The Two-Body Problem in General Relativity

Thibault Damour
Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette, France)

The Problem of Motion in General Relativity

Solve

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

e.g. $\quad T^{\mu \nu}=(e+p) u^{\mu} u^{\nu}+p g^{\mu \nu}$
and extract physical results, e.g.

- Lunar laser ranging

- timing of binary pulsars
- gravitational waves emitted by binary black holes

Various issues

- post-Minkowskian (Einstein 1916) $\quad g_{\mu \nu}(x)=\eta_{\mu \nu}+h_{\mu \nu}(x), h_{\mu \nu} \ll 1$

Approximation
Methods

- post-Newtonian (Droste 1916) $h_{00} \sim h_{i j} \sim \frac{v^{2}}{c^{2}}, h_{0 i} \sim \frac{v^{3}}{c^{3}}, \partial_{0} h \sim \frac{v}{c} \partial_{i} h$
- Matching of asymptotic expansions body zone / near zone / wave zone
- Numerical Relativity

One-chart versus Multi-chart approaches
Coupling between Einstein field equations and equations of motion (Bianchi $\Rightarrow \nabla^{\nu} T_{\mu \nu}=0$)

Strongly self-gravitating bodies: neutron stars or black holes: $h_{\mu \nu}(x) \sim 1$
Skeletonization : $\mathrm{T}_{\mu \nu} \longrightarrow$ point-masses ? δ-functions in GR
Multipolar Expansion
Need to go to very high orders of approximation
Use a "cocktail": PM, PN, MPM, MAE, EFT, an. reg., dim. reg., ...

Motion of two point masses

$$
S=\int d^{D} x \frac{R(g)}{16 \pi G}-\sum_{A} \int m_{A} \sqrt{-g_{\mu \nu}\left(y_{A}\right) d y_{A}^{\mu} d y_{A}^{\nu}}
$$

Dimensional continuation : $D=4+\varepsilon, \varepsilon \in \mathbb{C}$

Dynamics : up to 3 loops, i.e. 3 PN
Jaranowski, Schäfer 98
Blanchet, Faye 01
Damour, Jaranowski Schäfer 01
Itoh, Futamase 03
Blanchet, Damour, Esposito-Farèse 04

Radiation : up to 3 PN

Blanchet, Iyer, Joguet, 02,
Blanchet, Damour, Esposito-Farèse, lyer 04
Blanchet, Faye, Iyer, Sinha 08

2-body Taylor-expanded 3PN Hamiltonian [JS98, DJS00,01]

1PN
$H_{2 \mathrm{PN}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}\right)=\frac{1}{16} \frac{\left(\mathbf{p}_{1}^{2}\right)^{3}}{m_{1}^{5}}+\frac{1}{8} \frac{G m_{1} m_{2}}{r_{12}}\left[5 \frac{\left(\mathbf{p}_{1}^{2}\right)^{2}}{m_{1}^{4}}-\frac{11}{2} \frac{\mathbf{p}_{1}^{2} \mathbf{p}_{2}^{2}}{m_{1}^{2} m_{2}^{2}}-\frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}+5 \frac{\mathbf{p}_{1}^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}\right.$ $\left.-6 \frac{\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)}{m_{1}^{2} m_{2}^{2}}-\frac{3}{2} \frac{\left(\mathbf{n}_{12} \cdot \mathbf{p}_{1}\right)^{2}\left(\mathbf{n}_{12} \cdot \mathbf{p}_{2}\right)^{2}}{m_{1}^{2} m_{2}^{2}}\right] \quad 2 \mathrm{~N}$

