps are just the maps induced on the free algebra

from the cosheaf structure maps. The structure maps are therefore given by the ordinary product

Sym(Ωp
c(U1)/d∗Ωp+1

c (U1))⊗ Sym(Ωp
c(U2)/d∗Ωp+1

c (U2))→ Sym(Ωp
c(V )/d∗Ωp+1

c (V ))

(O1 · · · On)⊗ (O′1 · · · O′m) 7→ O1 · · · On · O′1 · · · O′m

where Oi and O′j are local linear smeared observables: sections of Ωp
c/d∗Ω

p+1
c with compact support

in disjoint open sets U1 and U2 respectively. The Fourier transform of a product of observables with

disjoint support is the product of the Fourier transforms, since if O and O′ have disjoint support

then their L2 inner product is zero, so all Feynman diagrams with propagator edges between

their vertices contribute zero weight. Therefore duality gives a factorization algebra map on the

factorization algebra consisting of degree zero observables only.

Combining all of these statements we have a correspondence of factorization algebras of form

(Obssm
Ωp,R)0

oo
∼
//

rR

yy

(Obssm
Ωn−p, 1

2R

)0
r 1

2R

&&

Obsq
p,R Obssm

Ωpcl,R

FR
oo Obssm

Ωn−pcl , 1
2R

F 1
2R
// Obsq

n−p, 1
2R
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where the top arrow is the isomorphism given by Fourier duality, and the diagonal arrows are

given by restriction, then inclusion of degree zero observables into all observables. We say a pair

of local observables O, O′ in Obsq
p,R(U) and Obsq

n−p, 1
2R

(U) respectively are incident if they are

the images under the restriction maps of Fourier dual degree zero observables. In this language,

theorem 6.2.1 can be rephrased in the following way.

Corollary 6.2.3. If O and O′ are incident local observables in dual generalized Maxwell theories

then 〈O〉R = 〈O′〉 1
2R

.

At the end of the next chapter we’ll observe that it is not possible to improve this statement from a

correspondence to a map of factorization algebras (even of the factorization algebras in the closed

p-form theories) in any natural way.

6.3. Wilson and ‘t Hooft Operators

In this chapter we’ll give a concrete example of observables that admit canonical duals in general-

ized Maxwell theories, corresponding to familiar observables in the usual Maxwell theory, i.e. the

case p = 2. For Wilson and ’t Hooft operators in dimension 4 specifically, the behaviour under

abelian duality is discussed in a paper of Kapustin and Tikhonov [KT09].

Wilson and ’t Hooft operators can be defined classically in Yang-Mills theory with any compact

gauge group G, just as functionals on the space of fields (from which we will – for an abelian gauge

group – construct classical and quantum observables). So let X, for the moment, be a Riemannian

4-manifold.

Definition 6.3.1. Let ρ be an irreducible representation of G. The Wilson operator Wγ,ρ around

an oriented loop γ in X is the functional on the space of connections on principal G-bundles

sending a connection A to

Wγ,ρ(A) = Tr(ρ(Holγ(A))),
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where Holγ(A) denotes the holonomy of the connection around the loop γ. Equivalently we can

compute the Wilson operator as a path-ordered exponential

Wγ,ρ(A) = Tr(ρ(Pei
∮
γ A)).

Suppose γ bounds a disk D. In this case there is a candidate dual observable to the Wilson

operator.

Definition 6.3.2. Let µ : U(1) → G be a cocharacter for the group G. The ’t Hooft operator

Tγ,µ around the loop γ in X is the functional on the space of connections on principal G-bundles

sending a connection A to

Tγ,µ(A) = ei
∫
D µ
∗(∗FA)

where FA is the curvature of A, ∗FA is its Hodge star, and where µ∗ : Ω2(X; g∗) → Ω2(X) is the

pullback along the cocharacter.

The relationship between these two kinds of operator is clearest in the abelian case, so let G = U(1)

(or, with minor modifications, any torus). The irreducible representations of U(1) are given by

the n-power maps z 7→ zn for n ∈ Z, so we can write our Wilson operators as

Wγ,n(A) = ein
∮
γ A = ein

∫
D FA

assuming ∂D = γ as above. Cocharacters are also indexed by integers, so similarly we can describe

the ’t Hooft operators as

Tγ,m(A) = eim
∫
D ∗FA .

As described above we compute the dual of an observable in abelian Yang-Mills theory by taking

its Fourier dual as a functional on all 2-forms, then precomposing with the Hodge star. The Fourier

dual of a plane wave is a plane wave, so we should expect Wilson and ’t Hooft observables to be

dual to one another. In the rest of this chapter we’ll prove this, and generalise it to higher degree

theories.
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Consider the degree p generalized Maxwell theory with coupling constant R on an n-manifold X.

I’ll first describe degree zero gauge invariant observables associated to a complex number r and a

singular chain C ∈ Cp(U), for U ⊆ X an open set. Recall that the local degree zero observables

are given by O(H0(Φ(U))) ≤ O(T ∗[−1]Φ(U)), and that in this case the degree zero cohomology

H0(Φ) is given by the group Ωp
cl,Z(U ;C) of closed p-forms with integral periods (periods in the

lattice Hp(U ; 2πRZ)). So, analogously to the above we define a Wilson-type operator by

WC,r(α) = eir
∫
C α.

Similarly, if C is instead a chain in Cn−p(U), we can define an ’t Hooft-type operator by first

applying the Hodge star:

TC,r(α) = eir
∫
C ∗α.

Remark 6.3.3. These operators don’t quite arise from our definitions: they aren’t polynomial

functions in linear observables. However, they can be arbitrarily well approximated by polynomi-

als by taking a finite number of terms in the Taylor series. We should either note that our con-

structions, in which the observables are described by a symmetric algebra, extend to completed

symmetric algebras, or equivalently just interpret claims about duality for these observables as

claims about these polynomial approximations at every degree.

Now, let’s investigate duality for these observables. Firstly, suppose U is an open set with Hp(U) =

0, so that the condition of having integral periods is trivial. Then the observables defined above

immediately lift to observables in the closed p-form theory, and admit canonical extensions to

observables in the theory where fields are all p-forms (given by precisely the same formula). We

can also investigate approximations for these observables by smeared observables. Integration over

a p-chain C can be written as the L2-pairing with a particular current: the delta function δC . This

current can, in turn, be approximated in L2 by p-forms supported on small neighbourhoods of C.



104

So let’s investigate the Fourier dual of the smeared observable

Oβ(a) = eir
∫
X a∧∗β

where β is a p-form.

We’ll compute this dual using the functional integral at a regularized level:

Õβ,r(ã) = lim
k→∞

1

Zk

(∫
FkΩp(X)

e−SR(a)+i
∫
X ã∧a+ir

∫
X a∧∗βda

)
eS1/2R(ã)

= e−
r2

4R2 ‖β‖2e
−r
2R2

∫
X ã∧β

= e−
r2

4R2 ‖β‖2 · O∗β,ir/2R2(ã).

This calculation allows us to produce the dual of the original Wilson operator by dualizing increas-

ingly good smooth approximations. We find

W̃C,r = e−
r2

4R2 ‖C‖2TC,ir/2R2

where ‖C‖ is the L2-norm of the chain C: the usual L2 norm with respect to the metric of its

image under Poincaré duality.

To summarise, duality for (generalized) Wilson and ’t Hooft operators tells us the following.

Corollary 6.3.4. There is an equality of expectation values in generalized Maxwell theories

〈WC,r〉R = e−
r2

4R2 ‖C‖2〈TC,ir/2R2〉 1
2R
.

Remark 6.3.5. We described a canonical dual for Wilson and ’t Hooft operators, using a natural

choice of lift from operators acting on closed p-forms to operators acting on all p-forms. It’s

natural to ask whether it’s possible to do this for all observables, thus promoting abelian duality

from a correspondence to a genuine map of factorization algebras. It turns out however that this

is impossible. We’ll demonstrate this in a specific example.
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Let X be a 2p-manifold satisfying Hp(X) = 0, so Ωp(X) splits as dΩp−1(X) ⊕ d∗Ωp+1(X). We’ll

discuss global linear smeared observables in the closed p-form theory on X. Such an observable is

an element of dΩp−1(X))∨ given by L2-pairing with an exact p-form. Prescribing an extension of

an observable in the closed p-form theory to an observable in the full p-form theory is equivalent to

prescribing the action of the lifted observable on coexact p-forms, so a choice of such an extension

for all linear smeared observables is a map

f : dΩp−1(X)→ d∗Ωp+1(X).

Having specified such a map we obtain a canonical dual observable for every linear observable in the

closed p-form theory. Applying this duality procedure twice should bring us back to the observable

we started with, i.e. ∗f ∗ f = id, which means in particular that f must be an isomorphism.

However, we also need compatibility with the canonical duals constructed above for Wilson and

’t Hooft operators. Let I be a linear observable of form “integrate over a p-cycle”, and let αi → I

be a sequence of smeared observables approximating I. The duals of Wilson observables of form

eI are determined by the duals of linear observables since ex is Fourier self-dual, and to obtain

the required dual for our Wilson operator we need to choose the trivial lift for I, i.e. we need

f(αi) → 0. But then ∗f ∗ f(αi) → 0, so αi → 0 which is false. So there is no possible canonical

lift f compatible with the natural duals for Wilson and ’t Hooft operators, and in particular no

way of improving abelian duality to a genuine map rather than just a correspondence.
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Part 2

Twists of N = 4 Supersymmetric Gauge

Theories
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CHAPTER 7

Introduction

The material in this part of the thesis is taken from my joint paper “Geometric Langlands Twists

of N = 4 Gauge Theory from Derived Algebraic Geometry” [EY15] with Philsang Yoo.

In this part of the thesis, we engage directly with the work [KW06] of Kapustin and Witten, and

construct the classical geometric Langlands twists of N = 4 supersymmetric gauge theories. In

order to do so, we develop machinery, using techniques from derived algebraic geometry developed

by Gaitsgory and Rozenblyum to investigate what it means to twist a classical supersymmetric

field theory, on the level of the derived space of solutions to the classical equations of motion.

With some technical machinery in hand, we will prove the following theorem.

Theorem 7.0.6. The classical N = 4 supersymmetric Yang-Mills theory admits a holomorphic

twist defined on any complex algebraic surface X, whose moduli space of solutions to the equations

of motion has the form

EOMhol(X) ∼= T ∗form[−1] BunG(X).

This theory admits a CP1 of topological twists. In particular, the B-twist has classical moduli space

equivalent to

EOMB(X) ∼= T ∗form[−1] LocG(X)

and the A-twist has classical moduli space equivalent to

EOMA(X) ∼= BunG(X)dR.
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The A-twisted theory has some additional structure: it arises as the special point in a family of

“holomorphic-topological twists”. We use this structure to identify the moduli space on a product

Σ1×Σ2 of algebraic curves in a different way. In particular, we use this to give concrete descriptions

of the Hilbert space of each of the topologically twisted theories.
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CHAPTER 8

Classical N = 4 Theories and their Twists

In this chapter we’ll discuss the foundational constructions of supersymmetric gauge theories, and

the general formalism of “twisting” supersymmetric theories. For simplicity, from chapter 8.1.1

onwards we’ll stick to considering 4-dimensional theories in Riemannian signature, but many of the

constructions we discuss (particularly those purely algebraic constructions involving supersymme-

try algebras) have natural analogues in other dimensions. For instance, the construction of N = 4

supersymmetric gauge theories in four-dimensions by dimensional reduction fits into a natural

family of constructions using the theory of normed division algebras. This is beautifully explained

by Anastasiou, Borsten et al [ABD+13]. Throughout this chapter we’ll refer to appendix A for

general constructions with supersymmetry algebras.

8.1. Holomorphic and Topological Twists

The idea of a twist of a supersymmetry algebra, or of a supersymmetric field theory, originated

in [Wit88a] as a procedure for constructing topological “sectors” of general supersymmetric field

theories, but one can make sense of twists in much greater generality. One can form a twist of a

supersymmetry algebra A – and a twist of a theory on which it acts – from any supercharge Q

(i.e. fermionic element of the supersymmetry algebra) such that [Q,Q] = 0. The definition of the

twisted supersymmetry algebra is straightforward.

Let A be the complexified supersymmetry algebra in dimension n associated to a spinorial complex

representation Σ of Spin(n), a non-degenerate pairing Γ: Σ⊗Σ→ VC where VC is the n-dimensional

vector representation, and a subalgebra gR of R-symmetries. The example that we’ll be most

concerned with is the 4d supersymmetry algebra associated to a finite-dimensional complex vector
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space W , given by

AW = (so(4;C) nC4)⊕ gR ⊕Π((S+ ⊗W )⊕ (S− ⊗W ∗))

where gR = sl(4;C), as described in appendix A.

Definition 8.1.1. The twisted supersymmetry algebra associated to a fermionic element Q ∈ A

with [Q,Q] = 0 is the cohomology of A with respect to the differential [Q,−].

A more subtle notion is that of a twist of a supersymmetric field theory, which should be thought of

as the derived Q-invariants of the original theory, admitting an action of the twisted supersymme-

try algebra. Such twisted theories inherit properties (invariance under certain natural symmetries)

from properties of the supercharge Q. We’ll discuss two such properties: topological and holomor-

phic invariance.

Perhaps the most important types of twist are topological twists. In the literature, these are

defined as coming from supercharges Q ∈ Π(Σ) which are Spin(n)-invariant. Of course, there are

generally no such Q; for instance in 4 dimensions the odd part of the N = 1 supersymmetry algebra

decomposes as a sum of irreducible two-complex dimensional Spin(4)-representations. However, it

suffices to find Q that is Spin(n)-invariant after modifying the action of the complexified rotations

so(n;C) on the space of supercharges. Let’s make this more precise by first giving a more natural

definition, then showing why the above notion implies the more natural condition.

Definition 8.1.2. A supercharge Q with [Q,Q] = 0 is called topological if the map

[Q,−] : Σ→ VC

is surjective.

Remark 8.1.3. The above definition also makes sense for theories with an action of an uncom-

plexified supersymmetry algebra. A real supercharge Q is likewise called topological if the map

[Q,−] is surjective onto the space VR of real translations.
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We’ll see shortly that this implies that all translations act trivially on Q-twisted theories for

a topological supercharge Q. Now, let’s recover the classical notion of a topological twist. If

φ : so(n;C) → gR is a Lie algebra homomorphism, we can define a φ-twisted action of so(n;C)

on Σ. Indeed, Σ always takes the form S ⊗ W (in odd dimensions), or S+ ⊗ W1 ⊕ S− ⊗ W2

(in even dimensions) where W,W1 and W2 are finite-dimensional vector spaces acted on by the

R-symmetries. With this in mind we define the twisted action of X ∈ so(n;C) by

X(s⊗ w) = X(s)⊗ φ(X)(w)

or X(s+ ⊗ w1 + s− ⊗ w2) = X(s+)⊗ φ(X)(w1) +X(s−)⊗ φ(X)∗(w2)

depending on the dimension.

Proposition 8.1.4. Let Q be a non-zero supercharge in n dimensions such that [Q,Q] = 0, and

such that there exists a homomorphism φ : so(n;C)→ gR making Q invariant under the φ-twisted

action of so(n;C). Then Q is topological.

Proof. We can replace the supersymmetry algebra with the supersymmetry algebra twisted

by φ, with brackets modified as follows:

• The rotations so(n;C) act on Σ according to the φ-twisted action.

• Rotations bracket with elements of gR as their image under the embedding φ.

The bracket of two odd elements is unchanged, so it suffices to check that Q is topological in this

twisted algebra. In this algebra, since Q spans an irreducible so(n;C) representation, the image

of [Q,−] in VC should be itself an irreducible subrepresentation, so either 0 or VC itself. Since the

pairing Γ is non-degenerate, the map [Q,−] is never 0 when Q 6= 0, so its image is all of VC as

required. �

Remark 8.1.5. The converse to this proposition is false in general. For a counterexample, we

consider the case of the N = 1 supersymmetry algebra in dimension n = 8, where the positive

helicity Weyl spinor representation is related to the vector representation by triality (i.e. by
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precomposing by an outer automorphism of so(8;C)). The R-symmetry group is just C×, so

twisting homomorphisms are just characters, and we observe that there are no non-zero invariant

vectors for the vector representation of so(8;C) twisted by a character, and similarly for the

twisted Weyl spinor representation. However, there are topological supercharges in the positive

Weyl spinor representation in dimension 8. In dimension 8 any Weyl spinor Q+ pairs with itself to

0 under the Γ-pairing, and if Q+ is not pure – i.e. if its nullspace in C8 under Clifford multiplication

is not of dimension 4 – then the map Γ(Q+,−) : S8− → C8 is surjective.

Remark 8.1.6. In dimension 4 – the case we’ll principally be interested in in this paper – there is a

classification of twisting homomorphisms φ that yield topological twists by this procedure [Loz99].

We’ll investigate twists coming from the so-called “Kapustin-Witten” twisting homomorphism,

which we’ll define at the beginning of the next subsection.

The notion of a topological twist suggests a natural definition for a holomorphic twist. We should

ask the image of the map [Q,−] from the odd to the even part of the supersymmetry algebra to

contain exactly half of all translations. In order for this to make sense, suppose n is even.

Definition 8.1.7. A supercharge Q with [Q,Q] = 0 is called holomorphic if there exists a C-linear

isomorphism between VC and Cn/2⊗RC such that the image of [Q,−] in VC spans the holomorphic

subspace Rn/2 ⊗R C.

To put it another way, Q is holomorphic if we can choose a splitting of the algebra of translations

into holomorphic and anti-holomorphic directions such that the image of [Q,−] is precisely the anti-

holomorphic piece. There’s a natural procedure for constructing holomorphic twists analogous to

the procedure for topological twists above, which is straightforward to describe in four dimensions.

The procedure depends on a choice of embedding SU(2) → SU(2)+ × SU(2)−, or on the level of

complexified Lie algebras so(3;C)→ so(4;C). This defines an action of SU(2) on VC by restricting

the tensor product action on S+ ⊗ S−, and thus a subspace of VC by taking invariant vectors. We
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want this to give a real subspace (i.e. a half-dimensional subspace), so we must restrict attention

to the inclusions ι1 and ι2 of the two factors.

Proposition 8.1.8. Let Q be a non-zero supercharge Q with [Q,Q] = 0, and suppose there exists

a homomorphism φ : so(4;C)→ gR making Q invariant under the φ-twisted action of ιi(so(3;C)),

where i = 1 or 2. Then Q is either a holomorphic or a topological twist.

Proof. This is very similar to the proof of proposition 8.1.4 above. Again we can replace the

supersymmetry algebra by its φ-twisted version, but now the image of [Q,−] in the translations

is a ιi(so(3;C))-subrepresentation of VC. As a module for this algebra VC decomposes as the

sum of two two-dimensional irreducible representations. Thus the image of [Q,−] is zero, half-

dimensional or full-dimensional. As before, non-degeneracy of Γ ensures that it’s non-zero, so Q

is either holomorphic or topological. �

8.1.1. Twists of the N = 4 Supersymmetry Algebra

For most of the rest of this paper, we’ll specialize to the 4-dimensional setting and the case where

W = C4, i.e. to N = 4 supersymmetry. We’ll take the R-symmetry algebra to be gR = sl(4;C) ⊆

gl(4;C); this is the R-symmetry algebra that’ll act on supersymmetric gauge theories, since the

theories we’ll define will require fixing a choice of trivialization of detC4. We’ll consider several

holomorphic and topological twists of an N = 4 supersymmetric gauge theory, so let’s discuss

these twists at the level of the supersymmetry algebra

AN=4 = (so(4;C)⊕ gR ⊕ VC)⊕Π (S+ ⊗W ⊕ S− ⊗W ∗)

where W = C4, and where gR acts on W by its fundamental representation.
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We’ll first analyse a family of holomorphic twists of this supersymmetry algebra. We’ll fix a

particular twisting homomorphism φ, the Kapustin-Witten twist, defined to be the composite

φKW : so(4;C) ∼= sl(2;C)⊕ sl(2;C)→ sl(4;C)

where the first map is the exceptional isomorphism in dimension 4, and the second map is the block

diagonal embedding. We’ll get a space of holomorphic supercharges for each factor of SU(2)+ ×

SU(2)−, which we’ll describe concretely. Choose a C-basis for the space of supercharges by choosing

bases for its constituent pieces as follows:

S+ = 〈α1, α2〉

S− = 〈α∨1 , α∨2 〉

W = 〈e1, e2, f1, f2〉

W ∗ = 〈e∗1, e∗2, f∗1 , f∗2 〉

where so(4;C) acts on W via the φKW -twist so that {ei} and {fi} are bases for the two semispin

factors (i.e. the summands on which SU(2)+ and SU(2)− act), and where the basis given for

W ∗ is the dual basis to the one for W . Tensor products of basis elements yield a basis for

S+ ⊗W ⊕ S− ⊗W ∗. Consider the embedding ι2 : SU(2)→ SU(2)+ × SU(2)− by inclusion of the

second factor. The resulting invariant supercharges are those in S+ ⊗ 〈e1, e2〉. From now on we’ll

fix a reference holomorphic supercharge

Qhol = α1 ⊗ e1.

Now, let’s compute the Qhol-cohomology of the N = 4 supersymmetry algebra; that is, the coho-

mology of the cochain complex

so(4;C)⊕ gR
[Qhol,−]

// Π(S+ ⊗W ⊕ S− ⊗W ∗)
[Qhol,−]

// VC .
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Consider the terms sequentially.

• In the translation term we expect to find a half-dimensional family of “antiholomorphic”

translations as the cokernel of [Qhol,−]. Indeed, the image in the translations is the span

of Γ(α1, α
∨
1 ) and Γ(α1, α

∨
2 ), which are linearly independent. From now on we’ll work in

coordinates on VC defined by

∂

∂zi
= Γ(α1, α

∨
i ),

∂

∂zi
= Γ(α2, α

∨
i ).

• In the remaining bosonic term, the kernel of [Qhol,−] is spanned by so(3;C)− = su(2)−⊗C

and Ann(e1) ∼= p, a parabolic subalgebra of sl(4;C) with Levi subalgebra sl(3;C).

• In the fermionic term, consider the two summands separately. First look at S+⊗W . These

elements are all [Qhol,−]-closed, and the exact elements are just the five-dimensional

subspace generated by S+ ⊗ 〈e1〉 and 〈α1〉 ⊗W , leaving

〈α2 ⊗ e2, α2 ⊗ f1, α2 ⊗ f2〉

as the cohomology. Finally, look at S−⊗W ∗. There are no exact elements in this subspace,

and the closed elements are given by

S− ⊗ 〈e∗2, f∗1 , f∗2 〉.

So overall, the twisted supersymmetry algebra has form

(
so(3;C)⊕ p⊕

〈
∂

∂z1
,
∂

∂z2

〉)
⊕Π

(
〈α2 ⊗ e2, α2 ⊗ f1, α2 ⊗ f2〉 ⊕ S− ⊗ 〈e∗2, f∗1 , f∗2 〉

)

where so(3;C) acts on S− by its spin representation, and sl(3;C) ⊆ p acts on 〈e2, f1, f2〉 and its

dual space by the fundamental and anti-fundamental representations respectively.

Now, the twists we’ll really be concerned with will all be further twists of such a holomorphic twist.

That is, they’ll be determined by supercharges Q = Qhol + Q′ where Q′ commutes with Qhol but

is not obtained from Qhol by the action of some symmetry, so survives in the Qhol twist. All such
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supercharges are holomorphic or stronger (i.e. at least half the translations are Q-exact); indeed,

the image of [Q,−] in VC contains the image of [Qhol,−].

Remark 8.1.9. For our further twists, we have an isomorphism

H•(AN=4;Qhol +Q′) ∼= H•(H•(AN=4;Qhol);Q
′).

This is clear for Q′ contained entirely in the S− summand of space of supersymmetries, this follows

from the degeneration of the spectral sequence of the double complex for AN=4 where S+ is placed

in bidegree (1, 0) and S− is placed in bidegree (0, 1). If instead Q′ is contained entirely in the S+

summand, the complexes (AN=4, Qhol + Q′) and (H•(AN=4, Qhol), Q
′) in degrees 0, 1 and 2 split

as the sum of two two-step complexes. The claim follows for further twists of form Q′ = α2 ⊗ w

where w ∈W by examining the cohomology of each of these two-step complexes.

