Equivalence Principle Violations and Couplings of a Light Dilaton

Thibault Damour Institut des Hautes Études Scientifiques

Second Microscope Colloquium, ONERA, Palaiseau 29-30 January 2013

(Einstein) Equivalence "Principle" (EP)

Not a basic principle of physics

• A heuristic generalization of an experimental fact: "hypothesis of equivalence" (Einstein) \longrightarrow very successful in building General Relativity (GR)

Einstein's GR:

$\eta_{\mu\nu} \longrightarrow g_{\mu\nu}(x)$

absolute, rigid spacetime

elastic spacetime, dynamically influenced by matter

BUT all the coupling constants of local (special relativistic) physics remain as absolute and rigid as in Special Relativity (SR):

 $g_a, Y, \lambda_{\text{BEH}}, \mu_{\text{BEH}} \rightarrow \text{ non dynamical } g_a, Y, \lambda_{\text{BEH}}, \mu_{\text{BEH}}$

What determines the coupling constants?

• Very unsatisfactory to put them by hand: this is against the "principle of reason" nihil est sine ratione (Leibniz)

• The history of physics suggests that there are no absolute structures in physics

Kaluza-Klein's idea:

$$g_1$$
 or $\alpha_{\rm em} \simeq \frac{3}{8} \frac{g_1^2}{4\pi\hbar c} \simeq \frac{1}{137} \longrightarrow g_{55}(x)$
higher-dimensional
elastic spacetime

Dynamical symmetry breaking: the vacuum state minimizes the energy $V(\phi)$ which dynamically determines

$$\langle \varphi
angle \sim rac{\mu}{\sqrt{\lambda}} \longrightarrow m_{e} \sim Y_{e} \langle \varphi
angle \sim Y_{e} \, rac{\mu}{\sqrt{\lambda}}$$

Varying Coupling Constants and EP Violations

Then if any of the coupling constants of local physics (e.g., α_{em} , m_e/m_p , m_q/m_p , ...) is *x*-dependent

 \implies violation of equivalence principle (Dicke 1962)

Notably violation of universality of free fall

$$S_{\mathrm{mi}} = -\int m_i[\alpha(x),\ldots] \sqrt{-g_{\mu\nu}(x) \, dx^{\mu} \, dx^{\nu}}$$

Composition-dependent acceleration

$$\vec{a}_i = \vec{g} - \vec{\nabla} \ln m_i[\alpha(x), \ldots] = \vec{g} - \frac{\partial \ln m_i}{\partial \alpha} \vec{\nabla} \alpha - \ldots$$

General dilaton-like model of EP violations

Assume general dependence of coupling "constants" on some "dilaton" field φ : $\alpha_{EM}(\varphi), (m_q/\Lambda_{QCD})(\varphi), (m_e/\Lambda_{QCD})(\varphi), \ldots$ Then the dependence of m_A upon fundamental coupling constants:

$$m_{A} = \Lambda_{QCD} \, \hat{m}_{A} \left(\alpha_{EM}, \frac{m_{u}}{\Lambda_{QCD}}, \frac{m_{d}}{\Lambda_{QCD}}, \frac{m_{e}}{\Lambda_{QCD}} \right)$$

ightarrow a ϕ dependence of m_A and a corresponding dilaton coupling to m_A

$$\alpha_A = \frac{\partial \ln m_A(\varphi)}{\partial \varphi}$$

Composition-dependent modification of Newtonian interaction

$$V(r) = -G \frac{m_A m_B}{r} \left(1 + \alpha_A \alpha_B e^{-m_{\varphi} r}\right)$$

In the following: inverse range of $\varphi:m_{\phi}=$ 0. ightarrow Weak EP violation

$$\eta_{AB} = \left(\frac{\Delta a}{a}\right)_{AB} \simeq \left(\alpha_A - \alpha_B\right) \alpha_E$$

General Dilaton Low-energy Couplings (Damour-Donoghue10)