-10}\frac{(\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2}+\mp@subsup{\mathbf{p}}{2}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}\mp@subsup{)}{}{2})\mp@subsup{\mathbf{p}}{1}{2}}{\mp@subsup{m}{1}{4}\mp@subsup{m}{2}{2}}+24\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{\mp@subsup{m}{1}{4}\mp@subsup{m}{2}{2}}+2\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{2}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{3}
-10}\frac{(\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2}+\mp@subsup{\mathbf{p}}{2}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}\mp@subsup{)}{}{2})\mp@subsup{\mathbf{p}}{1}{2}}{\mp@subsup{m}{1}{4}\mp@subsup{m}{2}{2}}+24\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{\mp@subsup{m}{1}{4}\mp@subsup{m}{2}{2}}+2\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{2}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{3}
+}\frac{(7\mp@subsup{\mathbf{p}}{1}{2}\mp@subsup{\mathbf{p}}{2}{2}-10(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{3}}+6\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}\mp@subsup{)}{}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{4}\mp@subsup{m}{2}{2}
+}\frac{(7\mp@subsup{\mathbf{p}}{1}{2}\mp@subsup{\mathbf{p}}{2}{2}-10(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{3}}+6\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}\mp@subsup{)}{}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{4}\mp@subsup{m}{2}{2}
+15}\frac{(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}\mp@subsup{)}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{3}}-18\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}}{1)(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{3}
+15}\frac{(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}\mp@subsup{)}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{3}}-18\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}}{1)(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{3}
+\frac{\mp@subsup{G}{}{2}\mp@subsup{m}{1}{}\mp@subsup{m}{2}{}}{\mp@subsup{r}{12}{2}}[\frac{1}{16}(\mp@subsup{m}{1}{}-27\mp@subsup{m}{2}{})\frac{(\mp@subsup{\mathbf{p}}{1}{2}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{4}}-\frac{115}{16}\mp@subsup{m}{1}{}\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{}}+\frac{1}{48}\mp@subsup{m}{2}{}\frac{25(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2}+371\mp@subsup{\mathbf{p}}{1}{2}\mp@subsup{\mathbf{p}}{2}{2}}{\mp@subsup{m}{1}{2}\mp@subsup{m}{2}{2}}
+\frac{\mp@subsup{G}{}{2}\mp@subsup{m}{1}{}\mp@subsup{m}{2}{}}{\mp@subsup{r}{12}{2}}[\frac{1}{16}(\mp@subsup{m}{1}{}-27\mp@subsup{m}{2}{})\frac{(\mp@subsup{\mathbf{p}}{1}{2}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{4}}-\frac{115}{16}\mp@subsup{m}{1}{}\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{}}+\frac{1}{48}\mp@subsup{m}{2}{}\frac{25(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{}\mp@subsup{)}{}{2}+371\mp@subsup{\mathbf{p}}{1}{2}\mp@subsup{\mathbf{p}}{2}{2}}{\mp@subsup{m}{1}{2}\mp@subsup{m}{2}{2}}
+\frac{17}{16}\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{3}}-\frac{1}{8}\mp@subsup{m}{1}{}}\frac{(15\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{})+11(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}))(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{})}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{}}+\frac{5}{12}\frac{(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}\mp@subsup{)}{}{4}}{\mp@subsup{m}{1}{3}
+\frac{17}{16}\frac{\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{3}}-\frac{1}{8}\mp@subsup{m}{1}{}}\frac{(15\mp@subsup{\mathbf{p}}{1}{2}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{})+11(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}))(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{})}{\mp@subsup{m}{1}{3}\mp@subsup{m}{2}{}}+\frac{5}{12}\frac{(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{}\mp@subsup{)}{}{4}}{\mp@subsup{m}{1}{3}
-\frac{3}{2}\mp@subsup{m}{1}{}}\frac{(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}\mp@subsup{)}{1}{}\mp@subsup{)}{}{3}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}}{2)
-\frac{3}{2}\mp@subsup{m}{1}{}}\frac{(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}\mp@subsup{)}{1}{}\mp@subsup{)}{}{3}(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}}{2)
-
-
+\frac{1}{16}}(77(\mp@subsup{m}{1}{2}+\mp@subsup{m}{2}{2})+(143-\frac{1}{4}\mp@subsup{\pi}{}{2})\mp@subsup{m}{1}{}\mp@subsup{m}{2}{})\frac{(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{\mp@subsup{m}{1}{}\mp@subsup{m}{2}{}}+\frac{1}{16}(61\mp@subsup{m}{1}{2}-(43+\frac{3}{4}\mp@subsup{\pi}{}{2})\mp@subsup{m}{1}{}\mp@subsup{m}{2}{})\frac{(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}1\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{2}
+\frac{1}{16}}(77(\mp@subsup{m}{1}{2}+\mp@subsup{m}{2}{2})+(143-\frac{1}{4}\mp@subsup{\pi}{}{2})\mp@subsup{m}{1}{}\mp@subsup{m}{2}{})\frac{(\mp@subsup{\mathbf{p}}{1}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{\mp@subsup{m}{1}{}\mp@subsup{m}{2}{}}+\frac{1}{16}(61\mp@subsup{m}{1}{2}-(43+\frac{3}{4}\mp@subsup{\pi}{}{2})\mp@subsup{m}{1}{}\mp@subsup{m}{2}{})\frac{(\mp@subsup{\mathbf{n}}{12}{}\cdot\mathbf{p}1\mp@subsup{)}{}{2}}{\mp@subsup{m}{1}{2}
+\frac{1}{16}}(21(\mp@subsup{m}{1}{2}+\mp@subsup{m}{2}{2})+(119+\frac{3}{4}\mp@subsup{\pi}{}{2})\mp@subsup{m}{1}{}\mp@subsup{m}{2}{})\frac{(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{m}
+\frac{1}{16}}(21(\mp@subsup{m}{1}{2}+\mp@subsup{m}{2}{2})+(119+\frac{3}{4}\mp@subsup{\pi}{}{2})\mp@subsup{m}{1}{}\mp@subsup{m}{2}{})\frac{(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{1}{})(\mp@subsup{\mathbf{n}}{12}{}\cdot\mp@subsup{\mathbf{p}}{2}{})}{m}
+\frac{1}{8}\frac{\mp@subsup{G}{}{4}\mp@subsup{m}{1}{}\mp@subsup{m}{2}{3}}{\mp@subsup{r}{12}{4}}[(\frac{227}{3}-\frac{21}{4}\mp@subsup{\pi}{}{2})\mp@subsup{m}{1}{}+\mp@subsup{m}{2}{}]+(1\longleftrightarrow2).
+\frac{1}{8}\frac{\mp@subsup{G}{}{4}\mp@subsup{m}{1}{}\mp@subsup{m}{2}{3}}{\mp@subsup{r}{12}{4}}[(\frac{227}{3}-\frac{21}{4}\mp@subsup{\pi}{}{2})\mp@subsup{m}{1}{}+\mp@subsup{m}{2}{}]+(1\longleftrightarrow2).