We’ll investigate which such supercharges Q are topological. Using the same twisting homomor-

phism φKW as above, we need to check which supercharges in the cohomology above are invariant

under the twisted SU(2)−-action (since they’re already SU(2)+ invariant). In S+ ⊗W these are

just multiples of α2 ⊗ e2. In the other factor, S− ⊗W ∗, the group SU(2)− acts on the [Qhol,−]-

cohomology as the module S− ⊗ (C⊕ S−) ∼= Sym2(S−)⊕ C. The invariant factor is generated by

the supercharge α∨1 ⊗ f∗1 − α∨2 ⊗ f∗2 . As such, the CP1-family of supercharges

Q(µ:ν) = Qhol + (µ(α∨1 ⊗ f∗1 − α∨2 ⊗ f∗2 ) + ν(α2 ⊗ e2)), for (µ : ν) ∈ CP1

are all topological. This is the Kapustin-Witten family of topological twists considered in [KW06].

We’ll be most interested in the cases where (µ : ν) = (0 : 1) and (1 : 0). We call these twists the

A-twist QA and the B-twist QB respectively.

Finally, we’ll be interested in a family of supercharges approximating QA which are somewhere in

between topological and holomorphic; a three-dimensional family of translations will be exact for



117

the action of these supercharges. Specifically, we can consider the supercharge

Qλ = Qhol + λ(α∨2 ⊗ f∗2 ) + (α2 ⊗ e2)

for each λ ∈ C. These holomorphic-topological twists (so called because we think of them as being

holomorphic in two real dimensions – i.e. one complex dimension – and topological in the remaining

two) converge to QA as λ→ 0. Twists of this form were originally studied by Kapustin [Kap06].

8.1.2. Superspace Formalism

The above formalism will allow us to define the action of a supersymmetry algebra on certain

theories over R4, and to produce topologically and holomorphically twisted versions with desirable

symmetry properties. However, it’ll be important for us to generalize these theories to theories

defined on more general manifolds than R4. We’ll do this by globalizing the twisted supersymmetry

algebras, i.e. realizing them as acting locally on the total spaces of certain super vector bundles

over our manifolds by infinitesimal symmetries. To set up this so-called “superspace formalism”

we’ll need some language from supergeometry. By a super-ring, we’ll just mean a Z/2Z-graded

commutative ring. We’ll consider suitable “superspaces” whose local functions form such a super-

ring.

Definition 8.1.10. A supermanifold of dimension n|m is a ringed space (M,C∞M ) which is locally

isomorphic to (Rn, C∞(Rn;C)[ε1, . . . , εm]), where the εi are odd variables.

Remark 8.1.11. Note that we’re defining a supermanifold to have a structure sheaf consisting of

complex valued functions. Such an object is sometimes called a complex supersymmetric (or cs)

supermanifold, for instance by Witten [Wit12].

A typical example of the kind of supermanifold we are going to consider is the total space of an

odd vector bundle. We can define this as follows.
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Example 8.1.12. Let M be a real manifold, and let E be a complex vector bundle on M . Then we

define a supermanifold (ΠE,C∞ΠE) by setting C∞ΠE(U) = C∞(U,∧•E∗) for each open set U ⊂ M .

In particular, if E = TM is the tangent bundle of M , then the sheaf of smooth functions on

U ⊂ ΠE is the space Ω•(U) of smooth differential forms on U . Supermanifolds diffeomorphic to a

supermanifold of this form are called split.

We can also define an algebraic analogue.

Definition 8.1.13. A supervariety of dimension n|m is a ringed space (X,OX) which is locally

isomorphic to (SpecR,R[ε1, · · · , εm]) for a reduced C-algebra R of Krull dimension n.

Note that every smooth supervariety naturally yields a supermanifold. Our vector bundle example

still makes sense in an algebraic sense.

Example 8.1.14. Let X be a smooth complex algebraic variety and E be an algebraic vector

bundle on X. Then we define a supervariety (ΠE,OΠE) by setting OΠE(U) = O(U,∧•E∗). Su-

pervarieties isomorphic to the ones of this form are called split supervarieties.

Remark 8.1.15. There is a fundamental difference between the smooth and algebraic settings. In

the smooth setting, a theorem of Batchelor [Bat79] says that all supermanifolds are split. In the

complex algebraic setting this is very much not true, and there are many non-split supervarieties.

Luckily, all the examples we’ll need to deal with in what follows will be split, so this subtlety will

not play a role.

Example 8.1.16. An example of a natural supervariety of this form is the complex super projective

space CPn|m, modelling the quotient of the supermanifold Cn+1|m \ {0} under the action of C× by

rescaling. Concretely, CPn|m is the total space of the odd algebraic vector bundle Π(O(1) ⊗ Cm)

over CPn, as one can readily check by analysing the transition functions for the odd coordinates

between affine charts.
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If we want to do calculus on supermanifolds, we need an analogue of the canonical bundle for a

supermanifold.

Definition 8.1.17. For a split supermanifold ΠE for E →M , we define the Berezinian to be the

super vector bundle BerΠE = det(T ∗M ⊕ E∗) over ΠE. Similarly, for a split supervariety ΠE for

E → X, we define the Berezinian to be the algebraic super vector bundle BerΠE = det(T ∗X ⊕ E∗)

over ΠE, where TX denotes the algebraic tangent bundle of X.

Example 8.1.18. Let Σ be a smooth curve and L be a line bundle over Σ. For the supervariety

ΠL over Σ with projection map p : ΠL→ Σ, its Berezinian is the bundle BerΠL = p∗(KΣ⊗L∗) on

ΠL.

Definition 8.1.19. A Calabi-Yau structure on a supervariety X is a trivialization of the Berezinian,

i.e. a complex vector bundle isomorphism from BerX to the trivial bundle.

Now let us globalise the Kapustin-Witten family of topological twists in the language of supergeom-

etry. To do this, we’ll find an odd vector bundle ΠE over C2 and an action of the Qhol-cohomology

of the supersymmetry algebra on ΠE extending the natural action of the bosonic symmetries

so(3;C)⊕
〈

∂
∂z1

, ∂
∂z2

〉
. Since the space of odd symmetries is 9-dimensional, a natural choice for ΠE

is the superspace C2|3 → C2 (which has a 9-dimensional space of odd vector fields). Choose co-

ordinates (z1, z2, ε, ε1, ε2) for this superspace, where the complexified rotations so(3;C) act on the

bosonic coordinates by its spin representation, and the R-symmetries sl(3;C) act on the fermionic

coordinates. In these coordinates, we define the action of the supersymmetries by the following

odd vector fields.

α2 ⊗ e2 =
∂

∂ε

α2 ⊗ fi = (−1)i+1 ∂

∂εi

α∨j ⊗ e∗2 = ε
∂

∂zj

and α∨j ⊗ f∗i = (−1)i+1εi
∂

∂zj



120

for i, j ∈ {1, 2}. This does indeed define an action of the super Lie algebra, i.e. the vector fields

satisfy the correct commutation relations. In this notation, the topological supercharges act by

the vector fields

Q(µ:ν) =

(
µ

(
ε1

∂

∂z1
+ ε2

∂

∂z2

)
+ ν

∂

∂ε

)
.

Note that we abuse the notation Q(µ:ν) to mean the one in the previous subsection after taking

Qhol-cohomology.

It remains to extend these local vector fields to global vector fields on a 4-manifold X. We’ll

be able to do this if X has the structure of a complex surface. Since SU(2)− acts on S− as the

fundamental representation, one can identify εi = dzi and hence simply write ε1
∂
∂z1

+ ε2
∂
∂z2

= ∂.

On the other hand, ε belongs to the trivial representation, and hence should be a trivial odd line

bundle. Namely, for a given complex surface X, the global superspace we end up with after the

holomorphic twist is Y = ΠTX × C0|1, where further twists are described by the algebraic vector

fields λ∂ + µ ∂
∂ε .

If, furthermore, X splits as the product of two smooth algebraic curves X = Σ1 × Σ2, we can

globalise the action of the holomorphic-topological twists Qλ. In the coordinates above, these

twists act locally by

Qλ = λε2
∂

∂z2
+

∂

∂ε

which, by the argument above, describes the local action of the odd vector field λ∂2 + ∂
∂ε where ∂2

is the algebraic de Rham operator on Σ2 only.

8.2. Twisted Supersymmetric Field Theories

Now, let’s discuss what we’ll mean by a classical field theory, and what it means to twist such

an object. The definitions in this chapter will build on the perturbative definitions given by

Costello in [Cos11a], but extended to a global, non-perturbative setting. In doing so we’ll find

that, indeed, topological and holomorphic twists give rise to topological and holomorphic field
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theories respectively, justifying their names (by holomorphic field theories, we mean those where

observables depend only on a choice of complex structure on spacetime, not on a choice of metric.

In two dimensions this will coincide with the notion of a (chiral) conformal field theory). The

supercharge Q with which we wish to twist generates a one-odd-dimensional abelian superalgebra

CQ, and the twisted theory will be – perturbatively – defined as something very close to the

derived CQ-invariants of the untwisted theory.

Globally, we can define a twist with respect Q as a family of derived stacks over A1 so that, on

the relative tangent bundle to a section, we recover a perturbative twist of the fiber at 0 by Q. In

general there is no reason that such global twists should be unique, but in many examples we’ll

see that there exists a natural choice provided by theorems of Gaitsgory and Rozenblyum.

8.2.1. Classical Field Theories

Costello and Gwilliam [CG15] give a beautiful axiomatization of the notion of a perturbative

classical field theory amenable to quantization and explicit calculation. The definition we’ll give will

be a global extension of this definition, but to perform any calculations (especially for quantization)

we’ll restrict to the world of perturbation theory, and to their language. One should view our

definition as encoding the moduli space of solutions to the equations of motion in a theory, and

Costello and Gwilliam’s definition as describing the formal neighborhood of a point in this moduli

space. We’ll begin by briefly recalling the definition of a perturbative classical field theory.

Remark 8.2.1. In this chapter, by “vector spaces” we’ll mean cochain complexes of nuclear

Fréchet spaces. We’ll use E∨ to denote the strong dual of a vector space, and E ⊗ F will denote

the completed projective tensor product. We’ll write Ŝym(E) for the completed symmetric algebra

built using this tensor product.

For a vector bundle E on a space X, we’ll use the calligraphic letter E for its sheaf of sections,

and we’ll denote by Ec the corresponding sheaf of compactly supported sections. We’ll write E! for
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the twisted dual bundle E∨ ⊗DensX where DensX is the bundle of densities, so there’s a natural

pairing E ⊗ E! → DensX of vector bundles.

Definition 8.2.2. An elliptic L∞ algebra E on a topological space X is a local L∞ algebra (as in

appendix B) over X which is elliptic as a cochain complex. A perturbative classical field theory is

an elliptic L∞ algebra E equipped with a non-degenerate, invariant, symmetric bilinear pairing

〈−,−〉 : E ⊗ E[3]→ DensX

where DensX denotes the bundle of densities on X. Here invariant means that the induced pairing

on the sheaf of compactly supported sections

∫
X
〈−,−〉 : Ec ⊗ Ec[3]→ C

is invariant.

From a perturbative classical field theory in this sense, we can produce a more geometric object.

Indeed, the fundamental theorem of deformation theory (as described in appendix B) allows us to

associate to a local L∞ algebra E a sheaf of formal moduli problems BE, and this correspondence

provides an equivalence of categories. If the L∞ algebra E is equipped with a degree k pairing

then we say the formal moduli problem BE inherits a presymplectic form of degree k+ 2. We use

this to motivate a general definition in the language of derived algebraic geometry, using a theory

of shifted symplectic structures that is applicable in great generality.

In their 2013 paper [PTVV13], Pantev, Toën, Vaquié and Vezzosi define the notion of a shifted

symplectic structure on a derived Artin stack. We refer to their paper and the paper [Cal13]

of Calaque for details, but we should note that a k-symplectic structure on M induces a non-

degenerate degree k pairing on the tangent complex TM, and thus a degree k − 2 pairing on

the shifted tangent complex TM[−1]. In the recent sequel [CPT+15], Calaque, Pantev, Toën,

Vaquié and Vezzosi generalize this notion to that of a shifted Poisson structure, and prove that
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this recovers the notion of a shifted symplectic structure when a non-degeneracy condition is

imposed (a different proof for Deligne-Mumford stacks only also appeared in an earlier preprint of

Pridham [Pri15]).

We’ll begin by giving an ideal definition of a non-perturbative classical field theory that we believe

best captures the structure of local classical solutions to the equations of motion.

Definition 8.2.3. A classical field theory on a smooth manifold X is a sheaf M of (−1)-shifted

Poisson derived stacks such that for each open set U ⊂ X, the shifted tangent complex Tp[−1]M(U)

for a closed point p ∈ M(U) is homotopy equivalent to a perturbative classical field theory when

equipped with the degree −3 pairing induced from the shifted Poisson bracket.

Remark 8.2.4. We assume that Costello’s assumption of ellipticity is always satisfied in an

algebraic setting, in view of the main example of de Rham forms Ω•alg(X) becoming elliptic in

the analytic topology by the Dolbeault resolution. It is possible that one needs a more careful

definition of ellipticity in an algebraic setting for a treatment of the quantization of algebraic

perturbative theories, but this is beyond the scope of the present paper.

In practice, in this paper we’ll need to use a modified, algebraic version of this definition. There

are several reasons for this.

(1) Since we hope to eventually describe the moduli spaces of interest in the geometric Lang-

lands program as local solutions in a classical field theory, we’ll need a model that depends

on an algebraic structure on the spacetime manifold. As such we won’t be able to make

sense of classical solutions on a general analytic open set. Instead we’ll need to work with

a topology whose open embeddings are algebraic maps.

(2) The theories we’ll construct will be built using mapping spaces out of spacetime. In

general, if a spacetime patch U is not proper, these mapping spaces will be of infinite

type, and so it will be technically difficult to describe shifted Poisson structures on them.

Rather than getting bogged down in these functional analysis issues we’ll simply ask for
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a shifted symplectic structure on the global sections (with the understanding that a more

sophisticated analysis should also recover a global version of the local Poisson bracket

used by Costello and Gwilliam).

Remark 8.2.5. We expect that an alternative version of the theory should exist in the analytic

topology, using a suitable notion of analytic derived stacks, for example based on the C∞ dg-

manifolds of Carchedi and Roytenberg [CR12], the d-manifolds of Joyce [Joy11], or on a formalism

of Ben-Bassat and Kremnizer (to appear) generalizing to a complex analytic setting their non-

Archimedean analytic geometry [BBK13].

Definition 8.2.6. An algebraic classical field theory on a smooth proper algebraic variety X

is an assignment of a derived stack M(U) to each Zariski open set U ⊆ X, with a (−1)-shifted

symplectic structure on the spaceM(X) of global sections whose shifted tangent complex TM(X)[−1]

is homotopy equivalent to the global sections of a perturbative classical field theory when equipped

with the degree −3 pairing induced from the shifted symplectic pairing.

Remarks 8.2.7. (1) We’ve deliberately left the nature of the “assignment” in the definition

imprecise, although we expect that the correct definition is a sheaf of derived stacks.

Constructing the restriction maps and finding a symplectic structure – much like investi-

gating the shifted Poisson structure on open sets – will involve subtle functional analytic

issues involving Verdier duality on infinite-dimensional stacks which is beyond the scope

of the present work. The main theorems of this paper involve a determination of the

global sections of a classical field theory on a smooth proper variety, and are expected

to need adjustment to extend to sheaves of derived stacks. We hope to discuss this issue

elsewhere.

(2) In what follows, we sometimes consider theories defined on not necessarily proper varieties,

for instance Cn. We will informally refer to assignments of derived stacks in this general

setting also as algebraic classical field theories, even without an analysis of shifted Poisson

structures.
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(3) We could just as readily have made this definition using a finer topology, the étale topology

for instance, but Zariski open sets will be sufficiently general for the examples in the

present paper.

The intuition behind this definition is – as we already stated – to encode the idea of the derived

moduli spaces of solutions to the equations of motion. Globally, given a space of fields and an

action functional we can produce a shifted symplectic derived stack by taking the derived critical

locus of the action functional. Locally there are subtleties due to the existence of a boundary (as

discussed for instance by Deligne and Freed in their notes on classical field theories [DF99]): one

can still determine the equations of motion but the space of derived solutions will at best have a

shifted Poisson structure.

In what follows we’ll single out a special family of algebraic classical field theories which is adapted

for discussion of twists of supersymmetric Yang-Mills theories. These will model theories whose

classical fields include a 1-form field, which is constrained to describe an algebraic structure on a

G-bundle on-shell, and where the rest of the fields are all determined by formal data.

Definition 8.2.8. A formal algebraic gauge theory on a smooth variety X is an algebraic classical

field theory M on X with a map σ : BunG(U) → M(U) for each Zariski open set U ⊆ X, such

that σ is inf-schematic and induces an equivalence BunG(U)red →M(U)red of their reduced parts.

If a formal algebraic gauge theory M additionally admits such a map π : M(U) → BunG(U) for

each U such that σ is a section of π, then we call M fiberwise formal.

Remark 8.2.9. We’ll see in our examples that there are natural twists of supersymmetric gauge

theories that are not of this formal nature, for instance twists that form the total space of a

(dg) vector bundle over BunG. We’ll motivate the appearance of such example by viewing them as

natural extensions of formal algebraic gauge theories, but they do not intrinsically fit into the above

definition. We think of the definition as a tool that allows us to compute twists of supersymmetric

gauge theories.
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Example 8.2.10. Given any sheaf M of derived stacks with elliptic tangent complex and where

M(X) is finitely presented we obtain an algebraic classical field theory by taking the formal

shifted cotangent space T ∗form[−1]M. At the perturbative level, if E is an elliptic L∞ algebra this

corresponds to taking the direct sum of L∞-algebras E ⊕ E![−3], with invariant pairing induced

from the evaluation pairing E ⊗ E! → DensX . If M admits a map σ : BunG →M satisfying the

hypotheses of definition 8.2.8, then T ∗form[−1]M defines a formal algebraic gauge theory, using the

zero section map associated to the formal shifted cotangent space. Likewise, if M also admits a

map π : M → BunG, so that σ is a section as in definition 8.2.8 then the projection map makes

T ∗form[−1]M into a fiberwise formal algebraic gauge theory.

Having given a definition of a classical field theory, let’s investigate what it means to twist such

objects. We’ll begin by explaining what it means to twist a perturbative classical field theory, then

use this to give a non-perturbative definition of a twist of a formal algebraic gauge theory which

will suffice for our examples.

8.2.2. Perturbative Twisting

Definition 8.2.11. A classical field theory E on a space X with an action of the super Poincaré

algebra (such as Rn) is called supersymmetric if it admits an action by the super Lie algebra

so(n,C) n C4 ⊕ Π((S+ ⊗W ) ⊕ (S− ⊗W ∗)) extending the natural action of the Poincaré algebra

for some vector space W (for a definition of a superalgebra action on a local L∞ algebra, see the

appendix, definition B.2).

We’ll be interested in supersymmetric field theories where the action extends to an action of the

full supersymmetry algebra for some choice of R-symmetries. In our examples for N = 4, this will

be the case with the subalgebra sl(4;C) ⊆ gl(4;C) of (complexified) R-symmetries preserving a

trivialization of the determinant bundle.
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The data required to twist a classical field theory is the action of a certain supergroup. Define a

supergroup

H = C× n ΠC

where C× acts with weight 1. This group arises as the group of automorphisms of the odd complex

line.

Definition 8.2.12. Twisting data for a classical field theory Φ on a space X is a local action

(α,Q) of H on Φ(U) for all U . That is, in the perturbative case Φ is a sheaf of L∞ algebras with

H-module structure, and in the non-perturbative case Φ is a family of derived stacks with H-action.

In our notation, α is a C× action, and Q is an odd infinitesimal symmetry with α-weight 1.

An important source of twisting data is a supersymmetry action. Let Q be a supercharge such

that [Q,Q] = 0, and let α be a C× action such that Q has weight one (we can always find such an

action by choosing a suitable C× in the group of R-symmetries, after choosing an exponentiation of

the action of the R-symmetry algebra to an action of an R-symmetry group.) Since [Q,Q] = 0, the

supercharge Q generates a subalgebra isomorphic to ΠC acting on any theory with the appropriate

supersymmetry action, and along with α this defines an action of the supergroup H.

Lemma 8.2.13. There is an equivalence of categories

{super vector spaces with an H-action} ∼= {super cochain complexes}.

Here the grading is given by the weight under the action of C× and the differential is given by the

action of ΠC. We use this fact to define a twisted theory for the data (α,Q).

Definition 8.2.14. Let E be a perturbative classical field theory with an action of the supergroup

H. The twisted theory EQ (where Q is a generator of ΠC) is the theory obtained by introducing a

new differential graded structure on E in accordance with the previous lemma and taking the total

complex with respect to this new grading and the cohomological grading.
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Remark 8.2.15. The twisted theory EQ fits into a family of classical field theories deforming E –

i.e. a sheaf of perturbative field theories over the line A1 – whose fiber at λ is the theory obtained

by applying the twisting construction with respect to the dilated twisting data (λQ,α).

Remarks 8.2.16. This definition needs some unpacking. We should explain what we want to do

intuitively, in particular the role of the action α.

• On the level of functions – that is, observables – our first idea is to take the Q-coinvariants.

By identifying observables with their orbits under Q we force all Q-exact symmetries to

act trivially, so if we choose a holomorphic or topological supercharge we impose strong

symmetry conditions on the observables in the twisted theory. The näıve thing to do to

implement this procedure would be to take the derived invariants of our classical field

theory with respect to the group ΠC generated by Q.

• This is all well and good, but recall what a ΠC-action actually means: the data of a

family of classical field theories over the space B(ΠC) whose fiber over zero is E. That

is, a module over C[[t]], where t is a fermionic degree 1 parameter. One really wants to

restrict interest to a generic fiber of this family.

• To do this we restrict to the odd formal punctured disc, or equivalently invert the param-

eter t, then take invariants for an action α of C× for which t has weight 1, thus extracting

a “generic” fiber instead of the special fiber at 0. This is an instance of the Tate construc-

tion for the homotopy ΠC action Q. It’s important to restrict to the formal punctured

disc, since not all these invariant fields extend across zero: if we just took C× invariants

in E [[t]] we’d obtain elements of E of the form φtk where φ had weight −k. In particular

we’d find ourselves throwing away everything of positive C× weight in E .

• Now, this procedure is exactly the same as the definition we gave above. Taking derived

Q invariants corresponds to taking the complex E [[t]] with differential dE + tQ. Inverting

t and taking invariants under the action α is then the same as adding the α weight to the

original grading, and adding the operator Q to the original differential dE , just as in our

definition.
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Proposition 8.2.17. The twisted theory EQ is still a classical field theory when equipped with a

pairing inherited from E.

Proof. First note that EQ is still an elliptic L∞ algebra. The complex obtained as the ΠC

invariants of the theory – the complex (E [[t]], dE + tQ) – is required to have the structure of an

elliptic L∞ algebra by the definition of a group action on a field theory. Inverting t preserves this

structure, as does taking C×-invariants, again because α is a local L∞-action.

It remains to construct an invariant pairing on EQ of the correct degree (we’ll follow Costello

[Cos11a, 13.1]). The pairing on E induces a degree -3 pairing of form

〈−,−〉Q : E[[t]]⊗ E[[t]][3]→ DensX [[t]]

by 〈e1t
k1 , e2t

k2〉Q = 〈e1, e2〉tk1+k2 . We only need to check that this is compatible with the differ-

ential dE + tQ, i.e. that exact terms on the left vanish under the pairing map, or more precisely

that

(〈dEf1, f2〉+ 〈f1, dEf2〉) tk1+k2 + (〈Qf1, f2〉+ 〈f1, Qf2〉) tk1+k2+1 = 0.

The first term vanishes because of compatibility of dE with the pairing, and the second term

vanishes because Q is a symmetry of the classical field theory. This pairing yields an invariant

DensX((t)) valued pairing after inverting t. By construction these pairings are equivariant with

respect to the action of C× by rescaling t, so descends to a pairing

〈−,−〉Q : (E((t))⊗ E((t))[3])C
×
→ DensX((t))C

×
= DensX .