Organizing principle: keep track of all the possible φ couplings entering the effective action describing physics at the scale of nucleons. At this scale: heavy quarks (*c*, *b*, *t*; and, arguably, *s*) are integrated out.

$$\mathcal{L}_{\rm eff} = -\frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu} + \sum_{i=e,u,d} \left[i \bar{\psi}_i D(A, g_3 A^A) \psi_i - m_i \bar{\psi}_i \psi_i \right]$$

Five terms in $\mathcal{L}_{eff} \rightarrow five$ possible (dimensionless) φ couplings: $d_e, d_g, d_{m_e}, d_{m_u}, d_{m_d}$

$$\mathcal{L}_{int\varphi} = \varphi \left[+ \frac{d_e}{4e^2} F_{\mu\nu} F^{\mu\nu} - \frac{d_g \beta_3}{2g_3} F^A_{\mu\nu} F^{A\mu\nu} - \sum_{i=e,u,d} (d_{m_i} + \gamma_{m_i} d_g) m_i \bar{\psi}_i \psi_i \right] \,.$$

Relation between dilaton couplings *d_a* and the "constants of Nature"

The five possible dilaton couplings $d_a = \{d_e, d_g, d_{m_e}, d_{m_u}, d_{m_d}\}$ are equivalent to:

fine-structure constant
$$\alpha = \frac{e^2}{4\pi} \simeq \frac{1}{137} \rightarrow \alpha(\phi) = (1 + d_e \phi) \alpha$$

QCD energy scale
$$\Lambda_3 \sim 100 \text{ MeV} \rightarrow \Lambda_3(\varphi) = (1 + d_g \varphi) \Lambda_3$$

electron mass $m_e \rightarrow m_e(\varphi) = (1 + d_{m_e} \varphi) m_e$

light-quark masses at QCD scale $m_i(\Lambda_3) \rightarrow [m_i(\Lambda_3)](\varphi) = (1 + d_{m_i} \varphi) m_i(\Lambda_3), i = u, d$

As the Planck scale $1/\kappa = 1/\sqrt{4\pi G}$ does not directly enter physics at the QCD scale (besides its possible impact on Λ_3 via $\Lambda_{cut-off} \propto 1/\kappa$?) :

Mass of an atom:

$$m_{A} = \Lambda_{3} M_{A} \left(rac{m_{u}}{\Lambda_{3}}, rac{m_{d}}{\Lambda_{3}}, rac{m_{e}}{\Lambda_{3}}, lpha
ight)$$

where M_A is a dimensionless function of four dimensionless quantities:

$$k_a = (k_u, k_d, k_e, k_\alpha) \equiv \left(\frac{m_u}{\Lambda_3}, \frac{m_d}{\Lambda_3}, \frac{m_e}{\Lambda_3}, \alpha\right)$$

Composition-dependence of ϕ coupling to atom

$$\alpha_{A} = \frac{\partial \ln[\kappa m_{A}(\phi)]}{\partial \phi} = \sum_{a} \frac{\partial \ln[\kappa m_{A}(k_{a})]}{\partial k_{a}} \frac{\partial k_{a}}{\partial \phi}$$
$$\alpha_{a} = d_{a} + \bar{\alpha}_{A}$$

where $d_g = \frac{\partial \ln \Lambda_3}{\partial \phi}$ is a universal (non EP-violating) contribution and

$$\bar{\alpha}_{A} = \frac{1}{M_{A}} \frac{\partial M_{A}}{\partial \varphi} = \frac{1}{M_{A}} \left[\sum_{a=u,d,e} (d_{m_{a}} - d_{g}) \frac{\partial M_{A}}{\partial \ln k_{a}} + d_{e} \frac{\partial M_{A}}{\partial \ln \alpha} \right].$$

Analysis of scalar couplings to the binding energy of nuclei

Need to relate the various contributions to the nuclear binding energy

$$E^{ ext{bind}} = -a_v A + a_s A^{2/3} + a_a rac{(A-2Z)^2}{A} + a_c rac{Z(Z-1)}{A^{1/3}} - \delta rac{a_p}{A^{1/2}}$$

to the variability of light quark masses m_u, m_d , or $\hat{m} = \frac{m_d + m_u}{2}, \ \delta m = m_d - m_u$.

