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Abstract

Confirming previous heuristic analyses a la Belinskii-Khalatnikov-Lifshitz, it is
rigorously proven that certain “subcritical” Einstein-matter systems exhibit a mono-
tone, generalized Kasner behaviour in the vicinity of a spacelike singularity. The
D—dimensional coupled Einstein-dilaton-p-form system is subcritical if the dilaton
couplings of the p-forms belong to some dimension dependent open neighbourhood
of zero [il], while pure gravity is subecritical if D > 11 [i3]. Our proof relies, like
the recent theorem [iI5] dealing with the (always subcritical [4]) Einstein-dilaton
system, on the use of Fuchsian techniques, which enable one to construct local, an-
alytic solutions to the full set of equations of motion. The solutions constructed are
“general” in the sense that they depend on the maximal expected number of free
functions.



1 Introduction

1.1 The problem

In recent papers [il, 2, 3], the dynamics of the coupled Einstein-dilaton-p-form system in
D spacetime dimensions, with action (in units where 87G = 1),

Sgas, AV 1 = 5 [gap] S [gasp, ¢ - Silgass b, AV 1 more , (1.1)
;

Slowsl = 5 gd (1.2)

Slgesndl = 5 & 6 gd (1.3)

Silgas, 6, AV ] = ﬁ @ e “gd (1.4)

was investigated in the vicinity of a spacelike ( cosmological ) singularity along the lines
initiated by Belinskii, halatnikov and Lifshit (B L) [4]. In (1.1), gas is the spacetime
metric, ¢ is a massless scalar field known as the dilaton , while the A(W]l)% are a col-

lection of  exterior form gauge fields ( =1, , ), with exponential couplings to the
dilaton, each coupling being characteri ed by an individual constant ; ( dilaton coupling
constant ). The () s are the exterior derivatives ) = dAU), whereas more stands for
possible coupling terms among the p-forms which can be either of the Yang-Mills type (1-
forms), Chern-Simons type [5] or Chapline-Manton type [6, 7]. The degrees of the p-forms
are restricted to be smaller than or equal to D 2 since a (D 1)-form (or D-form) gauge
field carries no local degree of freedom. In particular, scalars ( ; = 0) are allowed among
the AU s but we then require that the corresponding dilaton coupling ; be non- ero, so
that there is only one dilaton . Similarly, we require ; = 0 for the (D 2)-forms (if any),
since these are dual to scalars. This restriction to a single dilaton is mostly done for
notational convenience if there were other dilatons among the 0-forms, then, these must
be explicitly treated on the same footing as ¢ and separated o from the p-forms because
they play a distinct role. In particular, they would appear explicitly in the generali ed

asner conditions given below and in the determination of what we call the subcritical
domain. The discussion would proceed otherwise in the same qualitative way.

The main motivation for studying actions of the class (1.1) is that these arise as bosonic
sectors of supergravity theories related to superstring or M-theory. In fact, in view of
various no-go theorems, p-form gauge fields appear to be the only massless, higher spin
fields that can be consistently coupled to gravity. Furthermore, there can be only one type
of graviton [8].  ith this observation in mind, the action (1.1) is actually quite general.
The only restriction concerns the scalar sector we assume the coupling to the dilaton
to be exponential because this corresponds to the tree-level couplings of the dilaton field
of string theory. ote, however, that string-loop e ects are expected to generate more




general couplings exp( ¢) (¢) which can exhibit interesting attractor behaviours
[9]. e also restrict ourselves by not including scalar potentials see, however, the end of
the article for some remarks on the addition of a potential for the dilaton, which can be
treated by our methods.

Two possible general, competing behaviours of the fields in the vicinity of the space-
like singularity have been identified

1. The simplest is the , in which the spatial scale factors
and the field exp(¢) behave at each spatial point in a monotone, power-law fashion
in terms of the proper time as one approaches the singularity, while the e ect of the
p-form fields AU) s on the evolution of ¢ and ¢ can be asymptotically neglected.
In that regime the spatial curvature terms can be also neglected with respect to the
leading order part of the extrinsic curvature terms. In other words, as emphasi ed
by B L, time derivatives asymptotically dominate over space derivatives so that
one sometimes uses the terminology velocity-dominated behaviour [11], instead of

generali ed asner behaviour . e shall use both terminologies indi erently in
this paper, recalling that in the presence of p-forms, which act as potentials for the
evolution of the spatial metric and the dilaton (as do the spatial curvature terms),

velocity-dominance means not only that the spatial curvature terms can be ne-
glected, but also that the p-forms can be neglected in the Einstein-dilaton evolution
equations.