This pairing is still invariant, so gives EQ the structure of a classical field theory. �
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8.2.3. Global Twisting

Now, let M be a non-perturbative algebraic classical field theory on Cn, and suppose M admits

an action of a supersymmetry algebra extending the action of the translations. As above, choose

a supercharge Q satisfying [Q,Q] = 0, and an action α of C× on M so that Q has α-weight one.

Definition 8.2.18. A deformation of a derived stack X is a derived stack π : X ′ → A1 flat over

the affine line along with an immersion X ↪→ X ′0, and an equivalence X ′|Gm ∼= X ′1×Gm, where X ′t

is the fiber over the point t.

We’ll begin with a prototypical example of a deformation, presented somewhat informally for

motivation. We’ll provide a more conceptual and general treatment of the example later in 8.2.28.

Example 8.2.19. Consider a smooth proper variety X. We define a ringed space XDol by XDol :=

(X,OT [1]X), where the structure sheaf OT [1]X is equivalent to SymX(LX [−1]) = Ω•alg,X . As one

has a quasi-isomorphism Ωp
alg,X ' (Ap,•X , ∂) in the analytic topology, XDol is justifiably called the

Dolbeault stack of X. Similarly, one defines Xλ-dR to be the ringed space (X, (Ω•alg,X , λ∂)). Of

course, XdR := X1-dR is called the de Rham stack of X because one has (Ω•alg,X , ∂) ' (A•,•X , ∂+∂) '

(A•X , d) in the analytic topology. It will sometimes be convenient to write X0-dR for XDol.

There exists a ringed spaceXHod and a mapXHod → A1 such that the fiber over λ is (X, (Ω•alg,X , λ∂)).

That is, both squares in the following diagram are fiber product squares.

XDol

��

// XHod

��

Xλ-dR

��

oo

{0} // A1 {λ}oo

In particular, XHod is a deformation of XDol.

Now we would like to write down this information in a way that can be easily generalized to other

situations. First, observe that as XDol and Xλ-dR have the same closed points, they differ only
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by an infinitesimal thickening from the original space X. In order to write this more carefully, let

us introduce the canonical map σλ : X → Xλ-dR. Then we would like to compare Tσ0(x)XDol and

Tσλ(x)Xλ-dR for every x ∈ X. A way to compare them is to find a section s : A1 → XHod so that

both of them are realized as fibers of s∗TXHod/A1 . If that is the case, then one declares XdR to be

a twist of XDol.

On the other hand, in general, one might not have a map playing the role of σλ, even if we started

with a map σ0 which is an equivalence at the level of closed points. Then it would be reasonable

to ask for compatibility for every point x1 ∈ XdR. Namely, for a closed point x1 ∈ XdR, we ask

the existence of a section s : A1 → XHod such that

(1) s(0) = σ0(x) for some x ∈ X,

(2) s(λ) = xλ for some xλ ∈ Xλ-dR, and

(3) s∗TXHod/A1 is a deformation of Tσ0(x)XDol.

Even only with this weaker requirement, we think of XdR as a twist of XDol.

When we define a twist of a formal algebraic gauge theory, there are two additional small compli-

cations to be introduced. Firstly, given twisting data (α,Q), before twisting by Q we need to deal

with modifying the gradings by the C×-weight under α.

Definition 8.2.20. A regrading of a formal algebraic gauge theoryM with respect to a C× action

α such that σ : BunG →M is equivariant for the trivial action on BunG is a formal algebraic gauge

theory σα : BunG →Mα such that the restricted tangent complex σ∗αTMα [−1] is equivalent to the

restricted tangent complex of M with degrees modified by adding the α-weight to the cohomological

degree and the α-weight mod 2 to the fermionic degree, as a sheaf of Lie algebras.

The second complication is that a perturbative classical field theory consists of more data than

just a cochain complex, and our twist must preserve this additional information on the level of

each tangent complex, in the sense discussed in the previous chapter on twists of perturbative field

theorys.
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Bearing these two points in mind, by mimicking the motivating example with X replaced by BunG,

we obtain the following definition.

Definition 8.2.21. A classical non-perturbative field theory MQ is a twist of a formal algebraic

gauge theory M with respect to twisting data (α,Q) if there is a deformation π : M′ → A1 of the

regrading Mα, whose generic fiber is equivalent to MQ, such that for every closed point x1 ∈MQ,

there is a section s : A1 →M′ of the map π such that

(1) s(0) = σα(x) for some x ∈ BunG,

(2) s(λ) = xλ for some xλ ∈MλQ, and

(3) s∗TM′/A1 is a perturbative twist of Tσ(x)M with respect to the given twisting data as in

remark 8.2.15.

Remark 8.2.22. One could define twists of more general classical field theories as long as they

could be viewed as formal extensions of some fixed base stack (playing the role of BunG in the

above definition). For example, one could replace BunG by maps into a target other than BG to

describe twists of supersymmetric sigma models, or ifMQ = T ∗[−1]B was a cotangent theory one

might use the base space B.

Remark 8.2.23. One ought to be able to produce twisted field theories explicitly from a functor-

of-points perspective, along the lines of a construction explained by Grady and Gwilliam [GG14].

Let L be an L∞ space (we refer the reader to Grady-Gwilliam or Costello [Cos11a] for details

concerning the theory of L∞ spaces) over a scheme M whose fibers are finitely generated and

concentrated in non-negative degrees, and let L be equipped with a degree −3 invariant pairing

on its fibers making it into a sheaf of perturbative classical field theories. Then we can attempt

to build a non-perturbative classical field theory out of L as follows. Let L>0 be the truncation in

positive degrees: a nilpotent L∞ space, and let L0 be the degree 0 piece: a sheaf of Lie algebras.

We can attempt to construct a sheaf M of derived stacks over M by a Maurer-Cartan procedure.

To do so, choose an exponentiation of L0 to a sheaf of algebraic groups G. Define, for a cdga R
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concentrated in non-positive degrees, the R-points of M over U by

M(U)(R) = MC(L>0(U)⊗R)/G(U)(R).

We can easily compute the shifted tangent complex at a point p ∈M, since

Tp[−1]M = Tp[−1](MC(L>0)/G)

∼= (L0)p → (L>0)p

= Lp,

so we recover the perturbative theory. Grady and Gwilliam [GG14] prove that this construction

satisfies a descent condition, albeit a weaker condition than the condition we’ve demanded for

derived stacks. We anticipate that applying this construction to the twist of a perturbative classical

field theory will yield a non-perturbative twisted theory, compatibly with the examples we construct

elsewhere in the paper.

We’ll construct twists of the N = 4 theories of interest to us in chapter 9 below, but why should

the twisted theory with respect to specified twisting data be well-defined? Well, for many theories

of the type we’re considering it is possible to recover the full non-perturbative theory from a

family of perturbative theories parametrized by BunG. This follows from a theorem of Gaitsgory

and Rozenblyum [GRd]. Even when this formal procedure fails we’ll see that the Gaitsgory-

Rozenblyum correspondence often provides a natural choice of twist.

The following definition, also due to Gaitsgory and Rozenblyum [GRc], models in derived algebraic

geometry a family of formal moduli problems as described in appendix B over a base derived stack

X , coherently equipped with base points.

Definition 8.2.24. A pointed formal moduli problem Y over a derived stack X is an inf-schematic

morphism π : Y → X of prestacks with an inf-schematic section σ : X → Y such that the induced
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map πred : Yred → X red is an isomorphism. We’ll denote the category of pointed formal moduli

problems over X by Ptd(FormMod/X ).

Theorem 8.2.25 (Gaitsgory-Rozenblyum [GRc, 1.6.4] [GRd, 3.1.4]). For a derived stack X

which is locally almost of finite type there is an equivalence

F : Ptd(FormMod/X )→ LieAlg(IndCoh(X )),

where LieAlg(IndCoh(X )) is the category of Lie algebra objects in ind-coherent sheaves on X .

We can now more succinctly say that a fiberwise formal algebraic gauge theory is an assignment

to open sets in X of pointed formal moduli problems over BunG, with the structure of an algebraic

classical field theory on its total space. Theorem 8.2.25 therefore says that fiberwise formal alge-

braic gauge theories are completely determined by Lie algebra objects in sheaves over BunG. We’ll

take advantage of this, and define the twist of a fiberwise formal algebraic gauge theory using this

sheaf of Lie algebras.

It will be useful to unpack what exactly the functor in the theorem is. It is constructed as a

composition of two equivalences

Ptd(FormMod/X )
ΩX
// Grp(FormMod/X )

Lie
// LieAlg(IndCoh(X )),

where Grp(FormMod/X ) stands for the category of group objects in FormMod/X . Here ΩX is the

based loop space functor Y 7→ ΩXY = X ×Y X and Lie is the functor given by H 7→ TH/X |X , so

that the composition in terms of the underlying ind-coherent sheaf is simply Y 7→ TY/X |X [−1]. In

other words, one can write F = σ∗T/X [−1], the restricted relative shifted tangent complex.

Now, we’ll discuss a construction of twists of fiberwise formal algebraic gauge theories. In order to

give as general a construction as possible we’ll need to consider a stronger form of the Gaitsgory-

Rozenbylum correspondence than theorem 8.2.25, also due to Gaitsgory-Rozenblyum. This is

because a fiberwise formal algebraic gauge theory does not necessarily remain fiberwise formal
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when we twist: in general the twisting data will not preserve the fibers of the projection map π,

so this structure is lost upon twisting.

Consider the commutative diagram:

Ptd(FormMod/X )
ΩX
//

forget

��

Grp(FormMod/X )
Lie
//

forget

��

LieAlg(IndCoh(X ))

��

FormModX/
ΩX

// FormGrpoid(X )
Lie

// LieAlgebroid(X ).

Here FormModX/ stands for the category of formal moduli problems under X , so that a for-

mal algebraic gauge theory is exactly an algebraic classical field theory – given by a family of

formal moduli problems – under X = BunG. The other categories are also defined in Gaitsgory-

Rozenblyum, but for our purposes it will suffice to note that the abusive notations ΩX and Lie still

realize equivalences and that the forgetful functor from Ptd(FormMod/X ) to FormModX/ is given

by the natural identification Ptd(FormMod/X ) = (FormModX/)/X . We’ll now state the necessary

generalization of theorem 8.2.25.

Theorem 8.2.26 (Gaitsgory-Rozenblyum [GRc, 2.3.2] [GRe, 2.1]). The functor

Lie ◦ ΩX : FormModX/ → LieAlgebroid(X )

is an equivalence for any derived stack X locally almost of finite type.

We don’t define the general notion of Lie algebroids here, referring the reader instead to Gaitsgory-

Rozenblyum [GRe] for details. In the present paper essentially only two types of examples of Lie

algebroids will appear, the initial object and the terminal object in the category LieAlgebroid(X ),

so we’ll use a more concrete way to think about them in terms of an anchor map. Namely, we use

the forgetful functor

Anch: LieAlgebroid(X )→ IndCoh(X )/TX
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defined by sending the formal moduli problem X → Y, which we identify with a Lie algebroid

by theorem 8.2.26, to TX/Y → TX , where the map is induced from the identity TX → TX .

In particular we have Anch(X → X ) = (0 → TX ), which we call the zero Lie algebroid, and

Anch(X → XdR) = (id : TX → TX ), which we call the tangent Lie algebroid.

At this point we’ll introduce our main example: the de Rham prestack arising as a deformation

of the formal 1-shifted tangent bundle. Before we do so we’ll introduce some relevant geometric

objects originally constructed by Simpson [Sim97,Sim98,Sim09].

Definition 8.2.27. A λ-connection on an algebraic G-bundle P over a smooth complex variety X

is a map

∂λ : Ω0
alg(X; gP )→ Ω1

alg(X; gP )

such that ∂λ(f · s) = λ(∂f)s+ f∂λs for f ∈ OX and s ∈ Ω1
alg(X; gP ). A λ-connection ∂λ is called

flat if ∂2
λ = 0, where ∂λ naturally extends to a map Ωi

alg(X; gP )→ Ωi+1
alg (X; gP ) for all i.

In particular, if λ 6= 0 and ∂λ is a flat λ-connection, then λ−1∂λ is an algebraic flat connection on

an algebraic G-bundle. If λ = 0 then a flat λ-connection is a section φ of Ω1
alg(X; gP ) satisfying

[φ, φ] = 0: a Higgs field.

Example 8.2.28. Let X be a derived Artin stack. We can define a prestack XHod, the Hodge

prestack of X , as a deformation of the formal 1-shifted tangent bundle Tform[1]X . Such a defor-

mation is – by definition – a flat morphism π : Y → A1 with Y0 = Tform[1]X and Y|Gm ∼= Y1×Gm.

We first construct a formal moduli under X × A1. Having Tform[1]X as an object of FormModX/

using theorem 8.2.26, whose associated Lie algebroid is 0 : TX → TX , one can easily think of its

deformation λQ parametrized by λ ∈ A1 with Q = id: TX → TX in the category of Lie algebroids:

this gives rise to a formal moduli problem under X × A1. It remains to construct a map down

to A1 for which we refer to Gaitsgory-Rozenblyum [GRf], where this map is constructed as an

example of a more general “scaling” construction, applied to the prestack XdR.
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We denote the fiber of XHod over a point λ ∈ C by Xλ-dR. The fiber over λ = 1 is the usual de

Rham prestack XdR – since the formal moduli problem XdR under X corresponds to the tangent

Lie algebroid id: TX → TX – and the fiber over λ = 0 is also called the Dolbeault stack, and

denoted XDol. We denote the mapping stack into BG by

Map(Xλ-dR, BG) = LocλG(X).

It represents flat λ-connections on X when X is a smooth variety. When λ = 0 we recover the

moduli stack of Higgs bundles on X for the group G.

Remark 8.2.29. Simpson [Sim09] originally gave a different definition in the case where X is a

scheme, modelling XHod as a groupoid in schemes living over A1. First form the deformation to

the normal cone of the diagonal map ∆: X ↪→ X × X. This is a Gm-equivariant scheme living

over A1 whose fiber over λ 6= 0 is just X × X with X included diagonally, and whose fiber over

0 is the tangent space TX with X included as the zero section. Form the formal completion of

X×A1 inside this total space. This admits two maps to X×A1 inherited from the two projections

X ×X → X,

Def(∆)∧X×A1 ⇒ X × A1.

The Hodge prestack XHod is equivalent to the coequalizer of these arrows in the category of stacks.

For λ = 1, it coincides with the usual definition of the de Rham prestack XdR. For λ = 0, the

coequalizer of the trivial action TformX ⇒ X is the relative classifying space BXTformX of the

sheaf TformX of formal groups over X, which in turn is the same as Tform[1]X by the discussion

below the theorem 8.2.25: the two prestacks arise from the same Lie algebra.

With this apparatus in hand, one can construct twists of fiberwise formal algebraic gauge theories,

as long as the twisting data is compatible with the structure map σ : BunG →M, so that a twist

exists within the category of formal algebraic gauge theories. LetM be a fiberwise formal algebraic

gauge theory acted on by twisting data (α,Q) preserving the fibers of the map σ. This condition

will be necessary for a natural twist to exist within formal algebraic gauge theories. Let’s be clear
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about precisely what compatibility we require between the structure maps of out formal algebraic

gauge theories and the H-action.

Definition 8.2.30. Let f : X → Y be a morphism of derived stacks, and suppose that the super-

group H acts on Y. We say that the H-action preserves the fibers of the map f if the image of

the map df : TX → f∗TY is invariant under the H-action. In particular this makes the relative

tangent complex TX/Y into a sheaf of H-representations.

We will proceed by defining the canonical twist for the case of σ and π both being preserved by the

twisting data and of σ being preserved independently first and show that these two are compatible.

Definition 8.2.31 (Twisting a fiberwise formal algebraic gauge theory). Let M be a fiberwise

formal algebraic gauge theory with σ : BunG → M and π : M → BunG. We always assume that

the action of H on BunG is trivial.

(1) Suppose that the twisting data (α,Q) preserves the fibers of both σ and π. Then M – as

a Lie algebra object in IndCoh(BunG) by theorem 8.2.25 – has a twist MQ in the same

category by proposition 8.2.17, which in turn can be identified with a fiberwise formal

algebraic gauge theory by theorem 8.2.25.

(2) Suppose that the twisting data (α,Q) preserves the fibers of σ. An H-equivariant map

σ : BunG →M gives an ind-coherent sheaf TBunG/M with H-action, while an H-equivariant

mapM→ (BunG)dR under BunG gives a map TBunG/M → TBunG of ind-coherent sheaves

with H-action by theorem 8.2.26. Hence we can define the twisted anchor map as the twist

of anch(TBunG/M) which is still an object of IndCoh(BunG)/TBunG
.

Note that in the first case, one retains a Lie algebra structure, which by theorem 8.2.25 gives rise

to a pointed formal moduli over BunG×A1. Note that the projection down to A1 supplies the

structure of a twist in the sense of 8.2.21; the necessary section is given by composing the pointing

with the map A1 → A1 × BunG associated to a closed point of BunG. In the second case we only
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obtain an ind-coherent sheaf with an anchor map to TBunG . These two definitions of twist are

compatible.

Proposition 8.2.32. Given a fiberwise formal algebraic gauge theory M with twisting data pre-

serving the fibers of both σ and π, the anchor map of the twisted theory anch(TBunG /MQ) is

equivalent to the twist of the anchor anch(TBunG /M).

Proof. Because the twistMQ is still a fiberwise formal algebraic gauge theory, its anchor map

is zero. The underlying ind-coherent sheaves of both the theory obtained by applying the functor

anch to the twisted theory MQ, and the theory obtained by twisting anch(TBunG /M) coincide,

and hence we must only check that if our twisting data is equivariant for π then the twisted anchor

map defined in definition 2 is zero. In this case we can factor the anchor map TBunG /M → TBunG

through zero as maps of H-representations, by applying the functor of theorem 8.2.26 to the

diagram

M
π
// BunG // (BunG)dR

BunG

σ

OO 44

in formal moduli problems under BunG. Because these maps are H-equivariant the twisted anchor

map from the twist of TBunG /M still factors through the zero bundle, so is the zero map. �

With this proposition in mind, we’ll abuse notation and always refer to the twisted anchor map

as TBunG /MQ , even if the twisting data does not preserve the fibers of π. In some examples we

can promote this anchor map to a unique Lie algebroid, and therefore to a unique formal algebraic

gauge theory.

Definition 8.2.33. A deformation L′ of a Lie algebroid L on a derived stack X is a Lie algebroid

on X × A1 such that the moduli problem under X corresponding to L via theorem 8.2.26 and the

moduli problem under X obtained by restricting the moduli problem associated to L′ to X × {0}

coincide.
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Lemma 8.2.34. If the twisted family TBunG /MλQ ∈ IndCoh(BunG)/TBunG
for λ ∈ A1 is the im-

age under the functor Anch of a deformation in LieAlgebroid(BunG), deforming the Lie algebroid

corresponding to M then there exists a formal moduli problem M′ under M× A1, correspond-

ing to a deformation of a Lie algebroid, with respect to the twisting data (α,Q). If this object

Anch−1(TBunG /MQ) is unique up to equivalence then so is the twisted derived stack MQ, among

formal algebraic gauge theories.

Proof. This is a direct application of theorem 8.2.26. �

Remark 8.2.35. If, in addition, one can find a map M′ → A1 so that the composite A1 →

A1×BunG →M′ → A1 is the identity for every closed point P of BunG, thenM′ has the structure

of a twist as in definition 8.2.21. We observed, following 8.2.31 that there is automatically such a

map when M is fiberwise formal and the twisting data preserves the fibers of σ. There will also

naturally be such a map for examples built from the Hodge stack. We will call such twists – when

they exist and are essentially unique – canonical twists.

For reference later, we should spell out exactly what we’ve shown for fiberwise formal theories –

i.e. in situations where we twist a Lie algebra object, and the twisted theory does not develop a

non-trivial anchor map.

Corollary 8.2.36. If M is a fiberwise formal algebraic gauge theory acted on by twisting data

(α,Q) preserving the fibers of the map π : M → BunG, then there exists a canonical twist MQ,

which is itself a fiberwise formal algebraic gauge theory.

As well as fiberwise formal theories and twisting data preserving the fibers of π, we’ll use lemma

8.2.34 for the following simple example. A deeper understanding of the anchor map functor would

allow for a more general theorem ensuring the existence of canonical twists of fiberwise formal

algebraic gauge theories: i.e. twists of sheaves of Lie algebras into Lie algebroids.
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Example 8.2.37. IfM = T [1] BunG and the twisting data acts as a non-vanishing degree 1 vector

field, thenMQ is (BunG)dR. This follows because the vector field amounts to id : TBunG → TBunG

as ind-coherent sheaves over BunG. Note that this object is the terminal object in IndCoh(BunG)/TBunG

so is the image under the functor Anch of a unique Lie algebroid. In this case there is a natural

map (BunG)Hod → A1, realizing (BunG)dR as a twist of T [1] BunG.

Having defined a twisting procedure for fiberwise formal algebraic gauge theories, let’s investigate

the properties enjoyed by these twisted theories. The twisted theory MQ retains only a limited

amount of supersymmetry: it is acted on by the Q-cohomology of the full supersymmetry algebra.

More precisely, we have the following statement at the perturbative level, which immediately

implies an analogous result non-perturbatively.

Proposition 8.2.38. Suppose twisting data (α,Q) comes from the action of a supersymmetry

algebra A. The action of the Chevalley-Eilenberg cochains C•(A) on the theory E defines an action

of C•(H•(A, Q)) on the twisted theory EQ, where we think of Q as a fermionic endomorphism of

cohomological degree 0 acting on A, and hence on C•(A). Furthermore the action of the translation

algebra factors through the action of this algebra.

Remark 8.2.39. In particular, this tells us that Q-exact translations act trivially in the twisted

theory.

Proof. We use the fact that, since A acts by symmetries, [A,B](φ) = A(B(φ)) − B(A(φ)).

First we’ll show that the A action on E induces an A-action on EQ which is well-defined up to Q-

exact symmetries. Let φ and φ+Qψ be equivalent fields in EQ, and let A ∈ C1(A) be a symmetry.

The action of A on φ+Qψ is by

A(φ+Qψ) = Aφ+AQψ

= Aφ+QAψ − [Q,A]ψ

= Aφ− [Q,A]ψ
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since QAψ = 0 in EQ. This expression in turn equals Aφ up to Q-exact elements of the supersym-

metry algebra, so this yields a well-defined action of the Q-closed symmetries in A.

Now, let A = [Q,λ] ∈ C1(A) be a Q-exact symmetry. The action of A on a field [φ] in EQ is by

Aφ = [Q,λ][φ]

= Qλ[φ]− λQ[φ]

= 0− λ(0) = 0

since Qλφ and Qφ vanish in EQ. Note that here we’re using the well-defined action of Q-closed

symmetries on EQ from the previous paragraph, so if φ ∈ E has Q-cohomology class [φ] then

[λ[φ]] = λ[φ]. In particular Q[φ] = [Qφ] = [0]. Thus we’ve shown that Q-exact symmetries act

trivially, which means we have a well-defined action of H•(A, Q) on EQ as required.

For the last statement we only need to note that the action of translations on EQ by pushing

forward along infinitesimal symmetries of spacetime agrees with the action of translations given

here (which is well-defined since all translations are Q-closed) by construction of the twist. �

We focus now on the two types of twist that we’re principally interested in: holomorphic and

topological twists.

Definition 8.2.40. A classical perturbative field theory E on Rn is called topological if it is

translation invariant; That is if the action of the Lie algebra Rn on the sheaf E by translations is

homotopically trivial. The theory E is called holomorphic if the analogous condition holds for the

Lie algebra of holomorphic vector fields for a specified complex structure on Rn.

Proposition 8.2.41. If Q is a topological (resp. holomorphic) supercharge, then the twisted

perturbative theory EQ is topological (resp. holomorphic).
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Proof. If Q is topological, then by definition all translations are Q-exact, so vanish in the

Q-cohomology. The action of translations is given by a cochain map from the Chevalley-Eilenberg

cohomology

a : C•(Cn)→ End(EQ(Rn)).

This action factors through the action of the full supersymmetry algebra, i.e. through the map

C•(Cn)→ C•(A) induced by projection onto the translations in the supersymmetry algebra. Now

apply proposition 8.2.38, and note that all translations must act trivially.