Possible by combining Walecka-type analysis of nuclei binding (parametrized by scalar and vector coupling strengths G_S , G_V) with recent work of Donoghue (2006) on the pion-mass dependence of G_S and G_V :

$$\bar{\alpha}_A^{\text{bind}} = -\frac{(d_{\widehat{m}} - d_g)}{m_A} (120A - 97A^{2/3}) m_\pi^2 \frac{\partial \eta_S}{\partial m_\pi^2}$$

$$\hat{m}\frac{\partial\eta_{S}}{\partial\hat{m}} = m_{\pi}^{2}\frac{\partial\eta_{S}}{\partial m_{\pi}^{2}} = -0.35 \pm 0.10$$

Implications for the Equivalence Principle

$$\alpha_A = d_g + \bar{\alpha}_A$$

$$\bar{\alpha}_{\mathcal{A}} = \left[(d_{\hat{m}} - d_g) Q_{\hat{m}} + (d_{\delta m} - d_g) Q_{\delta m} + (d_{m_e} - d_g) Q_{m_e} + d_e Q_e \right]_{\mathcal{A}}$$

where the various "dilaton charges" Q_{k_a} are given by (with $F_A \equiv A m_{amu}/m_A \simeq 1$)

$$\begin{aligned} Q_{\hat{m}} &= F_A \left[0.093 - \frac{0.036}{A^{1/3}} - 0.020 \frac{(A - 2Z)^2}{A^2} - 1.4 \times 10^{-4} \frac{Z(Z - 1)}{A^{4/3}} \right], \\ Q_{\delta m} &= F_A \left[0.0017 \frac{A - 2Z}{A} \right], \\ Q_{m_e} &= F_A \left[5.5 \times 10^{-4} \frac{Z}{A} \right], \\ Q_e &= F_A \left[-1.4 + 8.2 \frac{Z}{A} + 7.7 \frac{Z(Z - 1)}{A^{4/3}} \right] \times 10^{-4}. \end{aligned}$$

Under plausible approximations, only two dilaton charges dominate:

 $Q'_{\hat{m}}$ linked to average quark-mass sensitivity to nuclear binding, and $Q'_{\alpha} \equiv Q'_{e}$ linked to the fine-structure constant:

$$\mathbf{x}_{\mathcal{A}}\simeq \mathbf{d}_{g}^{*}+\left[(\mathbf{d}_{\widehat{m}}-\mathbf{d}_{g})\mathbf{Q}_{\widehat{m}}^{\prime}+\mathbf{d}_{e}\mathbf{Q}_{e}^{\prime}
ight]_{\mathcal{A}}$$

$$\Omega_{\hat{m}}' = -rac{0.036}{A^{1/3}} - 1.4 imes 10^{-4} \, rac{Z(Z-1)}{A^{4/3}}$$

$$Q'_e = +7.7 \times 10^{-4} \frac{Z(Z-1)}{A^{4/3}}.$$

Table : Approximate EP-violating 'dilaton charges' for a sample of materials. These charges are averaged over the (isotopic or chemical, for SiO₂) composition.

Material	Α	Ζ	$- {oldsymbol{\mathcal{Q}}}'_{\widehat{m}}$	Q'_e
Li	7	3	18.88 ×10 ⁻³	0.345 ×10 ⁻³
Be	9	4	17.40 ×10 ⁻³	$0.494 imes 10^{-3}$
Al	27	13	12.27 ×10 ⁻³	$1.48 imes 10^{-3}$
Si	28.1	14	12.1 ×10 ⁻³	1.64 ×10 ⁻³
SiO ₂			$13.39 imes 10^{-3}$	$1.34 imes10^{-3}$
Ti	47.9	22	10.28 ×10 ⁻³	$2.04 imes 10^{-3}$
Fe	56	26	9.83 ×10 ⁻³	$2.34 imes 10^{-3}$
Cu	63.6	29	$9.47 imes 10^{-3}$	2.46 ×10 ^{−3}
Cs	133	55	7.67 ×10 ^{−3}	$3.37 imes 10^{-3}$
Pt	195.1	78	$6.95 imes 10^{-3}$	$4.09 imes 10^{-3}$