Taylor-expanded 3PN waveform

Blanchet,Iyer, Joguet 02, Blanchet, Damour, Esposito-Farese, Iyer 04, Kidder 07, Blanchet et al. 08

$$
\begin{aligned}
h^{22}= & -8 \sqrt{\frac{\pi}{5}} \frac{G \nu m}{c^{2} R} e^{-2 i \phi} x\left\{1-x\left(\frac{107}{42}-\frac{55}{42} \nu\right)+x^{3 / 2}\left[2 \pi+6 i \ln \left(\frac{x}{x_{0}}\right)\right]-x^{2}\left(\frac{2173}{1512}+\frac{1069}{216} \nu-\frac{2047}{1512} \nu^{2}\right)\right. \\
& -x^{5 / 2}\left[\left(\frac{107}{21}-\frac{34}{21} \nu\right) \pi+24 i \nu+\left(\frac{107 i}{7}-\frac{34 i}{7} \nu\right) \ln \left(\frac{x}{x_{0}}\right)\right] \\
& +x^{3}\left[\frac{27027409}{646800}-\frac{856}{105} \gamma_{E}+\frac{2}{3} \pi^{2}-\frac{1712}{105} \ln 2-\frac{428}{105} \ln x\right. \\
& \left.\left.-18\left[\ln \left(\frac{x}{x_{0}}\right)\right]^{2}-\left(\frac{278185}{33264}-\frac{41}{96} \pi^{2}\right) \nu-\frac{20261}{2772} \nu^{2}+\frac{114635}{99792} \nu^{3}+\frac{428 i}{105} \pi+12 i \pi \ln \left(\frac{x}{x_{0}}\right)\right]+O\left(\epsilon^{7 / 2}\right)\right\},
\end{aligned}
$$

$$
x=(M \Omega)^{2 / 3} \sim v^{2} / c^{2}
$$

$$
\begin{aligned}
M & =m_{1}+m_{2} \\
\nu & =m_{1} m_{2} /\left(m_{1}+m_{2}\right)^{2}
\end{aligned}
$$