The holomorphic case proceeds identically. �
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CHAPTER 9

Constructing Supersymmetric Gauge Theories

We’ll discuss two procedures for constructing supersymmetric gauge theories in four dimensions:

dimensional reduction from 10 dimensions and compactification from a supertwistor space. In this

chapter we’ll review both constructions for N = 4 theories (though analogous constructions also

give rise to theories in dimensions other than 4, and theories with less supersymmetry). The

idea of dimensional reduction was developed by Cremmer and Scherk [CS76] and by Scherk and

Schwarz [SS79] in the 1970’s, and the application we’re most concerned with is the construction

of N = 4 supersymmetric gauge theory in four dimensions from N = 1 gauge theory in ten

dimensions by Brink, Schwarz and Scherk [BSS77]. We currently don’t have a fully rigorous

definition of dimensional reduction for our notion of classical field theories, so the construction

via dimensional reduction from 10 dimensions should be thought of as motivational, while the

construction via compatification from twistor space should be thought of as a true definition.

9.1. Compactification and Dimensional Reduction

Before getting into the specifics we’ll recall the general ideas behind compactification and dimen-

sional reduction for classical field theories. Throughout this chapter a classical field theory M

will be a family of derived stacks with a shifted symplectic structure on the global section as in

definition 8.2.6.

Definition 9.1.1. If p : X → Y is a smooth and proper map of smooth complex varieties, then

the compactification of the theory along p of a classical field theory M on X is the pushforward

assignment p∗M.
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Proposition 9.1.2. The compactification of a classical field theory M is still a classical field

theory.

Proof. We just have to note that the global sections of compactified theories still carry shifted

symplectic structures compatibly with the structure maps, and that the shifted tangent complex at

a point is still a perturbative classical field theory. The survival of the shifted symplectic structure

under the compactification along p : X → Y is obvious, since p∗M(Y ) = M(p−1Y ) = M(X) by

definition. The shifted tangent complex certainly retains its invariant pairing coming from this

symplectic pairing, and it retains the structure of an elliptic L∞ algebra, so it forms a perturbative

field theory. �

Definition 9.1.3 (Definition sketch). The dimensional reduction of a classical field theory M on

a smooth variety X along a fiber bundle p : X → Y whose fiber is a homogeneous space for an

algebraic group G is the classical field theory on Y whose sections on an open set U ⊆ Y are the

G-invariants in M(p−1U) under the action induced from the G-action on the fibers of p.

This definition is currently unsatisfactory; we expect to have to impose additional conditions on

the theory and the fibration for the theory obtained by taking invariants to remain a classical

theory. As such, we’ll refer to dimensional reduction purely in an informal sense.

Remark 9.1.4. Costello [Cos11a, 19.2.1] uses the term “dimensional reduction” for what we

call “compactification”, and he requires an additional piece of structure. He requires perturbative

classical field theories to arise as the sections of a finitely generated complex of vector bundles,

which is broken by the pushforward. Thus he defines the compactification to consist of a finitely

generated complex of vector bundles whose sections carry the structure of a perturbative classical

field theory as we define it, along with a homotopy equivalence to the pushforward of a perturbative

classical field theory on X. For our purposes we won’t need this finiteness condition, so this subtelty

won’t arise.
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It’ll also be important to understand how compactification and twisting relate to one another. If

the compactified theory p∗M is locally supersymmetric as in section 8.1.2 then the original theory

M also admits an action of the supersymmetry algebra by four-dimensional local isometries fixing

the fibers. If the theoryM was a fiberwise formal algebraic gauge theory then the compactification

p∗M still defines a family of pointed formal moduli problems over BunG, i.e. there are a pair of

maps p∗M(U) � BunG(p−1U) satisfying the hypotheses of definition 8.2.8.

Therefore if we have twisting data (α,Q) for M then it makes sense to twist either the original

theory or the compactified theory. Denote these twisted theories byMQ and (p∗M)Q respectively.

We’ll describe the relationship perturbatively.

Lemma 9.1.5. If σ : BunG � M : π is a fiberwise formal algebraic gauge theory and MQ is a

twist of M with respect to twisting data that preserves the fibers of π and σ, then there exists a

quasi-isomorphism of classical field theories

p∗(MQ) ∼= (p∗M)Q.

Proof. By corollary 8.2.36 it suffices to check this at the level of perturbative field theories on

Y , i.e. taking the shifted relative tangent complexes as sheaves of dg Lie algebras on BunG over

Y . Write p∗(EQ) and (p∗E)Q for these two sheaves. Fixing an open set U ⊆ Y in the base, by

definition p∗(EQ)(U) is obtained as the local sections EQ(p−1U). Likewise, (p∗E)Q(U) is obtained

by taking the space of local sections E(p−1U) and applying the twisting procedure with respect to

the specified twisting data, which also recovers the space of local sections EQ(p−1U), so the two

sheaves coincide, thus so do the global derived stacks. �

9.2. N = 1 Super-Yang-Mills in Ten Dimensions

We’ll now give an informal description of a supersymmetric ten-dimensional field theory in terms

of fields and an action functional, while explaining the action of the supersymmetry algebra (as
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described in appendix A) as clearly as possible. Let G be a complex reductive group with Lie

algebra g (we’ll describe a complexification of the usual super Yang-Mills theory). There are two

fields A and Ψ, where A is identified with a g-valued 1-form and Ψ is a Weyl fermion: a section of

the bundle S10+ ⊗ g. The Lagrangian density can be identified with

L(A,Ψ) = Tr

(
1

2
FA ∧ ∗FA + Ψ ∧ ∗ /DAΨ

)

where FA = dA+ 1
2 [A,A], DAΨ = dΨ + [A,Ψ], and where we define the Dirac operator /DA using

Clifford multiplication. Here the trace is defined by means of a specified faithful finite-dimensional

representation of G. Define ρ to be the Clifford multiplication map thought of as a map of vector

bundles T ∗C10 ⊗ S10+ ⊗ g → S10− ⊗ g, using the metric to identify the tangent and cotangent

bundles. We define /DA = ρ ◦ DA. The trace pairing here implicitly includes both the invariant

pairing on the Lie algebra and the ten-dimensional spinor pairing S10− ⊗ S10+ → C.

One can describe N = 1 super Yang-Mills in the homological formalism of chapter 8.2, expanding a

more familiar definition for Yang-Mills in the second order formalism to an N = 1 vector multiplet.

Consider the elliptic complex

Ω0
C(R10; gP )

d
// Ω1

C(R10; gP )
d∗d

// Ω9
C(R10; gP )

d
// Ω10

C (R10; gP )

Ω0
C(R10;S10+ ⊗ gP )

∗/d
// Ω10

C (R10;S10− ⊗ gP )

in degrees 0, 1, 2 and 3, where we write Ωi
C(R10) for the complexification Ωi(R10) ⊗R C. This

complex admits an invariant pairing built from the wedge-and-integrate pairing on forms and the

ten-dimensional spinor pairing between S10+ and S10−. There is a natural L∞-structure coming

from the action, for which the pairing is invariant. The only non-trivial brackets are given by the
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action of Ω0(C10; gP ) on everything, the degree two brackets

`Bos
2 : Ω1

C(R10; gP )⊗ Ω1
C(R10; gP )→ Ω9

C(R10; gP )

(A⊗B) 7→ A ∧ ∗dB

`Fer
2 : Ω1

C(R10; gP )⊗ Ω0
C(R10;S10+ ⊗ gP )→ Ω10

C (R10;S10− ⊗ gP )

(A⊗Ψ) 7→ ∗ /AΨ

and the degree three bracket

`3 : Ω1
C(R10; gP )⊗ Ω1

C(R10; gP )⊗ Ω1
C(R10; gP )→ Ω9

C(R10; gP )

(A⊗B ⊗ C) 7→ A ∧ ∗(B ∧ C).

Now, we must define the action of the supersymmetry algebra. The bosonic piece acts by isometries

on C10 itself, and on the fields by pullback. The fermions S10+ act by supersymmetries; we choose

ε ∈ S10+ and consider the infinitesimal symmetry coming from ε, (A,Ψ) 7→ (A+ δA,Ψ + δΨ). We

let

δA = Γ(Ψ, ε)

δΨ = ρ2(FA ⊗ ε)

where Γ is the usual pairing S10+ ⊗ S10+ → C10, fiberwise (and again using the metric to identify

vector fields and 1-forms), and where ρ2 denotes the composite map

Ω2
C(R10)⊗ S10+ → Ω1

C(R10)⊗2 ⊗ S10+ → Ω1
C(R10)⊗ S10− → S10+

where the first map is the natural inclusion, and the latter maps are Clifford multiplication. That

this gives a well-defined action of the supersymmetry algebra, at least on-shell, and that the

Lagrangian is supersymmetric are proven in [ABD+13].
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Remark 9.2.1. The on-shell condition here will require some care to treat rigorously. Rather

than giving a well-defined Lie algebra action on the space of fields, the supersymmetry relations

only hold up to terms that vanish after imposing the equations of motion. A priori this should

give a well-defined homotopy action on the derived space of solutions to the equations of motion.

A careful analysis of this action is beyond the scope of this paper.

Now, by the calculations above, considering the subspace of fields constant along the leaves of

a foliation by six-dimensional affine subspaces produces a four-dimensional theory with N = 4

supersymmetry. This theory is called (pure) N = 4 super Yang-Mills in four dimensions. One

can explicitly describe the fields and the action functional [BSS77] in this dimensionally reduced

theory. The gauge field A breaks into a four-dimensional gauge field (which we’ll also call A) and

six scalar fields φ1, . . . , φ6. The Weyl spinor Φ breaks into four four-dimensional Dirac spinors

χ1, . . . χ4. When we construct an N = 4 from the twistor space perspective we’ll observe that

the field content is the same (one can also define an action on super twistor space which recovers

the dimensionally reduced action functional here. This was done by Boels, Mason and Skinner

[BMS07]).

9.3. Twistor Space Formalism

Twistor space is a complex manifold whose geometry is closely related to that of (compactified)

Minkowski space. At its root, twistor space PT is just the complex manifold CP3, but we can

describe it in a way that explains why it might be related to the geometry of R1,3. Write T for

the Dirac spinor representation S = S− ⊕ S+ in signature (1, 3), a 4-complex-dimensional vector

space. This new notation is chosen for compatibility with the twistor literature. The twistor space

PT is then the space of complex lines in T.

Remark 9.3.1. Elsewhere when discussing four-dimensional spinors we’ve used Euclidean signa-

ture, and indeed since we’re only discussing complex spinor representations here our classical field
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theories don’t depend on a choice of signature. We’ve used the language of Lorentzian signature

in the above construction of twistor space because of certain other aspects of twistor theory that

appear in the literature, for instance the existence of the Penrose correspondence between the

space of null twistors and complexified Minkowski space, that suggest that twistors are really most

naturally related to Lorentzian geometry.

Fix a Hermitian inner product on the space S+ of Weyl spinors. The space T = S−⊕S+ therefore

admits a pseudo-Hermitian structure by

((α1, β1), (α2, β2)) 7→ 〈α1, β2〉+ 〈β1, α2〉

using the canonical isomorphism S− ∼= S+, which we observe has signature (2, 2). This is called

the twistor norm. The space of twistors with vanishing twistor norm is denoted N ⊆ T and

forms a seven-real-dimensional submanifold. Looking at complex lines contained in N defines

PN ⊆ PT, a five-real-dimensional compact submanifold. Removing this submanifold splits PT into

two components, PT+ and PT− corresponding to twistors with positive and negative twistor norm

respectively.

There are two natural maps associated to twistor space which we should describe. First define the

Penrose map associated to an identification S+
∼= H with the quaternions to be the map

p : PT ∼= CP3 → HP1 ∼= S4

with fibers isomorphic to CP1 (the twistor lines). The space of null twistors PN maps to an equator

S3 ⊆ S4. We choose a point in p(PN) as a “point at infinity”. The preimage PT \ CP1 of the

complement is isomorphic to CP1 × R4 as a smooth manifold.

For concreteness, choose homogeneous coordinates Z0, Z1, Z2, Z3 on T. The Penrose map is then

given by

(Z0 : Z1 : Z2 : Z3) 7→ (Z0 + jZ1 : Z2 + jZ3).



151

Say the point at infinity is (1 : 0) ∈ HP1. The complement of the twistor line at infinity is the set

{(Z0 : Z1 : Z2 : Z3) | Z2 and Z3 are not both 0}. This allows us to define a holomorphic map

π : PT \ CP1 → CP1

(Z0 : Z1 : Z2 : Z3) 7→ (Z2 : Z3).

In more coordinate-free language we can identify PT \ CP1 with the total space of the rank 2

holomorphic vector bundle O(1)⊕O(1)→ P(S+). The map π is the bundle map.

Remark 9.3.2. This is an instance of a more general construction due to Atiyah, Hitchin and

Segal [AHS78] that makes sense starting from any pseudo-Riemannian 4-manifold X satisfying

a certain curvature condition. In short, one can take the total space of the projectivized negative

Weyl spinor bundle P(S+) over X, and produce a canonical almost complex structure on this total

space using the Clifford multiplication. This almost complex structure is integrable if one imposes

the appropriate curvature condition. In the case where X = R1,3 is Minkowski space we obtain

the total space of the trivial P(S+) bundle, and the complex structure one defines is precisely the

complex structure on PT \ CP1 defined above.

The twistor space itself admits a supersymmetric extension.

Definition 9.3.3. The super twistor space associated to a complex vector space W is the total

space of the odd vector bundle

PTW = Π(O(1)⊗W )→ PT .

If we restrict to the preimage of R4 under the Penrose map p, we find a superspace which admits

a natural action of the supersymmetry algebra AW (where the R-symmetries act trivially). We’ll

construct supersymmetric field theories on R4 by compactification from theories on twistor space

admitting manifest supersymmetry actions.
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9.4. Holomorphic Chern-Simons Theory on Super Twistor Space

The power of the twistor space formalism lies in its ability to relate theories involving the holo-

morphic or algebraic geometry of (super) twistor spaces, and the metric geometry of 4-manifolds.

We’ll recall two types of theory modelling the theory of holomorphic principal bundles. First, let

X = (ΠE → Xeven) be a split algebraic supermanifold of complex dimension n, let G be a complex

reductive group, and let P be a principal G-bundle on Xeven.

The following theory of BG valued holomorphic maps was discussed in [Cos11a, section 11.2] (as

an instance of a more general theory of holomorphic maps into a complex target stack). It will be

an analytic perturbative field theory, i.e. a sheaf of complexes over a complex manifold X with

respect to its analytic topology. Lacking a good theory of derived analytic geometry we won’t be

able to literally promote this to a non-perturbative field theory, we’ll only be able to describe an

analogous theory using algebraic bundles and the Zariski topology.

Definition 9.4.1. The curved βγ system on X (with target BG) near a holomorphic G-bundle

P is the cotangent theory, as in definition 8.2.10, whose base is the elliptic L∞ algebra

Ω0,•(Xeven;OΠE ⊗ gP ), ∂).

Hence the underlying elliptic complex is (Ω0,•(Xeven;OΠE ⊗ gP ) ⊕ Ωn,•(Xeven;OΠE∨ ⊗ g∗P [n −

3]), (∂, ∂)), and the invariant pairing is given by the canonical pairings between g and g∗ and

between E and E∨, and the wedge pairing on forms.

This perturbative description ought to arise as a description of the cotangent theory to the moduli

space of holomorphic G-bundles on X, because the Dolbeault complex with coefficients in gP

controls deformations of holomorphic G-bundles on X. This suggests an analogous algebraic,

non-perturbative version of the classical field theory.
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Definition 9.4.2. The (algebraic) curved βγ system on X (with target BG) is the cotangent

theory whose local sections on U ⊆ X are given by the derived stack

T ∗[−1] BunG(U).

If X is smooth and proper – so BunG(U) is finitely presented – the global sections admit a natural

shifted symplectic structure.

Remark 9.4.3. Since BunG(U) is not locally of finite presentation for general U , its cotangent

complex is generally not perfect and hence one cannot define the (shifted) cotangent bundle as

in the conventions section. On the other hand, one can always define the total space of a given

quasi-coherent sheaf F on X in terms of the moduli problem whose R-points consists of maps

f : SpecR → X together with sections Γ(SpecR, f∗F). We won’t make this technical definition

precise here; we’re most interested in describing the global sections of classical field theories on

smooth projective varieties X. This remark should also be applied for later appearances of a

cotangent space of a derived stack which is not locally of finite presentation.

In either the analytic or the algebraic setting we could instead consider a more general theory of

holomorphic or algebraic maps into any target – this would define a more general curved βγ-system.

Starting from N = 1 and N = 2 super twistor space, one constructs supersymmetric gauge theories

by taking the curved βγ system on the complement of a twistor line in the super twistor spaces

PTN=1 or PTN=2. For N = 4 super Yang-Mills however we’ll do something different: we observe

that the complex Ω0,•(X; gP ) where X is the complement of the line in N = 4 super twistor space

(i.e. the restriction of the odd vector bundle defining super twistor space to PT \ CP1 ⊆ PT)

already admits a degree −3 invariant pairing, and so defines a field theory. This is an instance of

a more general family of theories.
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Example 9.4.4. Let X be a compact super Calabi-Yau variety of complex dimension n|m, as in

definition 8.1.19. Then the complex Ω0,•(X; gP ) admits a degree −n invariant pairing by the in-

variant pairing on g and the wedge pairing on forms. This pairing naturally lands in the Berezinian,

which yields a density by applying the Calabi-Yau structure, an isomorphism of vector bundles

Ber(X) → C. If n = 3, this defines a perturbative field theory on X which we call holomorphic

Chern-Simons theory. This perturbative theory admits an algebraic non-perturbative analogue, as

above. One can consider the non-perturbative algebraic classical field theory EOM(U) = BunG(U),

with (−1)-shifted symplectic structure arising via the derived AKSZ formalism [PTVV13, The-

orem 2.5] from the 2-shifted symplectic structure on BG and the Calabi-Yau structure on X.

Remark 9.4.5. There’s a certain amount of ambiguity in the terminology for these classical field

theories. The theory we call the curved βγ system with target BG is itself called holomorphic

Chern-Simons theory in [Cos10]. In the case where X is a super Calabi-Yau 3-fold then the two

theories are closely related: the holomorphic Chern-Simons theory (in our terminology) has the

curved βγ system as its cotangent theory, as in the book of Costello and Gwilliam [CG15].

Now, let X = PTN=4 \ CP1, the complement of a line in N = 4 super twistor space. One observes

(as noted by Witten [Wit04b]) that this space is super Calabi-Yau by computing the Berezinian.

More generally, the Berezinian of the super projective space CPn|m is computed to be

BerCPn|m
∼= KCPn ⊗O ∧m(O(1)⊗ Cm)

∼= O(−n− 1)⊗O(m) ∼= O(m− n− 1)

(using a choice of trivialization of ∧mCm) which is trivial if and only if m = n+ 1, for instance in

the case n = 3,m = 4.

Remark 9.4.6. We should note that while CP3|4 \ CP1 is super Calabi-Yau, it is not compact

super Calabi-Yau. While holomorphic Chern-Simons on PTN=4 is a genuine classical field theory as

in definition 8.2.6 with shifted symplectic structure on the space BunG(PTN=4) of global solutions
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to the equations of motion given by the derived AKSZ formalism, the shifted symplectic form fails

to be well-defined on the complement of a line. We expect at least a shifted Poisson structure to

survive here, but since we won’t need this shifted symplectic structure for the untwisted N = 4

moduli space in what follows – we’ll construct the twisted theories of interest on R4, then generalize

to arbitrary smooth algebraic surfaces by analogy – we’ll ignore this subtlety in the present work.

Let’s try to understand the theory we get when we perform compactification along the map

p : PTN=4 \ CP1 → R4. Specifically let’s verify that the field content agrees with the fields

we described at the end of section 9.2. Our argument will follow the argument for the ordinary

Penrose-Ward correspondence given by Movshev [Mov08], and cohomology calculations given in

section 7.2 of the book of Ward and Wells [WW91]. We’ll use the phrase linearized holomorphic

Chern-Simons and N = 4 super Yang-Mills to mean the perturbative field theories obtained by for-

getting the brackets in the L∞ structure, leaving only a cochain complex. We’ll do this calculation

for the analytic, perturbative theory.

Remark 9.4.7. Note that we needed to trivialize ∧4C4 in order to define the super Calabi-Yau

structure. This choice breaks the full gl(4;C) of R-symmetries to sl(4;C), as we remarked in

section 8.1.1.

Proposition 9.4.8. The compactification of linearized holomorphic Chern-Simons theory along

the Penrose map p is equivalent to the linearized anti-self-dual N = 4 super Yang-Mills theory.

Proof. To show this, we need to pushforward the sheaf of solutions to the classical equations of

motion in the holomorphic Chern-Simons theory along p. This sheaf is just the complex Ω0,•(X; gP )
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where X is the complement of the line in N = 4 super twistor space. That is, the complex

⊕
i≥0

(
Ω0,•(PT \ CP1; Symi(ΠO(−1)4)⊗O gP )

) ∼= ⊕
i≥0

(
Ω0,•(PT \ CP1;∧i(O(−1)4)⊗O gP )

)
∼= Ω0,•(PT \ CP1; (O ⊕O(−4))⊗O gP )

⊕ Ω0,•(PT \ CP1; (O(−1)⊕O(−3))⊗O gP )4

⊕ Ω0,•(PT \ CP1;O(−2)⊗O gP )6.

We’ve grouped the terms here judiciously – they’ll yield the gauge field, four spinor fields and

six scalar fields we saw in section 9.2 respectively (with their corresponding antifields). To check

this, we must compute the hypercohomology of these terms, complete with their actions of the

algebra so(4;C). This becomes a little simpler after identifying PT \ CP1 with the total space of

the rank two holomorphic vector bundle O(1) ⊗ S− → P(S+). What’s more, the pullback of the

bundle O(k) on P(S+) under the map π is precisely the vector bundle O(k) given by restriction

from PT = CP3. From this point of view we can identify

Ω0,•(PT \ CP1;O(k)⊗ gP ) ∼= π∗

⊕
i+j=•

Ω0,i(P(S+);O(k)⊗ gP ⊗ ∧j(O(1)⊗ S−))

 ,

so p∗(Ω
0,•(PT \ CP1;O(k)⊗ gP )) ∼= Ω0(R4)⊗

⊕
i+j=•

Ω0,i(P(S+);O(k)⊗ gP ⊗ ∧j(O(1)⊗ S−))


as a sheaf on R4. We then compute the hypercohomology of the right hand side, which is just the

cohomology of the coefficient coherent sheaf with an additional differential. Indeed, we can think

of the complex as bigraded by the i and j gradings, and the cohomology of the coefficient coherent
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sheaf is precisely the E1 page of the spectral sequence of the double complex. This page has form
H0(P(S+);O(k)⊗ gP ) // H0(P(S+);O(k + 1)⊗ S− ⊗ gP ) // H0(P(S+);O(k + 2)⊗ gP )

H1(P(S+);O(k)⊗ gP ) // H1(P(S+);O(k + 1)⊗ S− ⊗ gP ) // H1(P(S+);O(k + 2)⊗ gP ).


⊗ C∞(R4)

The page is concentrated in a single row and therefore the spectral sequence converges at the E2

page unless k = −2, in which case there’s one additional differential (from (i, j) = (1, 0) to (0, 2))

and the complex converges at the E3 page.

We begin with the first line (the term of interest in the ordinary, non-supersymmetric Penrose-

Ward correspondence, and the term considered by Movshev [Mov08]). The coefficient sheaf is

isomorphic to ((O⊕(O(1)⊗S−)[−1]⊕O(2)[−2])⊕(O(−4)⊕(O(−3)⊗S−)[−1]⊕O(−2)[−2]))⊗gP

whose cohomology is gP ⊕gP [−1]⊗(S−⊗S+⊕Sym2 S+)⊕gP [−2]⊗(Sym2 S+⊕S−⊗S+)⊕gP [−3].

Thus the corresponding term in the pushforward sheaf is

Ω0(R4; gP ⊗ (C⊕ (V ⊕ Sym2 S+)[−1]⊕ (V ⊕ Sym2 S+)[−2]⊕ C[−3]))

where V ∼= S+ ⊗ S− is the vector representation of so(4;C). To compute the differential, we start

with the first summand in the pushforward sheaf, Ω0(R4)⊗H0(O⊕ (O(1)⊗S−)[−1]⊕O(2)[−2]).