Composition-dependence of weak EP violations

General possible (dilaton-like) phenomenology (Damour-Polyakov'94, Dent'08, Damour-Donoghue'10): $A \equiv N + Z$

$$\left(\frac{\Delta a}{a}\right)_{AB} = \left[\frac{c_1}{A^{1/3}} + c_2\frac{Z^2}{A^{4/3}} + c_3\frac{A - 2Z}{A} + c_4\frac{(A - 2Z)^2}{A^2}\right]_{AB}$$

Plausible simplified (dilaton-like) phenomenology (Damour-Donoghue2010)

$$\left(\frac{\Delta a}{a}
ight)_{AB}\simeq\left[rac{c_1}{A^{1/3}}+c_2\,rac{Z^2}{A^{4/3}}
ight]_A$$

Two dominant EP signals, linked to nuclear physics (variation of $m_q/\Lambda_{\rm QCD}$) and Coulomb effects (variation of $\alpha_{\rm EM} = e^2/\hbar c$)

Two material pairs suffice to constrain the two dominant EP parameters c_1, c_2

Dilaton-like models allow to a priori compare the sensitivity of various EP tests: e.g. the "dilaton charge vector" of the pair Rb^{85} , Rb^{87} can be compared to that of Pt, Ti and is found to be ~ 10^{-2} smaller. Using the two current EP experiments that have reached the 10^{-13} level, namely EötWash (Schlamminger et al. 2008)

$$\left(\frac{\Delta a}{a}\right)_{\text{Be Ti}} = (\alpha_{\text{Be}} - \alpha_{\text{Ti}})\alpha_{\text{Earth}} = (0.3 \pm 1.8) \times 10^{-13}$$

and Lunar Laser Ranging (Williams et al. 2004, 2009)

$$\left(\frac{\Delta a}{a}\right)_{\text{Earth Moon}} = (\alpha_{\text{Earth}} - \alpha_{\text{Moon}})\alpha_{\text{Sun}} = (-1.0 \pm 1.4) \times 10^{-13}$$

one can get constraints on the two dilaton parameters

$$D_{\widehat{m}}=d_g^*\left(d_{\widehat{m}}-d_g
ight),\qquad D_e=d_g^*\,d_e\,.$$

Namely, at the 2σ level

$$D_{\hat{m}} = \pm 0.87 imes 10^{-9}, \quad D_e = \pm 4.0 imes 10^{-9}.$$

Comparing the Experimental Sensitivities of EP Experiments

The simplified dilaton framework contains three independent parameters, d_g (composition-independent) and $d_q \equiv d_{\hat{m}} - d_g$, d_e (composition-dependent). It is quite predictive and can be used as a guideline for comparing and/or planning EP experiments. Examples:

Comparing composition-independent (Eddington's γ -parameter) and composition-dependent

$$1-\gamma\simeq 2d_g^2$$

In dilaton models: ∃ also link EP and tests of (PN) gravity

$$\frac{\Delta a}{a} \sim 10^{-2} \, \frac{d_q}{d_g} \, \frac{1 - \gamma^{\text{PPN}}}{2}$$

where $d_q \equiv \partial \ln(m_q/\Lambda_{\rm QCD})/\partial \phi$, $d_g \equiv \partial \ln(\Lambda_{\rm QCD}/m_{\rm Planck})/\partial \phi$ and either $d_q \sim d_g$ or $d_q \sim d_g/40$. In the "worst case" $1 - \gamma^{\rm PPN} \sim 10^4 \Delta a/a$ so that $\Delta a/a \sim 10^{-15} \rightarrow 1 - \gamma^{\rm PPN} \sim 10^{-11}$.