2. The second regime, known as [4], or [12] be-
haviour, is more complicated. It can be described as the succession of an infinite
number of increasingly shorter asner regimes as one goes to the singularity, one
following the other according to a well-defined collision law. This asymptotic evo-
lution is presumably strongly chaotic. It is expected that, at each spatial point, the
scale factors of a general inhomogeneous solution essentially behave as in certain ho-
mogeneous models. For instance, for D = 4 pure gravity this guiding homogeneous
model is the Bianchi I model [4, 12], while for D = 11 supergravity it is its naive
one-dimensional reduction involving space-independent metric and three-forms [2].

hether it is the first or the second behaviour that is relevant depends on (i) the
spacetime dimension D, (ii) the field content (presence or absence of the dilaton, types of
p-forms), and (iii) the values of the various dilaton couplings ;. Previous work reached
the following conclusions

The oscillatory behaviour is general for pure gravity in spacetime dimension 4 [4],
in fact, in all spacetime dimensions 4 D 10, but is replaced by a asner-like
behaviour in spacetime dimensions D 11 [13]. (The sense in which we use general
will be made precise below.)




The asner-like behaviour is general for the gravity-dilaton system in all spacetime

dimensions D 3 (see [14, 15] for D = 4).

The oscillatory behaviour is general for gravity coupled to p-forms, in absence of a
dilaton or of a dual (D  2)-form (0 p D 2) [2]. In particular, the bosonic
sector of 11-dimensional supergravity is oscillatory [1]. Particular instances of this
case have been studied in [16, 17, 18].

The case of the gravity-dilaton-p-form system is more complicated to discuss because
its behaviour depends on a combination of several factors, namely the dimension
D, the menu of p-forms, and the numerical values of the dilaton couplings. For
a given D and a given menu of p-forms there exists a subcritical domain  (an
open neighbourhood of the origin ; = 0 for all s) such that (i) when the ;
belong to  the general behaviour is  asner-like, but (ii) when the ; do not belong
to  the behaviour is oscillatory.  ote that  is open. Indeed, the behaviour is

oscillatory when the ; are on the boundary of , as happens for instance for the
low-energy bosonic sectors of type I or heterotic superstrings [1]. For a single p-form,
the subcritical domain  takes the simple form %, where ¢ depends on the

; can be inﬁnite.) For a collection of

form-degree and the spacetime dimension. (
p-forms,  is more complicated and not ust given by the Cartesian product of the

subcritical intervals associated with each individual p-form.

The above statements were derived by adopting a line of thought analogous to that
followed by B L. ow, as understood by B L themselves, these arguments, although
quite convincing, are somewhat heuristic. It is true that the original arguments have
received since then a considerable amount of both numerical and analytical support [19,
20, 21, 22, 23]. Yet, they still await a complete proof. ne notable exception is the four-
dimensional gravity-dilaton system, which has been rigorously demonstrated in [15] to be
indeed asner-like, confirming the original analysis [14]. Using Fuchsian techniques, the
authors of [15] have proven the existence of a local (analytic) asner-like solution to the
Einstein-dilaton equations in four dimensions that contains as many arbitrary, physically
relevant functions of space as there are local degrees of freedom, namely 6 (counting
and  independently). To our knowledge, this was the first construction, in a rigorous
mathematical sense, of a general singular solution for a coupled Einstein-matter system.

ote in this respect several previous works in which formal solutions had been constructed
near ( asner-like) cosmological singularities by explicit perturbative methods, to all orders
of perturbation theory [24, 25].

The situation concerning the more complicated (and in some sense more interesting)
generali ed mixmaster regime is unfortunately and perhaps not surprisingly not so well
developed. Rigorous results are scarce (note [26]) and even in the case of the spatially
homogeneous Bianchi I model only partial results exist in the literature [27].

The purpose of this paper is to extend the Fuchsian approach of [15] to the more
complicated class of models described by the action (1.1) and to prove that those among
the above models that were predicted in [13, 1, 2] to be asner-like are indeed so. This
provides many new instances where one can rigorously construct a general singular solution



for a coupled Einstein-matter (or pure Einstein, in D 11) system. In fact, our (Fuchsian-
system-based) results prove that the formal perturbative solutions that can be explicitly
built for these models do converge to exact solutions. This provides a further confirmation
of the general validity of the B L ideas. e shall also explicitly determine the subcritical
domain  for a few illustrative models. For all the relevant systems, we construct local
(near the singularity) analytic solutions, which are general in the sense that they contain
the right number of freely ad ustable arbitrary functions of space (in particular, these
solutions have generically no isometries), and which exhibit the generali ed (monotone)
asner time dependence.

1. r e o 1l eo hep per

ur approach is the same as in [15], and results from that work will be used frequently
here without restating the arguments. Here is an outline of the key steps.