This is the E1 page of the spectral sequence of the double complex described above, and the

differential is the image of the ∂ operator. Concretely, in coordinates this operator has form

∂ie
i, where xi is a basis for R4, ∂i = ∂

∂xi
, and ei is a degree 1 operator on H0(O ⊕ (O(1) ⊗

S−)[−1]⊕O(2)[−2]) associated to xi. This operator arises by canonically identifying H0(O(1)⊗S−)

with V = R4 ⊗R C so that every global section of O(1) ⊗ S− yields a degree 1 operator on

H0(∧•(O(1) ⊗ S−)) via the natural map ∧•(H0(O(1) ⊗ S−)) → H0(∧•(O(1) ⊗ S−)). Unpacking
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this calculation, we find exactly the differential in the Atiyah-Singer-Donaldson complex

Ω0(R4)
d→ Ω1(R4)

d+→ Ω2
+(R4).

controlling an anti-self-dual connection. The remaining summand is Serre dual to the first sum-

mand, so the overall complex is the complex controlling an anti-self-dual Yang-Mills field as re-

quired.

Similarly, we analyse the second line. Now, the coefficient sheaf is isomorphic to ((O(−1)⊕ (O ⊗

S−)[−1] ⊕ O(1)[−2]) ⊕ (O(−3) ⊕ (O(−2) ⊗ S−)[−1] ⊕ O(−1)[−2])) ⊗ gP , whose cohomology is

gP [−1]⊗ (S−⊕S+)⊕gP [−2]⊗ (S−⊕S+) with the so(4;C) action indicated by the notation. Thus

the corresponding term in the pushforward sheaf is

(Ω0(R4; gP ⊗ (S[−1]⊕ S[−2])))4

where S = S+⊕S−. We analyse the differential in a similar way to the above, focusing on the first

summand Ω0(R4)⊗H0(S−[−1]⊕O(1)[−2]) (the other term is Serre dual to this one). Again, in a

specified basis, the differential is of the form ∂ie
i, where now the ei act according to the action of

xi ∈ H0(O(1)⊗ S−) on the complex H0(Sym•(O(1)⊗ S−)⊗O(−1)). Unpacking, this action map

(from Sym1 to Sym2) is given by the composite

S−
xi⊗1→ V ⊗ S− ∼= S+ ⊗ S− ⊗ S− � S+ ⊗ ∧2S− ∼= S+.

This composite is exactly the Clifford multiplication ρ(xi) by the vector xi, so our overall differential

is ∂iρ(xi). This is the Dirac operator /d, so combining this term with its Serre dual we obtain the

complex (
Ω0(R4;S)

/d→ Ω0(R4;S)

)4

in degrees one and two, which is the linearized BV complex controlling four Dirac spinors.
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Finally, we analyse the last line, which is the simplest algebraically, but whose differential is a little

more subtle than the others. The coefficient sheaf is isomorphic to (O(−2)⊕ (O(−1)⊗ S−)[−1]⊕

O[−2]) ⊗ gP , whose cohomology is gP [−1] ⊕ gP [−2] with the trivial so(4;C) action. Thus the

corresponding term in the pushforward sheaf is

(Ω0(R4; gP [−1]⊕ gP [−2]))6.

To compute the differential we have to do a little more than we did for the earlier terms, because

now the E1 and E2 pages of the spectral sequence coincide, but there’s a differential on the E2

page increasing the j degree by two. This differential is of the form D = ∂i∂j(e
i∂
−1
ej), where the

operator ei∂
−1
ej is obtained from the composite

H0(S−(1))⊗ Γ(Ω0,0
CP1(−1)⊗ S−) // Γ(Ω0,0 ⊗ ∧2S−) ∼= H0(Ω0,0

CP1)

H0(S−(1))⊗2 ⊗ Γ(Ω0,1
CP1(−2)) // H0(S−(1))⊗ Γ(Ω0,1

CP1(−1)⊗ S−)

1⊗∂
−1

OO

(where we’ve used Γ for the global sections of the infinite-type vector bundles Ωi,j to emphasise

that we’re considering all forms, not just the Dolbeault cohomology, and where we’ve written S−(1)

for S− ⊗ O(1)) applied to xi ⊗ xj ∈ H0(S−(1))⊗2 and a representative for a cohomology class in

H0,1(CP1;O(−2)). Here we use the fact that the operator ∂ : Ω0,0

CP1(−1) → Ω0,1

CP1(−1) induces an

isomorphism on H0. To compute the operator ei∂
−1
ej we follow the method of [WW91, Theorem

7.2.5]. There is a map of complexes

0 // O(−2)
ei
// O(−1)⊗ S−

ei
// O ⊗ ∧2S−

δij

��

// 0

O(−2)
ei
// O(−1)⊗ S−

ej
// O ⊗ ∧2S−

where the top row is exact, which yields a map between the spectral sequences computing the

hypercohomology of the two rows. On the E2 page of these spectral sequences, this map just
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yields a commutative square

H0(Ω0,1

CP1(−2)) //

id
��

H0(Ω0,0 ∧2 S−)

δij

��

H0(Ω0,1

CP1(−2))
ei∂
−1
ej
// H0(Ω0,0 ∧2 S−),

and the top arrow is an isomorphism because the corresponding sequence of complexes was exact,

so the operator ei∂
−1
ej is obtained from δij by a change of coordinates, and the second order

operator D is conjugate to the Laplacian, as required. �

Remark 9.4.9. In the above calculation we’ve computed the BV complex for a perturbative

classical field theory on R4 as a cochain complex with a pairing only. We haven’t described

the pushforward of the L∞ structure. In other words we’ve shown that we obtain the expected

quadratic terms in the action for an anti-self-dual N = 4 gauge theory, but we haven’t checked that

the correct interaction terms appear. In what follows we take the compactification of holomorphic

Chern-Simons on twistor space as the definition of untwistedN = 4 anti-self-dual super Yang-Mills.

We won’t investigate the action in detail, but the holomorphic Chern-Simons action functional

yields an anti-self-dual super Yang-Mills theory after compactifying the twistor lines. There’s an

extra term that we can introduce into the action, of form

S2(A) =

∫
R4|8

dµ log det(∂|p−1(µ)).

Boels, Mason and Skinner [BMS07] prove that the holomorphic Chern-Simons theory on N = 4

super twistor space with this additional term incorporated into the action recovers N = 4 super

Yang-Mills after compactifying along the twistor lines.

Remark 9.4.10. We run into trouble when we try to define untwisted N = 4 super Yang-Mills

theory non-perturbatively via compactification along the twistor fibers, because the Penrose map

p is not holomorphic for any complex structure on R4. As such, a Zariski open set U ⊆ C2 does not
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lift to a Zariski set p−1(U) ⊆ PT \ CP1. This is not a problem in the analytic setting; any open

set in a complex manifold admits a canonical complex structure, but generally not an algebraic

structure. It is not particularly surprising that we encounter such problems: there’s no reason that

a metric-dependent theory like untwisted N = 4 gauge theory should admit a description purely

in terms of algebraic geometry.
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CHAPTER 10

Equations of Motion in the Twisted Theories

We’ll now investigate the form of the classical field theories obtained from applying our holomor-

phic and topological twists to this N = 4 theory. The holomorphic twist will be the simplest,

conceptually: the holomorphic twisting data is compatible with the structure of BunG(PTN=4) as

a fiberwise formal algebraic gauge theory over PT \ CP1, so a canonical holomorphic twist exists

by corollary 8.2.36, which can naturally be thought of as a fiberwise formal algebraic gauge theory

over C2, and which generalizes to describe a fiberwise formal algebraic gauge theory over a compact

complex algebraic surface X whose global sections are given by

EOMhol(X) ∼= Tform[1]Map(ΠTX,BG).

The A and B topological twists are more subtle, because they each break structures that survive

the holomorphic twist: the B-twist breaks the section BunG(U)→ EOMhol(U), while the A-twist

breaks the projection map EOMhol(U)→ BunG(U). However, we’ll construct natural twists using

example 8.2.28: the A-twist deforms the outer shifted tangent bundle to the de Rham prestack,

while the B-twist deforms the source of the mapping stack to XdR, yielding the cotangent theory

to the moduli of G-local systems.

10.1. The Holomorphic Twist

First, recall that according to the superspace formalism, to define the holomorphically twisted

theory we need to specify a complex structure on a 4-manifold. The perturbative piece of this

calculation is contained in Costello’s 2011 paper [Cos11a], but is included here for the reader’s

convenience. Recall that a G-Higgs bundle on a complex variety X is an algebraic G-bundle P
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equipped with a section φ ∈ H0(X,T ∗X ⊗ gP ) such that [φ, φ] = 0. We’ll write HiggsG(X) for the

moduli stack of G-Higgs bundles, and Higgsfer
G (X) for the moduli stack of G-Higgs bundles where

the Higgs field is placed in fermionic degree (so the underlying bosonic piece is just BunG(X)).

This moduli space is described by the mapping stack Map(ΠTX,BG).

The Penrose-Ward correspondence tells us that N = 4 anti-self-dual super Yang-Mills corresponds

to the compactification of holomorphic Chern-Simons on super twistor space along the Penrose map

p, where the bundles are constrained to be trivializable along the twistor lines. As we remarked

in 9.4.10 this is problematic when working algebraically, because the map p is not holomorphic,

so the compactification is not well-defined. We’ll motivate a definition of holomorphically twisted

N = 4 theory by computing the twist of the holomorphic Chern-Simons theory (since, by lemma

9.1.5 the compactification of this twist is the desired twist of N = 4 theory).

We use the following trick: find a closed embedding ι : Z ⊆ PT \ CP1 such that the Penrose map

p maps Z diffeomorphically onto R4. We define the compactification of an algebraic gauge theory

along p to be the restriction of the theory to Z.

First, we’ll check that the twisting data we’ve been discussing preserves the fibers of the maps σ

from BunG and π to BunG as in corollary 8.2.36, so the twist remains fiberwise formal.

Proposition 10.1.1. The twisting data associated to the holomorphic twist preserve the fibers of

the zero section map σ : BunG(U) → EOM(U) and the projection map π : EOM(U) → BunG(U)

for an open set U ⊆ C2, as in definition 8.2.30.

Proof. We can check the holomorphic twist preserves the fibers at the super twistor space

level. For holomorphic Chern-Simons theory on super-twistor space the relevant map

π : BunG(PTN=4 \ CP1)→ BunG(PT \ CP1)

is given by pulling back under the zero section of the super vector bundle ΠO(−1)4. The twisting

data acts by pairing with a section of O(1) ↪→ (O(−1)4)∗, the dual to the first factor, which acts
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on the fibers by multiplication by that section in the coefficient Sym(Π(O(1)4)). In particular, the

fibers are preserved, so the twisting data acts trivially on the image of dπ. Also pairing with such

a section preserves the zero-section of the bundle over PT, thus the image of the section σ and

therefore the twisting data acts trivially on the image of dσ. �

As such, we can compute the holomorphic twist by computing the restricted relative shifted tangent

complex as a sheaf over BunG, twisting the fibers, and applying Gaitsgory-Rozenblyum’s theorem

as in corollary 8.2.36.

Theorem 10.1.2. The solutions to the equations of motion in the holomorphically twisted N = 4

SYM theory on C2 near an open set U are given by

EOMhol(U) ∼= T ∗form[−1] Higgsfer
G (U).

Note that remark 9.4.3 applies for this theorem for general open sets U . The choice of holomorphic

supercharge we made corresponds to a choice of complex structure on the base space R4 of the

Penrose map. For concreteness, let us note that for a holomorphic G-bundle P on U ⊂ C2, thought

of as a Higgs bundle with trivial Higgs field, one has

TP [−1] Higgsfer
G (U) ∼= O(U ; gP )⊕ Ω≥1

alg(U ; gP ) ∼= Ω\
alg(U ; gP ),

with zero differential, where Ωp
alg is naturally in fermionic degree p mod 2 and cohomological

degree 0. Here the first summand of the complex describes deformations of the holomorphic

bundle P and the second summand describes deformations of the Higgs field 0 ∈ ΠΩ1
alg(U ; gP ).

We will see in the proof that the homomorphically twisted theory is the cotangent theory with the

base Higgsfer
G (U), namely,

TP [−1] EOMhol(U) = Ω\
alg(U ; gP )⊕ Ω\

alg(U ; gP )∨[−3]



165

with the Lie algebra structure being the base acting on the shifted cotangent fiber in a canonical

way.

Remark 10.1.3. A priori, the twists of the full N = 4 super Yang-Mills theory and its anti-self-

dual piece might differ. However, this is actually not the case. In the appendix of Costello’s paper

on supersymmetric field theories [Cos11a] it is shown that the Qhol twist of perturbative N = 4

anti-self-dual Yang-Mills doesn’t admit any deformations as a perturbative field theory. If the twist

of the full theory differed from the twist of the anti-self-dual theory, then there would be a path

of twisted theories deforming one into the other (by sending the additional term in the action for

the full theory to zero), thus a non-trivial deformation of the perturbative theory. Hence we can

compute our twist using twistor space without worrying about the additional Boels-Mason-Skinner

term in the action: this is guaranteed to be Qhol-exact.

Proof. We’ll begin with a summary of the global structure of the proof. First, in view of

lemma 9.1.5 we’ll compute the twist of holomorphic Chern-Simons theory on super twistor space.

This amounts to computing the shifted tangent complex and performing the twisting construction

to get a new family over PT \ CP1, with the structure of a family of pointed formal moduli

problems over BunG. In order to obtain the compactified theory on C2, we will use the trick

described above: we’ll find a closed embedding ι : Z ⊆ PT \ CP1 such that the Penrose map p

induces a diffeomorphism Z ∼= R4 (and hence defines a complex structure on R4) and define the

compactification to be the restriction of the family from PT \ CP1 to Z. Since the result is a family

over Z ∼= C2 of pointed formal moduli problems over BunG, the above computation determines

the moduli space of solutions in the twisted, compactified theory, using theorem 8.2.25.

We will compute the twisted theory at the level of twistor space. Choose an open set U ⊆ PT \ CP1,

an affine derived scheme V , and a smooth map f : V → BunG(U). The shifted tangent complex

at the map f to the N = 4 super twistor space theory was canonically quasi-isomorphic to

Γ(p−1(U)× V ; f∗g) ∼= Γ(U × V ;π∗1 Sym(ΠO(−1)|4U )⊗ f∗g),
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where we write f∗g to denote the sheaf of Lie algebras on U × V obtained by pulling back

g = T[−1]BG under a closed point f of Map(V,BunG(U)) ∼= Map(U × V,BG), and where

π1 : U × V → U is the projection. From now on we’ll just write O(k) for the restriction O(k)|U

when our arguments are independent of U . Recall that when we twist we modify the sections of

our theory over U by adding a C× weight to the cohomological grading then introducing a new

differential coming from the supercharge. We’ll choose a C×-action such that the first copy of

O(−1) (corresponding to e∗1 ∈ W ∗) has weight −1, the third copy of O(−1) (corresponding to

f∗1 ∈ W ∗) has weight 1, and the remaining two copies (corresponding to e∗2 and f∗2 ∈ W ∗) have

weight 0.

The holomorphic supercharge Qhol = α1 ⊗ e1 can be thought of as a section of ΠO(1) which pairs

non-trivially with the first factor of O(−1)4 (generated by e∗1 ∈W ∗) to define a map O(−1)4 → O,

which extends to a sym-degree −1 derivation of Sym(ΠO(−1)4). The section of ΠO(1) in question,

corresponding to α1 ∈ S+, is given on the open set U by the homogeneous polynomial Z2 in twistor

coordinates, so the differential given by Qhol is generated by the map that multiplies a section of

O(−1) on the set U by Z2. This preserves the cohomological grading, but increases the weight

by 1, since it reduces the number of e∗1 factors by 1. The map “multiply by Z2” from O(k) to

O(k + 1) is injective, and has cokernel isomorphic to OZ(k + 1) = ι∗O{Z2=0}(k + 1) where OZ

is the structure sheaf of the zero locus of Z2. Thus we compute the Qhol-twisted shifted tangent

complex to be the space of global sections of the sheaf

π∗1
(
OZ ⊕OZ(−2)⊕ΠOZ(−1)2

)
⊗ f∗g⊕ π∗1

(
OZ(−3)⊕OZ(−1)⊕ΠOZ(−2)2

)
⊗ f∗g[−1],
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arising from the cohomology of the operator

−1 O(−1)1

zz

ΠO(−2)2
12,14

vv

O(−3)124

vv

0 O ΠO(−1)2
2,4 O(−2)13 ⊕O(−2)24

vv

ΠO(−3)2
123,134

vv

O(−4)1234

ww

1 O(−1)3 ΠO(−2)2
23,34 O(−3)234

where in the diagram cohomological degree runs vertically, and the subscripts represent symmetric

products of the four factors of ΠO(−1)4. This result actually defines the BV complex of a cotangent

theory whose base is the first factor – π∗1
(
OZ ⊕OZ(−2)⊕ΠOZ(−1)2

)
⊗ f∗g – alone, since there

is a canonical quasi-isomorphism of complexes

(O(k − 1)[1]→ O(k))! ∼= (O(−k − 4)→ O(−k − 3)[−1]) [3]

for each k by identifying the sheaf of densities with O(−4)[3] (the canonical sheaf shifted so that its

cohomology is concentrated in degree zero) – where the morphisms are given by pairing with the

section α1 of O(1) – and therefore an invariant pairing on g provides an isomorphism of coherent

sheaves

π∗1
(
OZ(−3)⊕OZ(−1)⊕ΠOZ(−2)2

)
⊗ f∗g ∼= π∗1

((
OZ ⊕OZ(−2)⊕ΠOZ(−1)2

)
⊗ f∗g

)!
[−2].

Since the original Lie algebra structure comes from the tensor product of sheaves and the Lie

algebra structure on f∗g (in the diagram, this pairs objects with their reflection through the

center, with complementary subscripts), the induced Lie structure is that of a cotangent theory,

using the nondegenerate invariant pairing.
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After identifying OZ(−1)2 ∼= Ω1
Z,alg by choosing a trivialization, we obtain an isomorphism of

coherent sheaves of graded Lie algebras

π∗1
(
OZ ⊕OZ(−2)⊕ΠOZ(−1)2

)
⊗ f∗g ∼= (π′1)∗Ω\

Z,alg ⊗ f
∗g

over Z, where Ω1 is fermionic but in cohomological degree 0 and π′1 is the projection Z × V → Z.

With this, the holomorphically twisted shifted tangent complex becomes

Γ(U × V ; (π′1)∗Ω\
Z,alg ⊗ f

∗g) = Ω\
alg((U ∩ Z)× V ; f∗g)

where we abuse notation to write f∗g both for the sheaf on U × V and for its restriction to

(U ∩ Z)× V .

Now, we have to compactify the twisted complex along the Penrose map. We might worry that

this is undefined since p is not holomorphic, but we note that p maps {Z2 = 0} diffeomorphically

onto R4 and henceforth identify Z as R4 (thus in particular defining a complex structure on R4).

Then for U ⊂ C2, and a smooth map f : V → BunG(U), one obtains the shifted tangent complex of

the cotangent theory whose base is perturbatively given by Ω\
alg(U ×V ; f∗g) with zero differential,

and where Ωi is placed in fermionic degree i mod 2.

It remains to globalize our computation using theorem 8.2.25. By definition of the tangent com-

plex as a quasi-coherent sheaf, it is enough to check that for any affine derived scheme V over

BunG(U), the local sections on V of the restricted shifted tangent complexes to EOMhol(U) and

T ∗[−1] Higgsfer
G (U) are equivalent as dg Lie algebras. This is exactly what we checked above:

the local sections on V of the restricted tangent complex to Higgsfer
G (U) are precisely given by

Ω\
alg(U × V ; f∗g) with zero differential, and with Ωi in fermionic degree i mod 2, so the calcu-

lation above of the restricted shifted tangent complex to the holomorphically twist moduli space

provides the desired dg Lie algebra equivalence for each f . Thus we obtain an equivalence

TEOMhol(U)[−1] ∼= TT ∗form[−1] Higgsfer
G (U)[−1]
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of sheaves of dg Lie algebras, and therefore by theorem 8.2.25 an equivalence of derived stacks as

required. �

Remark 10.1.4. If we were working in an analytic framework, we could do this calculation by

literally compactifying along the twistor lines. If U ⊆ C2 is an analytic open set then its pullback

p−1U to twistor space admits a canonical complex structure despite p not being holomorphic.

Given the above calculation, we can define the holomorphic twist of N = 4 theory on any complex

proper algebraic surface X using the superspace formalism of section 8.1.2.

Definition 10.1.5. The holomorphically twisted N = 4 theory on a complex proper algebraic

surface X is the assignment of derived stacks with

EOMhol(U) = T ∗form[−1] Higgsfer
G (U)

where U ⊆ X is a Zariski open set, with the canonical −1-shifted symplectic structure on the global

sections.

10.2. The B-twist

We’ll now proceed to compute the B-twist of N = 4 super Yang-Mills on a complex proper algebraic

surface X. This will again be a cotangent theory, but now to the moduli space LocG(X) of G-

bundles with flat connection. As before, we’ll compute the B-twist on flat space first – computing

the twist of the holomorphically twisted theory on C2 with respect to the further B supercharge –

then note that the superspace formalism allows us to extend the theory to one on general complex

(proper) algebraic surfaces.

Unlike the example of the holomorphic twist in the previous section, the B supercharge will preserve

the fibers of the projection map π : EOMhol(U)→ BunG(U), but not of the section σ : BunG(U)→

EOMhol(U). As such we will not be able to directly apply theorem 8.2.26 to describe a canonical
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twist. Instead, we’ll observe that the moduli space EOMhol(U) has the structure of a mapping

space, and the twisting data acts on the source of the mapping space alone, which does admit a

natural deformation describable by theorem 8.2.26, yielding a natural B-twist.

We begin by describing EOMhol(U) in a slightly different way. Using the language of the Hodge

prestack, as in example 8.2.28, we can rewrite the moduli space of solutions to the equations of

motion in the holomorphic twist in a way natural for constructing our further A- and B-twists.

There is a C× action α on EOMhol(U), which acts on the base space Higgsfer
G (U) of the shifted

cotangent bundle in a way that on the fibers of the projection Higgsfer
G (U) → BunG(U) it does

with weight minus one by rescaling the Higgs field.

Definition 10.2.1. We’ll write Higgsbos
G (U) for the formal completion

Higgsbos
G (U) = HiggsG(U)∧BunG(U) = Map(T [1]U,BG)∧Map(U,BG).

The superscript “bos” (for bosonic) is intended to contrast with the fermionic Higgs moduli space

of the previous section, and to remind the reader that this formal Higgs moduli space differs slightly

from the definition that more normally appears in the literature.

Lemma 10.2.2. The regrading of the moduli space EOMhol(U) for a smooth surface U with respect

to this C×-action α is equivalent to the mapping stack

T ∗form[−1]Map(UDol, BG)∧BunG(U)
∼= T ∗form[−1] Higgsbos

G (U).

Proof. We saw in theorem 10.1.2 for the surface C2, which we used as a definition for more

general surfaces, that

EOMhol(U) ∼= T ∗form[−1] Higgsfer
G (U)

∼= T ∗form[−1]Map(ΠTU,BG)

∼= T ∗form[−1](Map(ΠTU,BG)∧BunG(U)).
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The C×-action we’ve described acts on the fiber of ΠTU with weight one, so the regraded space

is equivalent to

EOMα
hol(U) ∼= T ∗form[−1](Map(T [1]U,BG)∧BunG(U)).

In turn, the shifted tangent bundle T [1]U is equivalent to UDol (because U is a smooth scheme, so

T [1]U ∼= Tform[1]U), so EOMα
hol(U) ∼= T ∗form[−1] Higgsbos

G (U) as required. �

Remark 10.2.3. The formal completion at BunG(U) is necessary for the bosonic but not the

fermionic Higgs moduli space because, while the fibers of the map Higgsfer
G (U) → BunG(U) are

purely fermionic, and therefore formal, the map HiggsG(U)→ BunG(U) has non-formal fibers, so

the map is not a nil-isomorphism. Taking the completion while we regrade is necessary for the

regraded theory to still be a formal algebraic gauge theory.