Comparing the vectors of dilaton-charge differences

$$(Q'_{\hat{m}},Q'_{e})_{
m Pt\,Ti}=(3.33,2.04) imes10^{-3}$$

vs $(Q_{\hat{m}}, Q_{\delta_m}, Q_{m_e}, Q_e)_{^{87}Rb^{^{85}}Rb} = (-3.3, 3.4, -0.55, -9.2) \times 10^{-5}$.

∃ also link between WEP and clock tests of EEP (e.g. grav. redshift) (see, e.g., TD gr-qc/9904032). When comparing frequencies of atomic transitions $A^* \rightarrow A$ at two different locations r_1, r_2 :

$$\frac{\nu_A^{A^*}(r_1)}{\nu_A^{A^*}(r_2)} \simeq 1 + (1 + \alpha_A^{A^*} \alpha_E)(U_E(r_1) - U_E(r_2))$$

where

$$\alpha_A^{A^*} = \frac{\partial \ln E_A^{A^*}}{\partial \varphi}$$

computable from coupling-constant dependence of $E_A^{A^*}$. E.g. for hyperfine transition $E_A^{A^*} \propto m_e \, e^4 \, g_l \frac{m_e}{m_p} \, e^4 \, F_{\rm rel}(Ze^2)$.

Anthropic-type argument for EP violation (Damour-Donoghue2010)

Independently of any specific theoretical model one might argue (along the "anthropic" approach to the vast "multiverse" of cosmological and/or string backgrounds) that:

- (i) the EP is not a fundamental symmetry principle of Nature
- (ii) the level $\eta \sim \Delta a/a$ of EP violation can be expected to vary, quasi-randomly, within some range of order unity over the full multiverse
- (iii) as there is probably a maximal level of EP-violation, say $\eta_* \neq 0$, which is compatible with the development of life (and physicists), one should a priori expect to observe, in our local environment, an EP violation η of order η_* .

Conclusions (I)

• EP is intimately connected with some of the basic aspects of modern physics, and of the unification of gravity with particle physics.

• The historical tendency of physics to discard any absolute structures, as well as the generalized Kaluza-Klein aspects (moduli) of string theory a priori suggests there could exist EP violations.

• The recent observation of $\rho_{vac} \sim 10^{-123} \, m_{Planck}^4$ poses a challenge to physics which suggests that we are missing some key understanding of IR gravity. This might provide additional motivation for EP violation (either via some Nambu-Goldstone mode, or via anthropic arguments).

• Even within the "majority view" of the "moduli stabilization" issue, EP experiments are testing a key assumption of current string models.

Conclusions (II)

• ∃ no firm prediction for level of EP violation, but some phenomenological models show that the violation could naturally be just below the currently tested level.

• In dilaton-like models, the composition-dependence of EP signals is (probably) dominated by two signals, depending on $A^{-1/3}$ and $Z^2 A^{-4/3}$.

• In such dilaton-like models, there exist correlated modifications of gravity $(\Delta a/a, \gamma^{PPN} - 1 \neq 0, \dot{\alpha}_a \neq 0, d\alpha_a/dU \neq 0, ...)$ but EP tests stand out as our deepest probe of new physics, when compared to, e.g., solar-system (γ^{PPN}) or clock tests ($\dot{\alpha}_a$ or $d\alpha_a/dU$). Indeed,

$$\frac{\Delta a}{a} \sim 10^{-2} \, \frac{d_q}{d_g} \, \frac{1 - \gamma^{\rm PPN}}{2}$$

where $d_q \equiv \partial \ln(m_q/\Lambda_{\rm QCD})/\partial \phi$, $d_g \equiv \partial \ln(\Lambda_{\rm QCD}/m_{\rm Planck})/\partial \phi$ and either $d_q \sim d_g$ or $d_q \sim d_g/40$. In the "worst case" $1 - \gamma^{\rm PPN} \sim 10^4 \Delta a/a$ so that $\Delta a/a \sim 10^{-15} \rightarrow 1 - \gamma^{\rm PPN} \sim 10^{-11}$.