Renewed importance of 2-body problem

- Gravitational wave (GW) signal emitted by binary black hole coalescences : a prime target for LIGO/Virgo/GEO
- GW signal emitted by binary neutron stars : target for advanced LIGO....

BUT

- Breakdown of analytical approach in such strong-field situations ? expansion parameter $\quad x \sim \frac{v^{2}}{c^{2}} \sim \mathcal{O}(1)$ during coalescence!?

$$
x \sim \frac{v^{2}}{c^{2}} \sim \mathcal{O}(1)
$$

- Give up analytical approach, and use only Numerical Relativity ?

Binary black hole coalescence

Image: NASA/GSFC

Templates for GWs from BBH coalescence

Numerical Relativity, the 2005 breakthrough:
Pretorius, Campanelli et al., Baker et al. ...

An improved analytical approach

EFFECTIVE ONE BODY (EOB) approach to the two-body problem

Buonanno,Damour 99
Buonanno,Damour 00
Damour, Jaranowski,Schäfer 00
Damour, 01
Damour, Nagar 07, Damour, lyer, Nagar 08
(2 PN Hamiltonian)
(Rad.Reac. full waveform)
(3 PN Hamiltonian)
(spin)
(factorized waveform)

Importance of an analytical formalism

>Theoretical: physical understanding of the coalescence process, especially in complicated situations (arbitrary spins)
>Practical: need many thousands of accurate GW templates for detection \& data analysis; need some "analytical" representation of waveform templates as $f\left(m_{1}, m_{2}, S_{1}, S_{2}\right)$
>Solution: synergy between analytical \& numerical relativity

Structure of EOB formalism

Historical roots of EOB

$-H_{\text {EOB }}$: QED positronium states [Brezin, Itzykson, Zinn-Justin 1970] "Quantum" Hamiltonian $\mathrm{H}\left(\mathrm{I}_{\mathrm{a}}\right)$ [Damour-Schäfer 1988]
-Padé resummation [Padé1892]
-h(t) : [Davis, Ruffini, Tiomno 1972] CLAP [Price-Pullin 1994]

Factorized waveform [DN07]

Some key references

PN

Wagoner \& Will 76
Damour \& Deruelle 81,82;
Blanchet \& Damour 86
Damour \& Schafer 88
Blanchet \& Damour 89;
Blanchet, Damour lyer, Will, Wiseman 95
Blanchet 95
Jaranowski \& Schafer 98
Damour, Jaranowski, Schafer 01
Blanchet, Damour, Esposito-Farese \& Iyer 05
Kidder 07
Blanchet, Faye, Iyer \& Sinha, 08

NR

Brandt \& Brugmann 97
Baker, Brugmann, Campanelli, Lousto
\& Takahashi 01
Baker, Campanelli, Lousto \& Takahashi 02
Pretorius 05
Baker et al. 05
Campanelli et al. 05
Gonzalez et al. 06
Koppitz et al. 07
Pollney et al. 07
Boyle et al. 07
Scheel et al. 08

Buonanno \& Damour 99, 00
Damour 01
Damour Jaranowski \& Schafer 00
Buonanno et al. 06-09
Damour \& Nagar 07-09
Damour, lyer \& Nagar 08

Real dynamics versus Effective dynamics

Real dynamics

Effective dynamics

2 loops

3 loops

$$
S=-\int \mu d s+\ldots
$$

$H=H_{0}+\left(G H_{1}+\frac{G^{2}}{c^{2}} H_{2}+\frac{G^{3}}{c^{4}} H_{3}+\frac{G^{4}}{c^{6}} H_{4}\right)\left(1+\frac{1}{c^{2}}+\ldots\right)$