Now, let’s describe a twist of the holomorphic theory with respect to the B-supercharge. The idea

is that, viewing EOMhol(U) as a mapping space as in lemma 10.2.2 we can canonically deform the

source from UDol to UdR, for instance by applying theorem 8.2.26 to the symmetry generated by

a non-vanishing degree one vector field on T [1]U . This will contrast with the A-twist in the next

section, where we’ll deform the global shifted cotangent bundle construction in a similar way.

Theorem 10.2.4. The algebraic classical field theory EOMB which assigns to a complex algebraic

surface U the derived stack

EOMB(U) = T ∗form[−1] LocG(U)

arises as a natural deformation of EOMhol(U) which, if U = C2, defines a twist of N = 4 super

Yang-Mills theory with respect to the topological supercharge QB.

Remark 10.2.5. As we noted in remark 9.4.6, this theory is only a true algebraic classical field

theory according to definition 8.2.6 if U is proper, ensuring that LocG(U) is finitely presented,

so has a perfect tangent complex. In general the theory exists as an assignment of (possibly

infinite type) derived stacks, but the presymplectic form on the shifted cotangent complex may be

degenerate.
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Proof. We’ll build a canonical twist as discussed in remark 8.2.35. More specifically, we’ll

describe a deformation of the regrading EOMα
hol(U) for a general surface U , then observe that if

U is a Zariski open subset of C2 then it satisfies the conditions of definition 8.2.21.

For a fixed complex algebraic surface U , we consider the derived stack

M′(U) = T ∗form[−1]MapA1(UHod, BG× A1),

the formal shifted cotangent to the mapping stack relative to A1. This admits a flat map to A1

whose fiber over t is canonically equivalent to T ∗form[−1]Map(Ut-dR, BG) – as in example 8.2.28

– so the general fiber is equivalent to MQB (U) = T ∗form[−1] LocG(U), and whose fiber over zero

is equivalent to T ∗form[−1] HiggsG(U). We’ve therefore defined a deformation of the regrading

Mα(U) = EOMα
hol(U), via the embedding EOMα

hol(U) → HiggsG(U), whose general fiber is the

desired twisted moduli space.

Now, we must check the hypotheses of definition 8.2.21; that is, that for every closed point P ∈

BunG(U) we can find a section s such that s(0) = σα(P ) and such that the relative shifted tangent

complex agrees with the twist of the zero fiber as a perturbative field theory. For every closed point

ofMQB (U) – just a closed point A = (P,∇) of the base space LocG(U) – there’s a natural section

s : A1 → M′ given by rescaling the connection, such that the shifted tangent complex restricted

to s is equivalent to the C[t]-module

s∗TM′ [−1] =
(
(Ω•alg(U ; gP )⊕ Ω•alg(U ; gP )∨[−3])⊗ C[t]), (tdA, tdA)

)
where dA is the algebraic covariant derivative associated to the flat connection∇ on U . This defines

a twist of the perturbative field theory TP [−1] EOMhol(U) = Ω\
alg(U ; gP ) ⊕ Ω\

alg(U ; gP )∨[−3] by

the B-twisting data. �

It is immediate to identify compactification of the twisted theory along an algebraic curve.
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Corollary 10.2.6. For a product Σ1 × Σ2 of algebraic curves, the B-twist of N = 4 super Yang-

Mills theory satisfies

EOMB(Σ1 × Σ2) = T ∗form[−1]Map((Σ1)dR,LocG(Σ2)).

Proof. This follows from the definition LocG(X) = Map(XdR, BG) and the adjunction

Map(X × Y,Z) = Map(X,Map(Y, Z)).

�

Remark 10.2.7. One can read this corollary as saying that the B-twisted theory compactifies to

the B-model with target LocG(Σ2). A completely perturbative description was given by Costello

[Cos11a], which was not enough to identify LocG(Σ2) as an algebraic stack. One should note

that here we identify the target as the moduli stack of de Rham local systems, as opposed to

Betti local systems, which is more aligned with the usual formulation of the geometric Langlands

correspondence. This result is somewhat surprising, because it has been widely believed that the

Kapustin-Witten story can only capture the topological aspects of the correspondence.

One might worry that one shouldn’t expect the twist by a topological supercharge to depend on

a choice of complex structure on spacetime, which our examples clearly do. Because this theory

on X didn’t necessarily arise from twisting a theory with respect to global topological twisting

data, there’s no reason that the moduli space EOMB(U) shouldn’t depend on a complex algebraic

structure on U , and in general it does depend on this choice.

A more familiar example of this phenomenon is provided by Donaldson-Witten theory as a topo-

logical twist of N = 2 super Yang-Mills. While the theory on a flat space is truly topological, if

one uses the superspace formalism to extend this theory to a general 4-manifold one finds that the

moduli space of solutions to the equations of motion is built from the moduli space of instantons,
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which – if b+2 = 1 – may depend on the metric of the underlying 4-manifold, not just its diffeo-

morphism type. A discussion in the physics literature can be found in the 1998 paper of Moore

and Witten [MW98].

From the point of view of the current work, this subtlety is necessary if we intend to recover

a statement as the geometric Langlands conjecture, which is dependent on changes in the alge-

braic/holomorphic structure on a curve from a topologically twisted theory.

Remark 10.2.8. In theories like the B-twist, we would like to be able to talk about the germs of

solutions to the equations of motion near some (smooth) submanifold of positive real codimension,

especially codimension 1 submanifolds of form Σ×S1, where Σ is an algebraic curve: these germs

of solutions correspond to the classical phase space in the 2d theory obtained by compactification

along Σ. With the ideal, analytic definition 8.2.3 of a classical field theory this would be possible:

one could define the space of germs of solutions to the equations of motion along a submanifold

Y ⊆ X to be the inverse image ι−1M, where ι : Y ↪→ X was the inclusion map. As we’ll see, this

would give very natural examples for an analytic version of the B-twisted classical field theory, but

using our algebraic definition we’ll need to use a slightly different construction.

Suppose we indeed had an algebraic model for the holomorphically twisted N = 4 theory with

open sections on an analytic open set U given by T ∗[−1] Higgsfer
G (U), interpreted in some natural

way. Then we could make a claim of the following sort.

Claim. If Y ⊆ X is a compact oriented codimension k submanifold, then the germs of solutions

to the equations of motion near Y in a B-twisted N = 4 theory are given by

EOMB(Y ) = T ∗form[k − 1] LocG(Y )

where LocG(Y ) is the space of germs of flat connections near Y ⊆ X.

Proof. To identify the moduli space of germs along Y we choose a tubular neighborhood U of

Y inX, and use Poincaré duality to identify the compactly supported sections of the shifted tangent
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complex on Y with the compactly supported sections of the complex Ω•(U ; gP )[1] of LocG(U) plus

a shift of its dual. Indeed, global sections of the inverse image ι−1 EOMB(Y ) are just compactly

supported sections of EOMB on a tubular neighborhood U of Y . We have quasi-isomorphisms

(Ω•c(U ; gP )[1])∨ ∼= (Ω•(Y ; gP )[1])∨

∼= Ω•(Y ; g∗P )[dimY − 1]

∼= Ω•(Y ; g∗P )[3− k]

∼= (Ω•(Y ; g∗P [1])[1]) [1− k]

which gives the total compactly supported tangent complex Ω•c(U ; gP⊕g∗P [1])[1] a (k−1)-symplectic

structure which splits globally as the sum of a sheaf of complexes and a shift of its dual. Thus,

after an application of a version of theorem 8.2.25 in analytic derived geometry we identify the

moduli space of solutions with the appropriate shifted cotangent bundle. �

We’ll give an algebraic version of this claim for manifolds of form Σ × U for U = S1 or U = pt

below.

As discussed in the remark, we would like to make sense of what a theory assigns to a submanifold

of nonzero codimension. Because our framework uses an algebraic structure of a submanifold in

an essential way – we defined the B-twist by twisting theories only naturally defined for algebraic

varieties – we’ll need to extend our formalism. One observes that the base of the cotangent sheaf

defining the B-twist can be described by U 7→ LocG(U) = Map(UdR, BG) for U ⊂ X and that this

assignment makes sense for a more general class of derived stacks than just algebraic varieties.

Specifically, let’s consider compact connected manifolds U so that U × Σ has dimension less than

four (formally, we’re considering spaces of positive codimension for the 2-dimensional theory ob-

tained by compactification along Σ): the only possibilities are the circle and the point. These are
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modelled by derived stacks S1
B and pt, so we will simply consider Σ× U 7→ Map((Σ× U)dR, BG)

for U = S1
B or U = pt.

While it is natural to consider the assignment V 7→ LocG(V ) to such extended objects, the (−1)-

shifted cotangent bundle is not: the degree of the shift must change depending on the dimension

of V . In order to understand what this means, let us view EOMB(X) = T ∗form[−1]LocG(X), where

X is a smooth and proper algebraic surface, as arising by applying theorem 8.2.25 to a sheaf of dg

Lie algebras over LocG(X) given by the dg Lie algebra equivalence

TT ∗form[−1]LocG(X)[−1] = TLocG(X)[−1]⊕ (TLocG(X)[−1])∨[−3]

= TLocG(X)[−1]⊕ LLocG(X)[−2]

= TLocG(X)[−1]⊕ TLocG(X),

where we use the (−2)-shifted symplectic structure of LocG(X) = Map(XdR, BG) obtained from

the AKSZ construction using the 4-orientation onXdR to identify the−2-shifted cotangent complex

with the tangent complex [PTVV13, Theorem 2.5]. This is an equivalence of dg Lie algebras,

where the second summand is treated as a module for the first summand. We’ll extend this

description of the moduli space of solutions to the equations of motion, to define the moduli space

for spaces of form Σ× U .

Definition 10.2.9. For U = S1
B or U = pt, we define EOMB(Σ×U) on X to be the derived stack

obtained by applying the theorem 8.2.25 to the sheaf TLocG(Σ×U)[−1]⊕ TLocG(Σ×U) of Lie algebras

over LocG(Σ× U).

Corollary 10.2.10. There is an equivalence of derived stacks

EOMB(Σ× S1
B) = T ∗form(LLocG(Σ)).
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Proof. By definition, it is enough to compare the shifted tangent complexes of EOMB(Σ×S1
B)

and T ∗form(LLocG(Σ)) as sheaves of Lie algebras over LLocG(Σ). There are Lie algebra equivalences

TEOMB(Σ×S1
B)[−1] = TLocG(Σ×S1

B)[−1]⊕ TLocG(Σ×S1
B)

= TLocG(Σ×S1
B)[−1]⊕ LLocG(Σ×S1

B)[−1]

= TLLocG(Σ)[−1]⊕ (TLLocG(Σ))[−1])∨[−2]

= TT ∗form(LLocG(Σ))[−1]

where we use the (−1)-shifted symplectic structure of LocG(Σ × S1
B) = Map((Σ × S1

B)dR, BG) ∼=

Map(ΣdR × S1
B, BG) provided by the AKSZ construction, using the 2-orientation on ΣdR and the

1-orientation on S1
B. �

Note that the result is a 0-shifted symplectic derived stack. This is an expected property of a

phase space in a classical field theory, i.e. the space the theory assigns to a proper codimension

1 submanifold. According the Kapustin-Witten program, this space should – under geometric

quantization – yield the Hochschild homology of the category the relevant extended 2d topological

quantum field theory assigns to the point, expected to be the category on the B-side of the

geometric Langlands correspondence. We intend to address this in the sequel to this work.

Finally, we can similarly understand what the B-twisted theory assigns to spaces of codimension

2.

Corollary 10.2.11. For a smooth projective curve Σ, the moduli space of germs of solutions to

the equations of motion on Σ× pt is given by

EOMB(Σ× pt) ∼= T ∗form[1] LocG(Σ).
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Proof. The argument here is very similar to the computation of the phase space in corollary

10.2.10. We apply theorem 8.2.25 to the sheaf

TLocG(Σ)[−1]⊕ TLocG(Σ)

on LocG(Σ). There are dg Lie algebra equivalences

TLocG(Σ)[−1]⊕ TLocG(Σ)
∼= TLocG(Σ)[−1]⊕ LLocG(Σ)

∼= TT ∗form[1] LocG(Σ)

using the 0-shifted symplectic structure on LocG(Σ). Again, applying theorem 8.2.25 completes

the proof. �

Remark 10.2.12. In order to perform this calculation, we were forced to extend a natural cal-

culation of EOMB for algebraic varieties to spaces of form Σ× UB by hand. In order to obtain a

theory compatible with geometric Langlands, as proposed by Kapustin and Witten, we are forced

to perform this procedure, where we replace a theory which is “de Rham” in all four directions

with a theory that is de Rham in two directions and Betti (purely topological) in the remain-

ing two. It is worth noting that these theories are very different: the purely de Rham theory is

determined entirely by its local operators, whereas the de Rham-Betti theory admits non-trivial

line operators (indeed, these are critical for the geometric Langlands program). Having made this

modification, one can go further to investigate a theory in which all four directions are topological;

an understanding of such a theory should lead to a physical description of the “Betti Langlands

correspondence” of Ben-Zvi and Nadler, as discussed by Ben-Zvi–Brochier–Jordan [BZBJ15, 6.2]

and Ben-Zvi–Nadler [BZN16].

10.3. The A-twist as a Limit of Holomorphic-Topological Twists

Understanding the A-twisted theory will be slightly different to our calculation for the B-twist,

because the A-twisted theory is no longer a cotangent theory. However, it will be a cotangent
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theory upon a certain compactification. In fact, we will realize that the A-twist arose as a limit of

holomorphic-topological twists, all of which yield cotangent theories upon such a compactification.

We’ll begin by calculating the solutions to the equations of motion in the holomorphic-topological

twists by an analogous procedure to the one we used for the B-twist. A crucial difference from

the previous twists is that the relevant twisting data fails to preserve the fibers of the morphism

π : EOMα
hol(X)→ BunG(X) defining the fiberwise formal algebraic gauge theory. However, for the

A-twist, the fibers of the morphism σ : BunG(X) → EOMα
hol(X) are preserved from the twisting

data, so it’s possible to define a canonical twist by applying the general construction 8.2.34 based

on the general Gaitsgory-Rozenblyum correspondence in theorem 8.2.26.

Let Qλ = Qhol + λ(α∨2 ⊗ f∗2 ) + (α2 ⊗ e2) be a holomorphic-topological supercharge as described

at the end of section 8.1.1 (so Qλ → QA as λ → 0). We’ll first consider a twisted theory with

respect to these supercharges where λ ∈ C× on a space of form X = Σ1 × Σ2, where Σi are

smooth algebraic curves. We’ll have to be careful: if λ 6= 0 then the twisting data is equivariant

neither for the projection π, nor for the section σ, so there is no chance of constructing the twist

canonically from formal, linear algebraic data. We will however describe a natural deformation of

the holomorphically twisted theory, for each λ, including λ = 0 that yields a twist as defined in

section 8.2, guided by the superspace description of the supersymmetry action.

Recall that the holomorphic-topological twist Qλ for λ ∈ C× corresponds – in the superspace

formalism – to the vector field ∂Σ1 + dΣ2 + ∂
∂ε on Σ1 × Σ2. The Qλ-twisted theory admits a

description in terms of moduli space of λ-connections, as in definition 8.2.27; let’s describe this.

Let U1 and U2 be smooth complex curves; we’ll describe EOMλ(U1 × U2), where the supercharge

Qλ acts holomorphically in the first complex direction and topologically in the second direction.

Since the twisting procedure for a supercharge Q that splits as Q′ +Q′′ with Q′ purely of positive

helicity and Q′′ purely of negative helicity can be performed in steps without changing the result,

as in remark 8.1.9, or more concretely by performing two deformations, then obtaining a composite
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deformation by restricting to the diagonal A1 ⊆ A1 ×A1, we first consider the twist by the vector

field ∂Σ1 + dΣ2 and then by ∂
∂ε .

When we twist with respect to the supercharge ∂Σ1 +dΣ2 , it is clear from a similar line of reasoning

to the one employed in theorem 10.2.4 that there is a natural twisted moduli space of solutions

to the equations of motion on U1 × U2 given by the (−1)-shifted formal cotangent space to the

moduli stack of principal G-bundles on U1×U2 together with a formal Higgs field on U1 and a flat

λ-connection on Σ2, that is, the mapping space

T ∗form[−1]
(

Map ((U1)Dol × (U2)λ-dR, BG)∧Map(U1×(U2)λ-dR,BG)

)
.

More precisely, there is a deformation of the holomorphically twisted moduli space given by the

relative mapping space

T ∗form[−1]
(

MapA1

(
(U1)Dol × (U2)Hod, BG× A1

)∧
MapA1 (U1×(U2)Hod,BG×A1)

)
,

whose fiber over λ is given by the mapping space above, and when U1 and U2 are both Zariski

open subsets of C this defines a twist in the sense of definition 8.2.21.

As for the second summand, ∂
∂ε , this supercharge has a very natural description when U = X is

proper, in which case it becomes the non-vanishing vector field of degree 1, because

T ∗form[−1]Map(XDol, BG) = Tform[1]Map(XDol, BG)

using the (−2)-shifted symplectic structure of the mapping stack from the AKSZ construction

[PTVV13, Theorem 2.5].

The following proposition describes what happens when we perform the two supercharges succes-

sively.
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Proposition 10.3.1. If Σ1 and Σ2 are proper smooth curves, the moduli space of solutions to the

equations of motion in the Qλ twist of N = 4 gauge theory is equivalent to the de Rham prestack

EOMλ(Σ1 × Σ2) ∼=
(

Map ((Σ1)Dol × (Σ2)λ-dR, BG)∧Map(Σ1×(Σ2)λ-dR,BG)

)
dR
.

Proof. Since Σ1 and Σ2 are proper, the mapping space X = Map ((Σ1)Dol × (Σ2)λ-dR, BG)

and its formal completion are −2-shifted symplectic by the AKSZ construction. Indeed, BG is

naturally 2-shifted symplectic and (Σ1)Dol and (Σ2)λ-dR are both O-compact and O-2-oriented

by their fundamental classes. Using this shifted symplectic form, we can identify T ∗[−1]X with

T [1]X . The result then follows by example 8.2.28. �

This Qλ-twisted moduli space has another description, which realizes the compactified theory as a

cotangent field theory on Σ1. For a convenient future reference, we first note the following lemma

on some useful canonical equivalences of derived stacks.

Lemma 10.3.2. (1) For a reduced scheme Y and any prestack X , there is an equivalence

Map(Y,XdR) ∼= Map(Y,X )dR.

(2) For a smooth projective curve Σ and a k-shifted symplectic derived stack X , there is an

equivalence

T ∗form[k − 2]Map(Σ,X ) ∼= Map(T [1]Σ,X )∧Map(Σ,X ).

(3) For a derived Artin stack X locally of finite presentation, there is an equivalence

T ∗form[k]Tform[`]X ∼= Tform[`]T ∗form[k − `]X

for all integers k and `.
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Proof. (1) We analyse the S-points for an arbitrary cdga S. There are equivalences

Map(Y,X )dR(S) ∼= Map(Y,X )(Sred)

∼= Map(Y × SpecSred,X )

∼= Map(Y red × SpecSred,X )

∼= Map(Y × SpecS,XdR)

∼= Map(Y,XdR)(S).

(2) Note that both the left-hand and right-hand sides are pointed formal moduli problems

over the mapping space Map(Σ,X ) theorem 8.2.25 it suffices to provide an equivalence

of their shifted relative tangent bundles as sheaves of dg Lie algebras. We observe that

TT ∗[k−2]Map(Σ,X )/Map(Σ,X )[−1] ∼= LMap(Σ,X )[k − 2][−1]

and TMap(T [1]Σ,X )/Map(Σ,X )[−1] ∼= (TMap(Σ,X ) → σ∗TMap(T [1]Σ,X ))[−1]

∼= (TMap(Σ,X ) → σ∗LMap(T [1]Σ,X )[k − 2])[−1]

where σ is the morphism of mapping stacks obtained by precomposition with the pro-

jection T [1]Σ → Σ, and where on the last line we used the (k − 2)-shifted symplectic

structure on Map(T [1]Σ,X ) ∼= Map(ΣDol,X ) obtained by the AKSZ construction. Note

that the Lie algebra structure is trivial on both sides. The two-step complexes on the

right-hand side just spell out the definition of the relative tangent complex, as an object

of the derived category of sheaves.

The map σ induces a map of sheaves

TMap(Σ,X )[−1]→ σ∗TMap(T [1]Σ,X )[−1]
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or dually, with a shift, a map

σ∗LMap(T [1]Σ,X )[k − 3]→ LMap(Σ,X )[k − 3].

We’ll show that the kernel of this map is equivalent to TMap(Σ,X ), and therefore the

induced map between relative tangent complexes is an equivalence. It suffices to check

this claim for the fiber at each map f : Σ → X . At such a fiber, the map of sheaves

induced by σ is given by the projection

Γ(Σ;LX ⊗ (OΣ[2]⊕KΣ[1]))[k − 3]→ Γ(Σ;LX ⊗KΣ)[k − 2].

On the other hand, the inclusion of a fiber of TMap(Σ,X )[−1] is given by the composite

Γ(Σ;TX )[−1]→ Γ(Σ;TX ⊗ (OΣ ⊕KΣ[−1])[−1] ∼= Γ(Σ;LX [k]⊗ (OΣ ⊕KΣ[−1])[−1],

whose image is precisely the kernel of the projection, as required. Therefore the rela-

tive tangent complexes to our two derived stacks are equivalent, so the derived stacks

themselves are equivalent, as required.

(3) Since both T ∗form[k]Tform[`]X and Tform[`]T ∗form[k− `]X define pointed formal moduli prob-

lems over X , it suffices by theorem 8.2.25 to prove an equivalence for the restricted shifted

tangent complexes as sheaves of Lie algebras over X . We realize such an equivalence as

the composite

σ∗TT ∗form[k]Tform[`]X [−1] ∼= ((TX ⊕ TX [`])⊕ (LX ⊕ LX [−`])[k])[−1]

∼= (TX ⊕ TX [`]⊕ LX [k]⊕ LX [k − `])[−1]

∼= ((TX ⊕ LX [k − `])⊕ (TX ⊕ LX [k − `])[`])[−1]

∼= σ∗TTform[`]T ∗form[k−`]X [−1]
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of dg Lie algebra equivalences, where the Lie structure on the second line is given by the

bracket on the first factor, the action of the first factor on each of the others, and the

pairing between the second and fourth factors, taking values in the third factor.

�

Remark 10.3.3. (1) The equivalence Map(Y,XdR) ∼= Map(Y,X )dR arises as an equivalence

of the full Hodge stack. For this, it is enough to observe that Map(Y, Tform[1]X ) ∼=

Tform[1]Map(Y,X ) has the same relative shifted tangent complex over Map(Y,X ), which

is immediate.

(2) The third equivalence for ` = 1 is also compatible with its de Rham deformation. More

precisely, under the equivalence Tform[1]T ∗form[−k]X ∼= T ∗form[1−k]Tform[1]X , we can trans-

fer the natural deformation of the shifted tangent complex on the left-hand side corre-

sponding to the family of sheaves t · id : π∗TT ∗form[−k]X → π∗TT ∗form[−k]X over A1, where

π is the projection Tform[1]T ∗form[−k]X → T ∗form[−k]X , to the right-hand side. The re-

sult is the pullback under the map T ∗form[1− k]Tform[1]X → Tform[1]X of the deformation

t · id : π′∗TX → π′∗TX , where now π′ is the projection Tform[1]X → X . Now, we can con-

sider the formal completions of both sides of our equivalence with respect to T ∗form[−k]X to

obtain a pair of equivalent pointed formal moduli problems over T ∗form[−k]X . By theorem

8.2.25 these are determined by (equivalent) sheaves of dg Lie algebras over T ∗form[−k]X ,

and we’ve described equivalent 1-parameter deformations of these sheaves, and therefore

of the resulting formal moduli problems under T ∗form[−k]X . The fibers over 1 of these

deformed moduli problems are given by

(T ∗form[−k]X )dR
∼= T ∗form[1− k](XdR)

where the latter is a formal moduli problem under T ∗[−k]X by the composite

T ∗form[−k]X → (T ∗form[−k]X )dR → XdR
∼= T ∗form[1− k](XdR).
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Theorem 10.3.4. The moduli space of solutions to the equations of motion on the product Σ1×Σ2

of two smooth projective curves after applying the Qλ-twist is equivalent to

EOMλ(Σ1 × Σ2) ∼= T ∗form[−1]Map
(

Σ1,LocλG(Σ2)dR

)
in a canonical way.

Remark 10.3.5. This statement is not contentless, despite the fact that it involves the cotangent

bundle of a de Rham stack, which is necessarily trivial. Indeed, the equivalence is compatible with

the deformation to the whole Hodge stack. All such statements appearing in the paper arise as

specializations of equivalences of Hodge stacks.

Proof. We begin with the derived stack on the right-hand side. Since

LocλG(Σ2) = Map(Σλ-dR, BG) is 0-shifted symplectic by the AKSZ construction, there is an equiv-

alence T [1] LocλG(Σ2) ∼= T ∗[1] LocλG(Σ2), so in particular LocλG(Σ2)Dol = Tform[1] LocλG(Σ2) is 1-

shifted symplectic. We have equivalences

T ∗form[−1]Map
(

Σ1,LocλG(Σ2)dR

)
∼= T ∗form[−1]

(
Map(Σ1,LocλG(Σ2))dR

)
∼=
(
T ∗form[−2]Map(Σ1,LocλG(Σ2))

)
dR

∼=
(

Map(T [1]Σ1,LocλG(Σ2))∧
Map(Σ1,LocλG(Σ2))

)
dR

∼=
((

Map
(

(Σ1)Dol,LocλG(Σ2)
))∧

Map(Σ1,LocλG(Σ2))

)
dR

∼=
((

Map ((Σ1)Dol × (Σ2)λ-dR, BG)
)∧

Map(Σ1,LocλG(Σ2))

)
dR

= EOMλ(Σ1 × Σ2),

where on the first line we used lemma 10.3.2 part 1, on the second line we used remark 10.3.3 part

2, and on the fifth line we used the adjunction

Map((Σ1)Dol × (Σ2)λ-dR, BG) = Map((Σ1)Dol,Map((Σ2)λ-dR, BG)).
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Now in view of remark 10.3.3, one can note that the whole equivalences work at the level of Hodge

stacks. �

Remark 10.3.6. We have two apparently different-looking descriptions of our moduli space, but

the point is that one can use either one. For the rest of the paper, we won’t use this latter descrip-

tion. On the other hand, when λ = 0, this theorem amounts to identifying the compactification

of the A-twisted theory along Σ2 with the A-model with target HiggsG(Σ2), as expected from the

physics literature. This can also be understood as an algebraization and globalization of Costello’s

perturbative description of the A-model in the smooth category [Cos11a].

Let’s now discuss what this assigns to objects of nonzero codimension as we did in section 10.2:

EOMλ(Σ× U) ∼=
(

Map (ΣDol × Uλ-dR, BG)∧Map(Σ×Uλ-dR,BG)

)
dR

as in proposition 10.3.1 the assignment naturally extends to U = S1
B or U = pt.

We’ll describe it in a way designed to illustrate the connection with geometric Langlands. However,

the argument we gave for theorem 10.3.4 no longer applies. Instead of a (−1)-shifted cotangent

space, we’ll produce a 0-shifted cotangent space. In the A-twist, the degree of shifting comes nat-

urally so we don’t need any auxiliary step: de Rham stack can be regarded as k-shifted symplectic

for any k, but that being realized as a Hodge stack over A1 determines the unique number k in

such a way that ensures compatibility for any t ∈ A1.

Proposition 10.3.7. The phase space EOMλ(Σ× S1
B) in the Qλ-twisted theory is equivalent to

T ∗form(Map(S1
B,BunG(Σ))dR).

In particular the result is independent of the value of λ. The equivalence arises by taking the fiber

at 1 of an equivalence of deformations, whose fiber at 0 is an equivalence

Map
(
ΣDol × (S1

B)λ-dR, BG
)

Dol
∼= T ∗formTform[1]Map(S1

B,BunG(Σ)).
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Proof. First, observe that (S1
B)λ-dR

∼= S1
B for all λ ∈ C. Indeed, any topological space Y

viewed as a derived stack has trivial tangent complex, so (YB)Hod
∼= YB × A1. According to

proposition 10.3.1 and lemma 10.3.2 part 2 we have

EOMλ(Σ× S1
B) ∼=

(
Map

(
ΣDol × (S1

B)λ-dR, BG
)∧

Map(Σ×(S1
B)λ-dR,BG)

)
dR

∼=
(

Map(T [1]Σ,LocG(S1))∧
Map(Σ×(S1

B)λ-dR,BG)

)
dR

∼= (T ∗form[−1]Map(Σ,LocG(S1)))dR.

This falls into a family of equivalences, by replacing the de Rham prestack with the Hodge prestack,

whose central fiber is given by the formal completion

Tform[1]Map
(
ΣDol × (S1

B)λ-dR, BG
) ∼= Tform[1]T ∗form[−1]Map(Σ,LocG(S1))

∼= T ∗formTform[1]Map(Σ,LocG(S1)),

by lemma 10.3.2 part 3. To conclude the proof we observe that the degree 1 symmetry of the

tangent complex generating the de Rham deformation via example 8.2.28 corresponds – under the

equivalence – to the symmetry on the right-hand side deforming T ∗formTform[1]Map(Σ,LocG(S1))

to T ∗form(Map(Σ,LocG(S1))dR) by remark 10.3.3 part 2. �

Given that the A-twist is computed by an identical procedure to the more general λ-twist, one

might ask what the point is of considering the λ family of twists at all. The claim, which I

intend to address in more detail in future work, is that in order to see more refined structures in

the geometric Langlands program, it is necessary to consider such twists. The following remark

provides a hint of this structure.

Remark 10.3.8. The curve Σ = CP1 deserves a little more attention; we’ll describe an infinites-

imal version of the above calculation, explicitly using the family of theories obtained by varying

λ. Instead of describing the solutions to the equations of motion on the derived stack CP1 × S1
B,

we’ll instead consider a different complex structure on a complex neighborhood of S2 × S1. The
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following construction should be thought of as informal and motivational, since we’ll use complex

analytic constructions that don’t make sense in derived algebraic geometry. Consider the complex

manifold

(C× C×) \ ({0} × S1).

Note that there are diffeomorphisms C× C× ∼= C× (0,∞)× S1 ' B3 × S1 for an open three-ball

B3 around 0. Removing {0} × S1 from C × C× corresponds to removing {0} × S1 from B3 × S1

on the right-hand side, yielding a diffeomorphism (B3 \ {0})×S1 ' (S2× (−1, 1))×S1. Thus we

can think of (C× C×) \ ({0} × S1) as a complex manifold thickening S2 × S1.

From proposition 10.3.1, the space of solutions to the equations of motion is obtained by applying

the de Rham space construction to the moduli space of G-bundles on (C×C×) \ ({0} × S1) with

a Higgs field on C and a flat λ-connection on C×. Let us denote the two connected components of

C× \ S1 by Ain and Aout. Note that a G-bundle P on (C× C×) \ ({0} × S1) is equivalent to the

data of a triple (P ′, φin, φout), where P ′ is the restriction of P to C× ×C×, φin is the extension of

P ′|C××Ain
to C×Ain, and φout is the extension of P ′|C××Aout

to C×Aout. Note that ignoring the

annular factor we would obtain a G-bundle on a “bubbled” plane B := C qC× C made by gluing

the two planes along C×.

Then we can describe the moduli space of solutions to the equations of motion on (C×C×) \ ({0}×

S1) as a datum (P ′, φin, φout) of this form, together with a Higgs field and a flat λ-connection in

the two complex directions. Since we have a flat λ-connection in the C×-direction throughout, we

can understand the space of germs of solutions to the equations of motion near S2 × S1 as the

de Rham stack of Map(S1
B,Higgsbos

G (B)). It is essential here to have λ 6= 0: otherwise we cannot

simply describe the moduli spaces in a way that depend only on the topology of C×, and not its

algebraic structure.

Finally, we can replace C by the formal disk D. One then obtains as the space of solutions to the

equations of motion

EOM(B× S1
B) ∼= T ∗form(Map(S1

B,BunG(B))dR)
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where B is the “formal bubble” B := D qD× D. The space of G-bundles on the formal bubble B

is a familiar space in geometric representation theory: the quotient of the affine Grassmannian

GrG by the arc group G(C[[t]]). We’ll investigate the action of a quantization of this moduli

space EOM(B×S1
B) on a quantization of EOM(Σ×S1) for general surfaces Σ, inherited from the

geometric structure of the bases of these cotangent spaces in future work.

To conclude this chapter, we’d also like to understand germs of solutions to the equations of motion

near manifolds of codimension 2.

Proposition 10.3.9. EOMλ(Σ × C) ∼= T ∗form[1](BunG(Σ)dR). The equivalence arises as the fiber

at 1 of an equivalence of deformations, whose fiber over 0 is

Map(ΣDol × ptλ-dR, BG)Dol
∼= T ∗form[1]Tform[1] BunG(Σ)∧T ∗form BunG(Σ).

Proof. Lemma 10.3.2 provides an equivalence

EOMλ(Σ) ∼=
(

Map(ΣDol × ptλ-dR, BG)∧Map(Σ×ptλ-dR,BG)

)
dR

∼=
(

Map(T [1]Σ, BG)∧Map(Σ×ptλ-dR,BG)

)
dR

∼= (T ∗formMap(Σ, BG))dR

using the 2-shifted symplectic structure on BG. As in the proof of proposition 10.3.7, this equiv-

alence arises as the generic fiber of a natural deformation, whose fiber over zero is

Tform[1]Map(ΣDol × ptλ-dR, BG) ∼= Tform[1]T ∗formMap(Σ, BG))

∼= T ∗form[1]Tform[1]Map(Σ, BG))

∼= T ∗form[1]Tform[1] BunG(Σ).
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Again, as in lemma 10.3.2 we observe by remark 10.3.3 part 2 that the degree 1 symmetry of the

tangent complex generating the de Rham deformation corresponds to the symmetry on the right-

hand side deforming the Dolbeault stack to the Hodge prestack, thus providing an equivalence of

deformations, as required. �

Remark 10.3.10. As above, if Σ = CP1 we have the option to perform an infinitesimal construc-

tion. By the same reasoning as in remark 10.3.8 one can choose as a thickening (C×C) \ ({0}×I),

where I is the imaginary axis in the second factor: there is a diffeomorphism

S2 × (−1, 1)× I ' (B3 \ {0})× I ' (C× C) \ ({0} × I)

which we again think of as a choice of complex thickening of S2. Running through the same calcu-

lation as in remark 10.3.8 we end up with the moduli space of germs of solutions to the equations of

motion T ∗form[1](BunG(B)dR). This will naturally appear in an interpretation of geometric Satake

as arising from line operators.
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Part 3

Outlook and Future Work
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CHAPTER 11

Abelian Duality for N = 4 Theories

The first step to truly combining the two main parts of this thesis will be to extend the analysis

of part 1 to twisted supersymmetric abelian (higher) gauge theories. In particular, a sufficiently

rich construction of abelian duality for the Kapustin-Witten twisted abelian N = 4 gauge theories

should recover the abelian version of the geometric Langlands correspondence, as realized indepen-

dently by Laumon [Lau96] and Rothstein [Rot96] by a twisted Fourier-Mukai transformation.

This analysis will require two new pieces of input.

(1) It will be necessary to investigate exactly how abelian duality interacts with supersymme-

try. Indeed, extending the analysis of part 1 to the untwisted abelian N = 4 theory is not

difficult, since the fields in this abelian theory are not coupled to one another: one simply

defines the dual on 2-form fields using the Hodge star as usual, and identifies scalar fields

as dual to scalar fields and positive helicity spinor fields as dual to negative helicity spinor

fields in a natural way. This provides a correspondence of factorization algebras, but how

does it descend to the twisted theories? Ideally, the morphisms of this correspondence will

be equivariant for appropriate actions of the N = 4 supersymmetry algebra, so that the

action of the A-supercharge on one side corresponds to the action of the B-supercharge

on the other. If this is the case then the duality descends to a correspondence relating

the factorization algebras of dual twisted theories.

(2) Additionally, we need a procedure extending abelian duality from a correspondence on

the level of the factorization algebras of observables to a correspondence of the categories

of branes. A natural first step towards this understanding would be to apply theorems

of Scheimbauer [Sch14], which associate to a locally constant factorization algebra an
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extended topological field theory (in the sense of Lurie) whose target is an En Morita

category. In particular, to a surface Σ, the theorem will associate an E2 algebra (with

additional structure) whose module category we can compare to the expected categories

from geometric class field theory. In order to apply these results, it would be necessary

to extend the factorization algebra of observables to a constructible factorization algebra

on a certain stratified space.
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CHAPTER 12

Constructing Topological Field Theories

There’s another important step which needs to be investigated to really connect the methods of

Kapustin and Witten with geometric representation theory and the geometric Langlands corre-

spondence: which aspects of the classical theories discussed in part 2 can be quantized? For

instance, in chapter 10 we identified the space of germs of solutions to the equations of motion

near (certain) 3-manifolds in the A- and B-twisted N = 4 theories as the total spaces of cotan-

gent bundles. In particular, this description yields canonical polarizations on these moduli spaces,

allowing us to define the Hilbert spaces associated to these theories by geometric quantization.

Specifically, the Hilbert space associated of the A- and B-twisted theories after dimensional reduc-

tion along Σ have the forms HA(Σ) = Ω•(LBunG(Σ)) and HB(Σ) = O(LLocG(Σ)) 1. Can we

go further, and identify 2d topological quantum field theories (in the sense of Atiyah and Segal,

or even extended theories in the sense of Lurie [Lur09b]) which quantise our 2d classical field

theories, and which assign these Hilbert spaces to the circle?

This question makes sense not just for the 2d theories arising by dimensional reduction from the

Kapustin-Witten theories, but for the algebraic A- and B-models with target any derived stack X.

That is, the 2d classical field theories sending a smooth proper curve Σ to T ∗form[−1](Map(Σ, X))

or Map(Σ, X)dR, which have Hilbert spaces of the forms described above if we let X = LocG(Σ)

or BunG(Σ) respectively.

If X is sufficiently well-behaved, a theorem of Ben-Zvi and Nadler allows us to identify the Hilbert

spaces of the A- and B-models with the Hochschild homologies of certain categories of sheaves.

1There’s an implicit functional analytic choice here; I’m describing the Hilbert space using algebraic functions on
the base of the cotangent bundle, not for instance L2-functions with respect to some measure. We won’t attempt to
literally describe a complete innner product on these vector spaces. As we’ll remark shortly, it may be more natural
to consider algebraic distributions rather than algebraic functions.
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From the point of view of the cobordism hypothesis, in a 2d extended topological field theory

assigning the category C to the point, the vector space associated to the circle with its cylindrical

framing is exactly the Hochschild homology HH•(C).

Definition 12.1. The space ω(X) of distributions on a derived stack X is the vector space p∗p
!C,

where p is the unique map X → pt, and the pull-back and push-forward maps are the functors

between categories of ind-coherent sheaves. Similarly, the space ωdR(X) of de Rham distributions

on X is the vector space pdR,∗p
!
dRC, where we now pull back and push forward using the functors

between categories of D-modules.

Proposition 12.2. Let X be a derived stack which is quasi-compact with affine diagonal (“QCA”).

The vector space HA = ωdR(LX) is canonically isomorphic to the Hochschild cohomology of the

category D(X) of D-modules on X. The vector space HB = ω(LX) is canonically isomorphic to

the Hochschild homology of the category IndCoh(X).

This result is an immediate consequence of a result of Ben-Zvi and Nadler [BZN13, Proposition

4.2].

Remark 12.3. This doesn’t immediately apply to the Hilbert spaces associated to the A-twisted

Kapustin-Witten theory, since BunG(Σ) is not quasi-compact. However, we expect that the result

still holds for this stack. Our main piece of evidence for this is a result of Drinfeld and Gaitsgory

[DG11], establishing that even though BunG(Σ) is not quasi-compact it still has a well-behaved

theory of D-modules. In particular, its category of D-modules is compactly generated.

Remark 12.4. In order to obtain the Hochschild homology of the category of ind-coherent sheaves

on X with singular support in Y ⊆ Sing(X), note that there are pull-back and pushforward

functors that preserve specified singular support conditions (by composing p! with the appropriate

colocalization functor ΨY
X as defined by Arinkin and Gaitsgory), to which we can apply Ben-Zvi

and Nadler’s result.
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Now, we’d like to extend our Hilbert spaces to 2d topological quantum field theories quantizing

the classical A- and B-models. Heuristically, it should be possible to form such an extension using

pull-push operations. Indeed, on the B-side, as a functor from the bordism category viewed as a 1-

category, this can already be made precise; in work with Saul Glasman I’m currently extending this

to a functor of quasi-categories. We view this as an algebraic version of string topology operations

as defined by Godin [God07].

Let U be a 2-dimensional bordism, and consider the correspondence

EOM(U)

xx ''

EOM(∂inU) EOM(∂outU)

where the morphisms are given by restriction. In the A- and B-models we can identify this as a

Lagrangian correspondence between cotangent bundles, where EOM(U) is the conormal bundle to

a space mapping to the product of the two base spaces (specifically, it will look like the conormal to

the mapping space Map(U,X) in T ∗Map(∂inUt∂outU,X). We would like to define an operation by

pulling back and pushing forward distributions on the resulting correspondence between the bases.

A priori we can’t canonically pull back distributions, but we can define a pullback by constructing

a relative Calabi-Yau structure for one of the maps. More specifically, if f : X → Y is a morphism

of derived stacks, and we’re given an equivalence of functors Ω: f∗ → f ![−d],there’s a canonical

commutative triangle of derived stacks

X
f
//

p   

Y

q

��

pt
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and we can identify a morphism of cochain complexes

ω(Y ) = q∗q
!C

→ q∗f∗f
∗q!C

→ q∗f∗f
!q!C[−d]

= p∗p
!C[−d] = ω(X)[−d]

where we used the unit for the adjunction between f∗ and f∗ on the second line and the Calabi-Yau

structure Ω for f on the third line.

Claim. If X is proper, we can construct a relative Calabi-Yau for the restriction maps above,

and therefore define by pull-push a 2d topological field theory, as a functor from the 1-categorical

bordism category to cochain complexes. If X is only separated, we can still construct a functor from

the “non-compact” bordism category, in which all components of a bordism are required to have

non-empty incoming boundary (see Lurie’s article [Lur09b] for a discussion of such theories).

In work in progress, Glasman and I are extending this functor to a map of quasi-categories, where

the source bordism category is modelled by a quasi-category of ribbon graphs.

Remark 12.5. Unfortunately, the stack LocG(Σ) is far from being separated, so it doesn’t appear

that our methods will work to define a 2d TQFT modelling the dimensionally reduced B-twisted

theory. To truly access this theory additional ideas will be needed.
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CHAPTER 13

Vacua and Singular Support Conditions

In this chapter, I’ll discuss ongoing joint work with Philsang Yoo.

In order to recover the geometric Langlands correspondence from gauge theory, it is still necessary

to explain where the corrections to the best hope conjecture arise. For instance, it would be very

desirable to have a physical origin for the singular support conditions introduced by Arinkin and

Gaitsgory, in order to correct the incompatibility of the best hope conjecture with the geometric

Eisenstein series functors (as we discussed in section 1.2.3 of the introduction).

We propose to explain the appearance of these singular support conditions by restricting to branes

in S-dual theories which are compatible with a fixed choice of vacuum. In the 4 dimensional A- and

B-twisted quantum field theories, there is an action of the algebra Z(S3) of local operators (using

functorial notation for a TQFT suggestively) on the category Z(Σ) associated to a curve Σ. This

action yields a morphism of E2 algebras from Z(S3) to the Hochschild cohomology HH•(Z(Σ)),

which we’ll describe in the examples of the Kapustin-Witten twisted theories.

Definition 13.1. The moduli space of vacua in an n-dimensional topological field theory Z is the

spectrum of the algebra of local operators Spec(Obsq). In general, this algebra is an En-algebra,

but we’ll restrict attention to the case where it’s actually genuinely commutative up to a degree

shift (as in [AG12, section 3.6]) 1.

Remark 13.2. This is a special case of a definition of vacua in a general, not necessarily topological

theory. See Costello-Gwilliam [CG15, section 4.9] for details.

1Thus avoiding interacting with any subtle notions from spectral algebraic geometry.
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Given a category L of line operators in a topological field theory, one obtains an algebra of local

operators as the endomorphism algebra EndL(1L) (using the state operator correspondence for a

topological theory). The category of line operators acts on the category C of branes along some

codimension 2 submanifold, so we note that the action

L → Fun(C, C)

induces EndL(1L)→ EndFun(C,C)(idC , idC)

= HC•(C)→ EndC(F).

That is, the action of line operators on branes induces an action of the local operators on each

brane F ∈ C.

In the Kapustin-Witten B-twisted theory, the category of line operators is IndCohN (HeckeG
∨

spec), i.e.

the category on the B-side of the geometric Satake correspondence. The fact that these comprise

all the line operators, not just the subcategory of Wilson operators, is a theorem of Kapustin,

Setter and Vyas [KSV10] (although we’ve made a different functional analytic choice of sheaves,

but this won’t matter for the present argument – the algebra of endomorphisms of the unit will

be the same).

One checks that the algebra EndL(1L) of local operators is equivalent to O(g[2]/G), and therefore

to O(h[2]/W ). The moduli space of vacua in this theory is therefore given by the affine dg-scheme

h[2]/W . A näıve geometric quantization procedure suggests assigning to the curve Σ the category

Znäıve(Σ) = IndCoh(LocG∨(Σ)). The above argument gives us a morphism

vF : O(h[2]/W )→ HH•(IndCoh(LocG∨(Σ))→ End•(F).

Choosing a C× orbit [x] ⊆ h/W yields an ideal in O(h[2]/W ). We think of this as a choice of

vacuum state. We expect to recover Arinkin-Gaitsgory’s nilpotent singular support condition by

making a choice of vacuum, in the following way.
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Conjecture 13.3. For the vacuum state x = 0, the full subcategory generated by those objects

F such that vF (m0) = 0 is the category IndCohN (LocG∨(Σ)) of objects with nilpotent singular

support.

On the A-side, the geometric Satake isomorphism gives us, by the same procedure as above, an

action of the algebra of local operators on each A-brane. We intend to show that the vacuum

condition associated to x = 0 is vacuous for the category D(BunG(Σ)), yielding the statement of

the geometric Langlands correspondence as given by Arinkin and Gaitsgory, by restricting to the

categories compatible with the vacuum 0 on each side.

What about more general choices of vacua? On the B-side, choosing a C× through the origin

imposes a more complicated singular support condition on B-branes. For instance, if we choose

a regular semisimple element x, the singular support condition includes, in particular, a sup-

port condition, saying that a compatible brane is set-theoretically supported only on the locus

LocH∨(Σ) ⊆ LocG∨(Σ) of completely reducible bundles. In general, the set-theoretic support will

be broken to subsets associated to a union of Levi subgroups.

On the A-side, in order to identify the category of branes compatible with a particular vac-

uum condition, one needs to identify a category that should correspond to the full category

IndCoh(BunG(Σ)) on the A-side, then identify singular supports of objects in this larger cate-

gory. Guided by Arinkin and Gaitsgory’s approach to the geometric Satake correspondence, we

propose that this larger category should have an analogous form to the category Arinkin and

Gaitsgory call Sphren
G : the “renormalized” spherical Hecke category.

There is a natural map of derived stacks fx : GrG → BunG(Σ) associated to each closed point

x ∈ Σ. Qualitatively, the Beilinson-Drinfeld description of the affine Grassmannian tells us that it

can be represented as the moduli space of G-bundles on Σ which are trivialized away from x; from

this point of view the map fx merely forgets the trivialization. More concretely, we can identify



201

fx as a map of mapping stacks induced from the natural map Σ \ {x} → pt as follows.

GrG = Maps(D tD× pt, BG)

→ Maps(D tD× (Σ \ {x}), BG)

= Maps(Σ, BG)

= BunG(Σ).

Definition 13.4. The renormalized category of A-branes on Σ is the category generated by objects

M in D(BunG(Σ)) such that the pullback f !
xM under the map fx : GrG → BunG(Σ) for each point

x ∈ Σ is compact, i.e. a bounded complex of D-modules with coherent cohomology.