Effective metric

$$
d s_{\mathrm{eff}}^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

Two-body/EOB "correspondence": think quantum-mechanically (Wheeler)

Real 2-body system ($\mathrm{m}_{1}, \mathrm{~m}_{2}$) (in the c.o.m. frame)

an effective particle of
mass μ in some effective metric $g_{\mu \nu}{ }^{\text {eff }}(M)$

Figure 1: Sketch of the correspondence between the quantized energy levels of the real and effective conservative dynamics. n denotes the 'principal quantum

Sommerfeld "Old Quantum Mechanics":

$$
\begin{aligned}
& J=\ell \hbar=\frac{1}{2 \pi} \oint p_{\varphi} d \varphi \\
& N=n \hbar=I_{r}+J \\
& I_{r}=\frac{1}{2 \pi} \oint p_{r} d r
\end{aligned}
$$

The 3PN EOB Hamiltonian

Real 2-body system ($\boldsymbol{m}_{1}, \boldsymbol{m}_{2}$) (in the c.o.m. frame)

an effective particle of mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ in some effective metric $g_{\mu \nu}{ }^{\text {eff }}(M)$

$$
s=E_{\text {real }}^{2}
$$

$$
H_{\mathrm{EOB}}=M \sqrt{1+2 \nu\left(\hat{H}_{\mathrm{eff}}-1\right)}
$$

$$
\begin{aligned}
& M=m_{1}+m_{2} \\
& \nu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)^{2}
\end{aligned}
$$

Simple effective Hamiltonian

$$
p_{r_{*}}=\left(\frac{A}{B}\right)^{1 / 2} p_{r}
$$

Explicit form of the effective metric

The effective metric $g_{\mu \nu}{ }^{\text {eff }}(M)$ at 3PN

$$
d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

where the coefficients are a v-dependent "deformation" of the Schwarzschild ones:

$$
\begin{aligned}
& A_{3 \mathrm{PN}}(R)=1-2 u+2 v u^{3}+a_{4} v u^{4} \quad a_{4}=\frac{94}{3}-\frac{41}{32} \pi^{2} \simeq 18.6879027 \\
& (A(R) B(R))_{3 \mathrm{PN}}=1-6 v u^{2}+2(3 v-26) v u^{3} \quad u=1 / r
\end{aligned}
$$

$$
A(u ; a 5, a 6, v)=P_{5}^{1}\left[A_{3 \mathrm{PN}}(u)+v a_{5} u^{5}+v a_{6} u^{6}\right]
$$

-Compact representation of PN dynamics
-Bad behaviour at 3PN. Use Padé resummation of $A(r)$ to have an effective horizon.
-Impose [by continuity with the $v=0$ case] that $A(r)$ has a simple zero [at $r \approx 2$].
-The a_{5} and a_{6} constants parametrize (yet) uncalculated 4PN corrections and 5PN corrections

2-body Taylor-expanded 3PN Hamiltonian [JS98, DJS00,01]

Hamilton's equation + radiation reaction

$$
\begin{aligned}
\frac{d r}{d t} & =\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{r_{*}}} \\
\frac{d p_{r_{*}}}{d t} & =-\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial r} \\
\Omega & \equiv \frac{d \varphi}{d t}=\frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{\varphi}} \\
\frac{d p_{\varphi}}{d t} & =\hat{\mathcal{F}}_{\varphi}
\end{aligned}
$$

The system must lose mechanical angular momentum
Use PN-expanded result for GW angular momentum flux as a starting point. Needs resummation to have a better behavior during late-inspiral and plunge.

PN calculations are done in the circular approximation

$$
\hat{\mathcal{F}}_{\varphi}^{\text {Taylor }}=-\frac{32}{5} \nu \Omega^{5} r_{\omega}^{4} \hat{F}^{\text {Taylor }}\left(v_{\varphi}\right)
$$

Parameter-dependent EOB 1.* [DIS 1998, DN07]

Parameter -free:
EOB 2.0 [DIN 2008, DN09]

Taylor-expanded 3PN waveform

Blanchet,Iyer, Joguet 02, Blanchet, Damour, Esposito-Farese, Iyer 04, Kidder 07, Blanchet et al. 08

$$
\begin{aligned}
h^{22}= & -8 \sqrt{\frac{\pi}{5}} \frac{G \nu m}{c^{2} R} e^{-2 i \phi} x\left\{1-x\left(\frac{107}{42}-\frac{55}{42} \nu\right)+x^{3 / 2}\left[2 \pi+6 i \ln \left(\frac{x}{x_{0}}\right)\right]-x^{2}\left(\frac{2173}{1512}+\frac{1069}{216} \nu-\frac{2047}{1512} \nu^{2}\right)\right. \\
& -x^{5 / 2}\left[\left(\frac{107}{21}-\frac{34}{21} \nu\right) \pi+24 i \nu+\left(\frac{107 i}{7}-\frac{34 i}{7} \nu\right) \ln \left(\frac{x}{x_{0}}\right)\right] \\
& +x^{3}\left[\frac{27027409}{646800}-\frac{856}{105} \gamma_{E}+\frac{2}{3} \pi^{2}-\frac{1712}{105} \ln 2-\frac{428}{105} \ln x\right. \\
& \left.\left.-18\left[\ln \left(\frac{x}{x_{0}}\right)\right]^{2}-\left(\frac{278185}{33264}-\frac{41}{96} \pi^{2}\right) \nu-\frac{20261}{2772} \nu^{2}+\frac{114635}{99792} \nu^{3}+\frac{428 i}{105} \pi+12 i \pi \ln \left(\frac{x}{x_{0}}\right)\right]+O\left(\epsilon^{7 / 2}\right)\right\},
\end{aligned}
$$

$$
x=(M \Omega)^{2 / 3} \sim v^{2} / c^{2}
$$

$$
\begin{aligned}
M & =m_{1}+m_{2} \\
\nu & =m_{1} m_{2} /\left(m_{1}+m_{2}\right)^{2}
\end{aligned}
$$

EOB 2.0: new resummation procedures (DN07, DIN 2008)

-Resummation of the waveform multipole by multipole
-Factorized waveform for any ($1, \mathrm{~m}$) at the highest available PN order (start from PN results of Blanchet et al.)

Radiation reaction: parameter-free resummation

$$
\mathcal{F}_{\varphi} \equiv-\frac{1}{8 \pi \Omega} \sum_{\ell=2}^{\ell_{\max }} \sum_{m=1}^{\ell}(m \Omega)^{2}\left|R h_{\ell m}^{(\epsilon)}\right|^{2}
$$

$$
\begin{aligned}
& h_{\ell m}=h_{\ell m}^{(N)} \hat{h}_{\ell m}^{(\epsilon)} f_{\ell m}^{\mathrm{NQC}} \\
& \hat{h}_{\ell m}^{(\epsilon)}=\hat{S}_{\mathrm{eff}}^{(\epsilon)} T_{\ell m} e^{\mathrm{i} \delta_{\ell m}} \rho_{\ell m}^{\ell}
\end{aligned}
$$

$$
\begin{aligned}
\rho_{22}(x ; \nu)=1 & +\left(\frac{55 \nu}{84}-\frac{43}{42}\right) x+\left(\frac{19583 \nu^{2}}{42336}-\frac{33025 \nu}{21168}-\frac{20555}{10584}\right) x^{2} \\
& +\left(\frac{10620745 \nu^{3}}{39118464}-\frac{6292061 \nu^{2}}{3259872}+\frac{41 \pi^{2} \nu}{192}-\frac{48993925 \nu}{9779616}-\frac{428}{105} \operatorname{eulerlog}_{2}(x)+\frac{1556919113}{122245200}\right) x^{3} \\
& +\left(\frac{9202}{2205} \text { eulerlog}_{2}(x)-\frac{387216563023}{160190110080}\right) x^{4}+\left(\frac{439877}{55566} \text { eulerlog} 2(x)-\frac{16094530514677}{533967033600}\right) x^{5}+\mathcal{O}\left(x^{6}\right)
\end{aligned}
$$

- Different possible representations of the residual amplitude correction [Padé]
- The "adiabatic" EOB parameters (a_{5}, a_{6}) propagate in radiation reaction via the effective source.