We intend to use the Satake action on this category to identify a full subcategory of objects with

a particular singular support condition, i.e. objects compatible with a choice of vacuum.
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CHAPTER 14

N = 2 Theories and the Future

This final section is perhaps the most speculative; I will propose a program (which I hope to

follow jointly with Philsang Yoo) in which we might rigorously produce geometric Langlands

like equivalences and structures from a family of S-dualities described by Gaiotto [Gai12]. These

dualities come from the six-dimensional perspective on S-duality of N = 4 super Yang-Mills theory

that we discussed in section 1.3.5: there are S-dualities between theories arising from dimensional

reduction of theory X along a curve Σ associated to each element of the mapping class group of Σ.

The theories arising by dimensional reduction of theory X to 4-dimensions are called theories of

“class S” [Wit97]. They all have N = 2 supersymmetry, but like theory X itself, they generically

are not expected to come from quantization of a classical Lagrangian field theory. Also like

theory X itself, there generally isn’t a mathematical construction of most aspects of these theories.

There are however a few special points that do admit Lagrangian descriptions, and therefore can

be investigated using the methods of this thesis. N = 4 super Yang-Mills is one example, as

are – for instance – SU(2) quiver gauge theories (as discussed in the first section of Gaiotto’s

paper [Gai12]). Finally, there’s an SU(3) N = 2 gauge theory which was conjectured by Argyres

and Seiberg [AS07] to be S-dual to an SU(2) theory coupled to a theory with E6 flavour symmetry.

Gaiotto argues that the duality of Argyres and Seiberg is also an example of his generalized S-

duality.

As a starting point, it’s possible to perform the analysis of part 2 of this thesis, but for N = 2

super Yang-Mills theory with arbitrary matter multiplets. Such theories admit a twistor space

description (starting from holomorphic Chern-Simons theory on N = 2 twistor space with an

additional field: a holomorphic section of the associated bundle to the holomorphic G-bundle for
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some representation). It’s also a straightforward algebraic problem to classify the possible twists,

which in particular include a unique topological twist and a holomorphic-topological twist first

described by Kapustin [Kap06] which are both fixed by S-duality. By repeating the analysis

of chapter 10 for these theories, we can obtain a description of the phase spaces in these twisted

theories associated to the product of a Riemann surface with a circle, we can describe the geometric

quantization and the moduli spaces of vacua to obtain conjectural descriptions of the categories of

branes in these N = 2 theories.

Having done this, Gaiotto duality provides conjectural equivalences between these categories, gen-

eralizing the geometric Langlands correspondence. For instance, we should begin by investigating

SU(2) quiver gauge theories. Here Gaiotto’s duality acts as the mapping class group on a Te-

ichmüller space viewed as a moduli space of coupling constants, so we obtain a collection of dual

theories, for instance, one associated to each cusp in the moduli space. This will hopefully serve as

an access point in to the far more complicated family of examples associated to higher rank type

A gauge groups.
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621, 2008.

[BF08] Roman Bezrukavnikov and Michael Finkelberg. Equivariant Satake category and
Kostant–Whittaker reduction. Mosc. Math. J, 8(1):39–72, 2008.

[BMS07] Rutger Boels, Lionel Mason, and David Skinner. Supersymmetric gauge theories in
twistor space. Journal of High Energy Physics, 2007(02):014, 2007.

[BSS77] Lars Brink, John Schwarz, and Joel Scherk. Supersymmetric Yang-Mills theories. Nu-
clear Physics B, 121(1):77–92, 1977.

[BD04] Bogus law Broda and Grzegorz Duniec. Abelian duality in three dimensions. Physical
Review D, 70(10):107702, 2004.

[Bry93] Jean-Luc Brylinski. Loop Spaces, Characteristic Classes and Geometric Quantization,
volume 107 of Progress in Mathematics. Birkhäuser, 1993.
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APPENDIX A

Supersymmetry Algebras

We’ll begin by setting up some general language for describing supersymmetry algebras before

describing the particular cases we’re interested in (supersymmetry in 2, 4 and 10 dimensions).

The notion of twisting supersymmetry algebras and supersymmetric field theories makes sense in

any dimension and signature. The material in this appendix is standard. Proofs can be found for

instance in [Del99] or [Var04].

Let p and q be non-negative integers, and let n = p+ q. We’ll describe supersymmetry algebras in

pseudo-Riemannian signature (p, q). The main pieces of data that we’ll need to specify are a spin

representation and a spin-invariant vector-valued pairing on this representation.

Definition A.1. A (real or complex) representation of the Lie algebra so(p, q) is spinorial if it

extends to a module for the even (real or complex) Clifford algebra Cl+(p, q).

There is a complete classification of spinorial so(p, q) representations.

Proposition A.2. Over C, so(p, q) either has a unique non-trivial irreducible representation S of

dimension 2
n−1

2 if p+ q is odd, or has two distinct non-trivial irreducible representations S± each

of dimension 2
n
2
−1 if p+ q is even. In the latter case we write S for S+⊕S−. We call S the space

of Dirac spinors and S± the spaces of positive and negative helicity Weyl spinors.

Over R, the representation S is the complexification of a real representation SR when p − q ≡

0, 1 or 7 mod 8. The representations S± are the complexifications of real representations SR± when

p − q ≡ 0 mod 8. We call SR the space of Majorana spinors and SR± spaces of Majorana-Weyl
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spinors. When instead p− q ≡ 2 or 6 mod 8 the representation S+ ⊕ S∗+ 1 is the complexification

of a real representation, which we also denote by SR and refer to as the space of Majorana spinors.

We write VR for the n-dimensional vector representation Rp,q of so(p, q), and VC for its complexi-

fication. The second component necessary to define supersymmetry algebras is the following.

Definition A.3. A pairing on a spin representation Σ is a symmetric so(p, q)-equivariant linear

map

Γ: Σ⊗ Σ→ Vk

where k = R or C.

Again, we have a good control over the existence and uniqueness of such pairings. We can construct

them using the Clifford multiplication, and duality properties of the spinors.

Proposition A.4. Over C there exist unique pairings (up to rescaling)

Γ: S ⊗ S → VC if n ≡ 1, 3, 5, or 7 mod 8

Γ: S± ⊗ S± → VC if n ≡ 2 or 6 mod 8

Γ: S± ⊗ S∓ → VC if n ≡ 0 or 4 mod 8.

These pairings descend to give unique VR-valued pairings on the Majorana or Majorana-Weyl

spinors whenever they exist.

We can use this to describe pairings on more general spinorial representations. There are pairings

on the representation S ⊗W – where W is a finite-dimensional vector space – for each element of

gl(W ). If we also require our pairings to be non-degenerate then there is a unique pairing up to

so(p, q)-equivariant isomorphism.

Now, we can define the supersymmetry algebra associated to this data.

1A real form for S− ⊕ S∗− would also work; the two agree up to complex conjugation.
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Definition A.5. The (real) supertranslation algebra associated to a spinorial representation Σ of

so(p, q) is the super Lie algebra

T = VR ⊕Π(Σ)

where the only bracket is the pairing Γ: Σ ⊗ Σ → VR. The (real) super Poincaré algebra is the

super Lie algebra

P = (so(p, q) n VR)⊕Π(Σ)

where there are brackets given by Γ, by the internal bracket on the even piece and by the action of

so(p, q) on Σ. We define complex supertranslation and super Poincaré algebras analogously, with

VR replaced by VC, and with Σ a complex spinorial representation.

To complete the definition, we need one more piece of data, namely a subalgebra of the R-symmetry

algebra.

Definition A.6. The R-symmetry algebra associated to a supertranslation algebra is the algebra

of outer automorphisms acting trivially on the bosonic piece. Given a subalgebra gR of the R-

symmetry algebra, the (real) supersymmetry algebra is the super Lie algebra

A = (so(p, q) n VR)⊕ gR ⊕Π(Σ)

with brackets as before, plus the action of gR on Σ. The complexified supersymmetry algebra is

defined analogously.

When Σ = SN , we say there are N supersymmetries. When Σ = SN1
+ ⊕ SN2

− we say there are

(N1, N2) supersymmetries. If we impose the condition that the pairing Γ is non-degenerate then

we can only have N1 6= N2 when n ≡ 2 or 6 mod 8 in the complex case, or when n ≡ 2 or 6

mod 8 and p ≡ q mod 8 in the real case.
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Definition A.7. A supersymmetric field theory on Rp,q is a field theory on Rp,q equipped with an

action of the complexified supersymmetry algebra extending the natural action of the complexified

Poincaré algebra so(p, q) n VC.

Example A.8 (Dimension 4). The principal theories that we’re interested in this paper are super-

symmetric theories in dimension 4. In this and the subsequent examples we’ll be most interested

in the complexified supersymmetry algebra, so the choice of signature won’t be too important. For

specificity we’ll work in Euclidean signature (4, 0). Recall that we have an isomorphism of groups,

Spin(4) ∼= SU(2)+×SU(2)−. Let S+ and S− be the complex 2-dimensional defining representations

of the two copies of SU(2), respectively. Let VR be the real 4-dimensional vector representation of

Spin(4). If we define VC := VR⊗R C, then there is an isomorphism Γ: S+⊗S−
∼=−→ VC as complex

Spin(4)-representations.

Let W be a finite-dimensional complex vector space. There is a natural non-degenerate pairing on

the spinorial representation (S+⊗W )⊕ (S−⊗W ∗), given by the isomorphism Γ and the canonical

pairing W ⊗W ∗ → C. The super-translation algebra associated to W is the super Lie algebra

TW = VC ⊕Π (S+ ⊗W ⊕ S− ⊗W ∗) ,

with Lie bracket given by this pairing.

One can compute that the R-symmetry algebra for this representation and pairing is the algebra

gl(W ) acting on W and W ∗ by the fundamental and anti-fundamental representations respectively.

Given a subalgebra gR ⊆ gl(W ), there is an associated supersymmetry algebra

AW = (so(4;C)⊕ gR) n TW .

If dimW = k, we also denote this algebra by AN=k. We’ll be particularly interested in the case

where dimW = 4 and gR = sl(4). As we’ll see, this is the supersymmetry algebra that will act on

N = 4 supersymmetric gauge theories.
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Example A.9 (Dimension 2). Two-dimensional theories will arise for us as dimensional reductions

of 4d theories along a Riemann surface. Again, since we’re most interested in the complexified

supersymmetry algebra we’ll not be too concerned about the choice of signature, but it is worth

remarking that the case of Lorentzian signature is special due to the existence of Majorana-

Weyl spinors. We have an isomorphism Spin(2) ∼= U(1). Let S± be the complex 1-dimensional

representations of the circle of weight ±1. The vector representation of Spin(2) corresponds to

the weight two representation of U(1), so there are natural pairings Γ: S± ⊗ S± → VC (using a

canonical isomorphism between VC and its dual).

Let W+ and W− be finite-dimensional complex vector spaces, and choose inner products W± ⊗

W± → C. Combining this with the pairing above yields a pairing Γ on the spinorial representation

(S+ ⊗W+)⊕ (S− ⊗W−), and thus a super Poincaré algebra

P
(W+,W−)
2 = (so(2;C) n VC)⊕Π ((S+ ⊗W+)⊕ (S− ⊗W−)) .

The R-symmetry algebra associated to this super Poincaré algebra is gl(W+)⊕ gl(W−), and asso-

ciated to a subalgebra gR of this algebra we produce a supersymmetry algebra

A(W+,W−)
2 = (so(2;C) n VC)⊕ gR ⊕Π ((S+ ⊗W+)⊕ (S− ⊗W−)) .

If dimW+ = N1 and dimW− = N2, we say we have (N1, N2) supersymmetries, and write A(N1,N2)
2 .

Let’s describe dimensional reduction from 4 to 2 dimensions (for the complexified algebra, though

we could also investigate the real case in Riemannian or Lorentzian signature). That is, take

C2 ⊆ C4, and consider the subalgebra of the complex infinitesimal isometries so(4;C)nC4 mapping

this subspace to itself, which has form (so(2;C) n C2) ⊕ so(2;C). Let S+ and S− be the spaces

of 4d Weyl spinors. As modules for this subalgebra, the first so(2;C) acts with weights (±1,∓1)

on S± respectively, and the second so(2;C) acts with weight (±1,±1) on S±. Thus the N =

k super Poincaré algebra in dimension 4 naturally dimensionally reduces to the N = (2k, 2k)

supersymmetry algebra in dimension 2, with R-symmetry group so(2;C) ∼= gl(1;C).
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Example A.10 (Dimension 10). There is a supersymmetric gauge theory in dimension 10 which

is “universal” in the sense that a range of supersymmetric gauge theories that are studied in

lower dimensions arise from it by a combination of dimensional reduction and restriction of scalars

[ABD+13]. We’ll focus on the case of minimal supersymmetry, i.e. N = (1, 0), describe the

Majorana-Weyl spinor representations in signature (1, 9), then describe the complexification.

Abstractly, the classification A.2 tells us to expect a pair of mutually dual irreducible spinorial

representations of so(1, 9) over the real numbers, each of dimension 16. We can actually describe

these representations very concretely; the details are described by Deligne in [Del99, section 6].

It suffices to construct a non-trivial 32-dimensional module for the algebra Cl(V,Q), where V is

10-dimensional, and Q is a quadratic form of signature (1,9). Concretely, we’ll set V = O ⊕ H

with O 8-dimensional and H = 〈e, f〉 2-dimensional, and we set

Q(ω + ae+ bf) = ω · ω − ab

where ω · ω is the octonion norm-squared. Let SR
10 = (O2)⊕ (O2) be a 32-dimensional real vector

space. We must describe a Clifford multiplication ρ : V ⊗SR
10 → SR

10 making SR
10 into a module for

Cl(V,Q). This is concretely given by

ρ : O⊕H → End(SR
10)
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where

ρ(ω) =



 0 mω

mω 0

 0

0

 0 mω

mω 0




for ω ∈ O, mω(α) = ω · α

ρ(e) =



0 1

0 0

 0

0

0 1

0 0




and ρ(f) =



 0 0

−1 0

 0

0

 0 0

−1 0




.

One can check that this gives a well-defined Clifford multiplication, and thus defines a 32-dimensional

real spin representation which splits as a sum of two 16-dimensional representations of the even

part of the Clifford algebra: call them SR
10+, spanned by the first and third components of O4, and

SR
10− spanned by the second and forth. There is also the induced pairing Γ: SR

10± ⊗ SR
10± → V ,

which one checks is given on SR
10+ and SR

10− respectively by

Γ((α1, α2), (β1, β2)) = α1 · β1 + α2 · β2 − Tr(α1 · β1 + α2 · β2)f

and Γ((α1, α2), (β1, β2)) = α1 · β1 + α2 · β2 + Tr(α1 · β1 + α2 · β2)e

where Tr(α) = α + α is the octonionic reduced trace, and where the calculation is done using

the identity 〈Γ(s, t), v〉 = (ρ(v)s, t) for spinors s, t and vectors v. This now gives us a complete

description of the supersymmetry algebra in 10-dimensions: it is given by

(so(1, 9) nR1,9)⊕Π(SR
10+)

with brackets given by the internal bracket on so(1, 9), the action of so(1, 9) on the translations,

the action of so(1, 9) on the supersymmetries, and the pairing Γ: SR
10+ ⊗ SR

10+ → R1,9.
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Finally, we can complexify the supersymmetry algebra to obtain a superalgebra of form

(so(10;C) nC10)⊕Π(S10+).

The complexification S10+ = SR
10+ ⊗ C is a 16-complex dimensional Weyl spinor representation

of so(10;C). Clifford theory says that the complexification so(10;C) embeds in the (even part of

the) Clifford algebra Cl+10
∼= Mat16(C)⊕Mat16(C) as the elements of spinor norm one. The Weyl

spinors are the fundamental representation of the first matrix algebra factor.

More concretely, we write S10+ as O2⊕ iO2 where O is a 4-complex dimensional vector space. We

write C10 as O⊕ iO⊕ C〈e, f〉. The Clifford multiplication is then given by

ρ(ω) =



 0 mω

mω 0

 0

0

 0 mω

mω 0




, ρ(iω) =


0

 0 mω

mω 0


 0 mω

mω 0

 0


for ω ∈ O

ρ(e) =



0 1

0 0

 0

0

0 1

0 0




and ρ(f) =



 0 0

−1 0

 0

0

 0 0

−1 0




.

This complexified algebra dimensionally reduces to recover the N = 4 supersymmetry algebra

discussed above in four-dimensions. We choose an embedding C4 ↪→ C10 and consider the sub-

algebra of the supersymmetry algebra fixing this subspace. The bosonic piece has the form

so(4;C) n VC ⊕ sl(4;C), where the sl(4;C) fixes the subspace pointwise (and arises from com-

plexification of so(6) ∼= su(4)). We must check that the action of so(6;C) ⊕ sl(4;C) on the 16-

complex-dimensional space of spinors recovers the space S+ ⊗W ⊕ S− ⊗W ∗ that we expect. We

can do this by looking at the actions of the two summands separately, using that the action is still
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spinorial, and the fact that it arose as complexification of a representation for the (Lorentzian)

real form.

Firstly, sl(4;C) has two Weyl spinor representations, the fundamental W and the anti-fundamental

W ∗, and we must have equal numbers of each (since the complexification of the Majorana spin

representation is their sum). The modules S10+ has no so(6;C)-fixed points, so there are no trivial

factors and S10+⊗RC ∼= (W ⊕W ∗)⊗CC2. Secondly, so(4;C) has two Weyl spinor representations

S+ and S−. By the same argument we have equal numbers of each and there are no trivial

summands, so S10+ ⊗R C ∼= (S+ ⊕ S−)⊗C C4. Finally, to describe the relationship between these

two actions we observe that the actions commute and complexify a real Lie algebra action.
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APPENDIX B

Lie Algebras and Deformation Theory

For motivation and reference, we’ve included the fundamental definitions and results on sheaves

of Lie algebras and deformation theory. None of this material is original, and most of the results

in the smooth category context be found in [Cos11a], [GG14] and appendix A of [CG15]. The

derived deformation theoretic results we reference are due to Hinich [Hin01] and Getzler [Get09],

or in a more homotopical setting to Lurie [Lur11] and Hennion [Hen15].

As we work in the setting of∞-categories and the two operads Lie and L∞ are homotopy equivalent

we are free to use the languages of Lie and L∞-algebras interchangeably, mainly choosing our

terminology in order to be more compatible with the literature for the appropriate context.

Definition B.1. A curved L∞ algebra over a cdga R with respect to an ideal I is a locally free

graded R\ module L equipped with a degree 1 differential

d : ŜymR\(L
∨[−1])→ ŜymR\(L

∨[−1])

making ŜymR\(L
∨[−1]) into a dg-module over R, such that d vanishes on Sym0 modulo the ideal

I. We denote ŜymR\(L
∨[−1]) by C•(L) and call it the Chevalley-Eilenberg algebra of L.

By taking the Taylor coefficients of the differential d we obtain a sequence of degree 0 graded

anti-symmetric operations `n : (∧nL)[n− 2]→ L, dual to the composite

L∨[−1] ↪→ C•(L)
d→ C•(L) � Symn(L∨[−1])

which satisfy higher analogues of the Jacobi identities, recovering a more classical definition of a

(curved) L∞ algebra. One way of thinking about our definition is that Lie algebras are Koszul



225

dual to commutative algebras, so defining the Lie algebra structure on L is equivalent to defining

a commutative dga structure on its Koszul dual C•(L).

We’ll want to study versions of L∞ algebras varying over a topological space. This will be useful for

perturbative field theory, where an L∞ algebra describes the deformations of a particular solution

to the equations of motion on an open set U in spacetime, in order to describe the relationship

between these solutions on different open sets.

Definition B.2. A local L∞ algebra over a manifold M is a cochain complex of vector bundles L

over M such that the sheaf of sections is given the structure of a sheaf of L∞ algebras where the

operations `n are polydifferential operators.

If G is an algebraic supergroup, a G-action on a local L∞ algebra L is a C•(G)-module structure

on L(U) for each open set U ⊆ X making L into a sheaf of curved L∞ algebra over C•(G) relative

to the ideal C>0(G). Here C•(G) denotes the complex where Ci(G) = O(Gi), with the usual

differential using the group structure. One similarly defines a g-action for a super Lie algebra g to

be a local module structure on each open set for the Chevalley-Eilenberg complex C•(g).

The perturbative definition of a classical field theory used by Costello in [Cos11a] builds on

the following definition capturing local geometry of a given space. The idea is that in algebraic

geometry, one is able to investigate formal neighborhoods of a point by only considering local

Artinian algebras.

Definition B.3. A formal derived moduli problem is a functor F from the category Art≤0
dg of

differential graded Artinian algebras cohomologically in degrees ≤ 0 to the category sSet of simplicial

sets satisfying the following conditions:

• the space F (C) is contractible.

• If A → B and A′ → B are morphisms in Art≤0
dg which are surjections on H0, then the

induced map F (A×B A′)→ F (A)×F (B) F (A′) is a homotopy equivalence.
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Note that the second condition ensures the ability to glue SpecA and SpecA′ along SpecB when-

ever we have closed embeddings at the classical level.

For example, given a point p ∈ X = SpecR for R ∈ cdga≤0, or a maximal ideal m ⊂ R, the functor

Xp : Art≤0
dg → sSet defined by

(A,mA) 7→ ({φ : R→ A⊗ Ω•(∆n) | φ(m) = mA ⊗ Ω•(∆n)})n∈∆

is a formal moduli problem. Geometrically Xp(A) encodes the data of infinitesimal extension of p

via A.

The most important tool we are going to take advantage of in order to understand formal moduli

problems is the Maurer-Cartan functor.

Definition B.4. Let L be an L∞ algebra. The Maurer-Cartan functor MCL : Art≤0
dg → sSet is

defined to be the functor given by (R,m) 7→ MCL(R), where the simplicial set MCL(R) has as n-

simplices elements α ∈ L⊗m⊗Ω•(∆n) of cohomological degree 1, which satisfy the Maurer-Cartan

equation ∑
n≥0

1

n!
`n(α⊗n) = 0.

This is not manifestly a homotopy invariant notion, and thus not manifestly well-defined. How-

ever, there is an equivalent rephrasing of the Maurer-Cartan functor that is manifestly homotopy

invariant.

Proposition B.5. Homcdga∗(C
•(L), R) = MCL(R) for R ∈ Art≤0

dg .

A proof of this fact appears in section 2.3 of Lurie [Lur11]; as we’ve phrased it it’s implied by his

Theorem 2.3.1.

Theorem B.6 ( [Lur11, 2.0.2]). The Maurer-Cartan functor provides an equivalence of categories

MC: {L∞ algebras} → {formal derived moduli problems}
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with quasi-inverse given by taking the −1-shifted tangent complex equipped with a canonical L∞

structure.

We sometimes write BL for the formal moduli problem MCL. Then the theorem in particular says

the following

• There is an equivalence T0[−1]BL ∼= L.

• Every formal derived pointed moduli problem X can be realized as BLX for some L∞

algebra LX , in the sense that the formal derived moduli problem describing maps into X

is equivalent to the formal moduli problem MCLX .

The proposition allows one to think of C•(L) as the structure sheaf of the formal moduli problem

BL. Note that C•(L) is in general not an object of the category cdga≤0, having stacky nature.

For our purpose, it is important to understand mapping stacks in terms of an L∞-algebra.

Lemma B.7. Let L be an L∞-algebra and A be an object of Art≤0
dg . Then L⊗A is the L∞-algebra

governing the deformations of the constant map SpecA→ BL.

We only sketch the proof for the 0-simplex to give an idea.

Proof sketch. If B is another Artinian algebra, then α ∈ MCL⊗A(B)[0] is an element

α ∈ (L⊗A⊗mB)1 satisfying Maurer-Cartan equation. Since the maximal ideal of A⊗B is mA⊗

B +A⊗mB, from MCL⊗A(B) ⊂MCL(A⊗B), an element α ∈MCL⊗A(B) can be characterized

as an element of MCL(A ⊗ B) which vanishes modulo mA. Hence, geometrically, MCL⊗A(B)

represents families of maps SpecA → BL parametrized by SpecB which are constant at the

unique geometric point SpecC ∈ SpecA. �

In other words, for the mapping stack Map(X,Y ), its formal derived moduli problem at f is

controlled by the L∞-algebra Γ(X, f∗LY ).

The main construction we are using in the paper is in an algebraic setting.
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Theorem B.8. [Hen15, 4.2.0.1] If X is a derived Artin stack locally of finite presentation, then

its shifted tangent complex TX [−1] is a Lie algebra object of QCoh(X ).
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