Test-mass limit ($v=0$): circular orbits

EOB 2.0: Next-to-Quasi-Circular correction: EOB U NR

Next-to quasi-circular correction to the $I=m=2$ amplitude

$$
f_{22}^{\mathrm{NQC}}\left(a_{1}, a_{2}\right)=1+a_{1} p_{r_{*}}^{2} /(r \Omega)^{2}+a_{2} \ddot{r} / r \Omega^{2}
$$

$a_{1} \& a_{2}$ are determined by requiring:
>The maximum of the (Zerilli-normalized) EOB metric waveform is equal to the maximum of the NR waveform
$>$ That this maximum occurs at the EOB "light-ring" [i.e., maximum of EOB orbital frequency].
$>$ Using two NR data: maximum $\varphi(\nu) \simeq 0.3215 \nu(1-0.131(1-4 \nu))$
$>$ NQC correction is added consistently in RR. Iteration until $a_{1} \& a_{2}$ stabilize

Remaining EOB 2.0 flexibility:

$$
A\left(u ; a_{5}, a_{6}, \nu\right) \equiv P_{5}^{1}\left[A^{3 \mathrm{PN}}(u)+\nu a_{5} u^{5}+\nu a_{6} u^{6}\right]
$$

Use Caltech-Cornell [inspiral-plunge] data to constrain $\left(a_{5}, a_{6}\right)$
A wide region of correlated values $\left(a_{5}, a_{6}\right)$ exists where the phase difference can be reduced at the level of the numerical error (<0.02 radians) during the inspiral

EOB metric gravitational waveform: merger and ringdown

EOB approximate representation of the merger (DRT1972 inspired) :
"sudden change of description around the "EOB light-ring" $t=t_{m}$ (maximum of orbital frequency)
""match" the insplunge waveform to a superposition of QNMs of the final Kerr black hole
-matching on a 5-teeth comb (found efficient in the test-mass limit, DNO7a)
"comb of width around 7M centered on the "EOB light-ring"
-use 5 positive frequency QNMs (found to be near-optimal in the test-mass limit)
-Final BH mass and angular momentum are computed from a fit to NR ringdown (5 eqs for 5 unknowns)

$$
\Psi_{22}^{\text {ringdown }}(t)=\sum_{N} C_{N}^{+} e^{-\sigma_{N}^{+} t}
$$

Total EOB waveform covering inspiral-merger and ringdown

$$
h_{22}^{\mathrm{EOB}}(t)=\theta\left(t_{m}-t\right) h_{22}^{\text {insplunge }}(t)+\theta\left(t-t_{m}\right) h_{22}^{\text {ringdown }}(t)
$$

Binary BH coalescence: Numerical Relativity waveform

$1: 1$ (no spin) Caltech-Cornell simulation. Inspiral: $\Delta \phi<0.02$ rad; Ringdown: $\Delta \phi \sim 0.05 \mathrm{rad}$
Boyle et al 07, Scheel et al 09

Early inspiral
Late inspiral \& Merger
$>$ Late inspiral and merger is non perturbative
>Only describable by NR?

Comparison Effective-One-Body (EOB) vs NR waveforms

"New" EOB formalism: EOB 2.0 ${ }_{\text {NR }}$
$>$ Two unknown EOB parameters: 4PN and 5PN effective corrections in 2-body Hamiltonian, ($\mathrm{a}_{5}, \mathrm{a}_{6}$)
$>$ NR calibration of the maximum GW amplitude
$>$ Need to "tune" only one parameter
$>$ Banana-like "best region" in the
$\left(\mathrm{a}_{5}, \mathrm{a}_{6}\right)$ plane extending from
$(0,-20)$ to $(-36,520)$ (where $\Delta \phi \leq 0.02)$

Damour \& Nagar, Phys. Rev. D 79, 081503(R), (2009)
Damour, Iyer \& Nagar, Phys. Rev. D 79, 064004 (2009) 28

EOB 2.0 \& NR comparison: 1:1 \& 2:1 mass ratios

D, N, Hannam, Husa, Brügmann 08

>EOB formalism: EOB 1.5 U NR
$h_{\text {Im }}$ [RWZ] NR 1:1. EOB resummed waveform (à la DIN) $a_{\text {pole }}(v=1 / 4)=25.375$
v_{0}
0.85 \quad reference values $\Delta t^{22}{ }_{\text {match }}=3.0 \mathrm{M}$
$a_{1}=-2.23$
$a_{2}=31.93$
$a_{3}^{2}=3.66$
$a_{4}^{3}=-10.85$
$-0.02 \leq \Delta \phi \leq+0.02 \quad-0.02 \leq D A / A \leq+0.02[I=m=2]$
$>$ Here, 1:1 mass ratio (with higher multipoles)
$>$ Plus 2:1 \& 3:1 [inspiral only] mass ratios

(Fractional) curvature amplitude difference EOB-NR

-Nonresummed: fractional differences start at the 0.5% level and build up to more than 60\%! (just before merger)
-New resummed EOB amplitude+NQC corrections: fractional differences start at the 0.04% level and build up to only 2% (just before merger)
-Resum+NQC: factor ~ 30 improvement!

Shows the effectiveness of resummation techniques, even during (early) inspiral.

Tidal effects and EOB formalism

- tidal effects are important in late inspiral of binary neutron stars

Flanagan, Hinderer 08, Hinderer et al 09, Damour, Nagar 09, Binnington, Poisson 09
\rightarrow a possible handle on the nuclear equation of state

- tidal extension of EOB formalism : non minimal worldline couplings

$$
\Delta S_{\text {nonminimal }}=\sum_{A} \frac{1}{4} \mu_{2}^{A} \int d s_{A}\left(u^{\mu} u^{\nu} R_{\mu \alpha \nu \beta}\right)^{2}+\ldots
$$

Damour, Esposito-Farèse 96, Goldberger, Rothstein 06, Damour, Nagar 09
\longrightarrow modification of EOB effective metric $+\ldots$:

$$
\begin{aligned}
A(r) & =A^{0}(r)+A^{\text {tidal }}(r) \\
A^{\text {tidal }}(r) & =-\kappa_{2} u^{6}\left(1+\bar{\alpha}_{1} u+\bar{\alpha}_{2} u^{2}+\ldots\right)+\ldots
\end{aligned}
$$

- need accurate NR simulation to "calibrate" the higher-order PN contributions that are quite important during late inspiral

Conclusions (1)

- Analytical Relativity : though we are far from having mathematically rigorous results, there exist perturbative calculations that have obtained unambiguous results at a high order of approximation (3 PN ~ 3 loops). They are based on a "cocktail" of approximation methods : post-Minkowskian, post-Newtonian, multipolar expansions, matching of asymptotic expansions, use of effective actions, analytic regularization, dimensional regularization,...
- Numerical relativity : Recent breakthroughs (based on a "cocktail" of ingredients : new formulations, constraint damping, punctures, ...) allow one to have an accurate knowledge of nonperturbative aspects of the two-body problem.
- There exists a complementarity between Numerical Relativity and Analytical Relativity, especially when using the particular resummation of perturbative results defined by the Effective One Body formalism. The NR- tuned EOB formalism is likely to be essential for computing the many thousands of accurate GW templates needed for LIGO/Virgo/GEO.

Conclusions (2)

- There is a synergy between AR and NR, and many opportunities for useful interactions : arbitrary mass ratios, spins, extreme mass ratio limit, tidal interactions,...
- The two-body problem in General Relativity is more lively than ever. This illustrates Poincaré's sentence :
"ll n'y a pas de problèmes résolus, il y a seulement des problèmes plus ou moins résolus".

Though Jürgen would have reminded us of the constant need for mathematical precision, I think that he would have appreciated the nice synergy between analytical and numerical relativity.