A d 1 decomposition is used, for d spatial dimensions, d = D 1. A Gaussian
time coordinate, , is chosen such that the singularity occurs at = 0. The first step
in the argument consists of identifying the leading terms for all the variables. This is
accomplished by writing down a set of evolution equations which is obtained by truncating
the full evolution equations, and then solving this simpler set of evolution equations. This
simpler evolution system is called the asner-like evolution system (or, alternatively, the
velocity-dominated system). It is a system of ordinary di erential equations with respect
to time (one at each spatial point) which coincides with the system that arises when
investigating metric-dilaton solutions that depend only on time. The precise truncation
rules are given in subsection 2.2 below. The second step is to write down constraint
equations for the asner-like system (called velocity-dominated constraints) and to show
that these constraints propagate, that if they are satisfied by a solution to the asner-
like evolution equations at some time 0, then they are satisfied for all time 0. In the
set of asner-like solutions, one expects that there is a subset, denoted by , of solutions
which have the property of being asymptotic to solutions of the complete Einstein-dilaton-
p-form equations as 0, i.e as one goes to the singularity. This subset is characteri ed
by inequalities on some of the initial data, which, however, are not always consistent. The
existence of a non-empty  requires the dilaton couplings to belong to some range, the

subcritical range . hen  is non-empty and open, the solutions in  involve as many
arbitrary functions of space as a general solution of the full Einstein equations should.

n the other hand, if  is empty the construction given in this paper breaks down and
the dynamical system is expected to be not asner-like but rather oscillatory.

To show that indeed, the solutions in  (when it is non-empty) are asymptotic to
true solutions, the third step is to identify decaying quantities such that these decaying
quantities along with the leading terms mentioned above uniquely determine the variables,
and to write down a system for the decaying quantities which is equivalent to
the Einstein-matter evolution system. As the use of Fuchsian systems is central to our
work let us brie y recall what a Fuchsian system is and how such a system is related to




familiar iterative methods. For a more detailed introduction to Fuchsian techniques see
[15, 28, 29, 30] and references therein. ote that we shall everywhere restrict ourselves to
the analytic case. e expect that our results extend to the case, but it is a non-trivial
task to prove that they do.

The general form of a Fuchsian system for a vector-valued unknown function is

() =0, ) (1.5)

where the matrix () is required to satisfy some positivity condition (see below), while
the source term on the right hand side is required to be regular. (See [15] for
precise criteria allowing one to check when the positivity assumption on () is satisfied
and when is regular.) A key point is that is required to be bounded by terms of
order () (with 0, 0) as soon as  and their space derivatives are in a
bounded set (a simple, concrete example of a source term satisfying this condition is

= 1 , with s larger than ). A convenient form of positivity condition
to be satisfied by the matrix () is that the operator norm of () be bounded when
0 1 (and when varies in any open set). Essentially this condition restricts the
eigenvalues of the matrix () to have positive real parts. The basic property of Fuchsian
systems that we shall use is that there is a unique solution to the Fuchsian equation which
vanishes as tends to ero [28]. ne can understand this theorem as a mathematically
rigorous version of the recursive method for solving the equation (1.5). Indeed, when
confronted with equation (1.5), it is natural to construct a solution by an iterative process,

starting with the eroth order approximation = 0 (which is the unique solution of
(1.5) with 0 that tends to ero as 0), and solving a sequence of equations of
the form ¢) ()= (,, C ) C D) At each step in this iterative process

the source term is a known function which essentially behaves (modulo logarithms) like a
sum of powers of (with space-dependent coe cients). The crucial step in the iteration
is then to solve equations of the type () = () U). The positivity condition
on () guarantees the absence of homogeneous solutions remaining bounded as 0,
and ensures the absence of small denominators in the (unique bounded) inhomogeneous
solution generated by each partial source term = ( ) . (See, [25] for
a concrete iterative construction of a asner-like solution and the proof that it extends to
all orders.) This link between Fuchsian systems and good systems that can be solved to
all orders in a formal iteration makes it a priori probable that all cases which the heuristic
approach a la B L has shown to be asymptotic to a asner-like solution (by checking
that the leading post- asner contribution is asymptotically sub-dominant) can be cast
in a Fuchsian form. The main technical burden of the present work will indeed be to
show in detail how this can be carried out for the evolution systems corresponding to all
the sub-critical ( non-oscillatory) Einstein-matter systems. ur Fuchsian formulation
proves that (in the analytic case) the formal all-orders iterative solutions for the models we
consider do actually converge to the unique, exact solution having a given leading asner
asymptotic behaviour as 0.

Finally, the fourth step of our strategy is to prove that the constructed solution does
satisfy also all the Einstein and Gauss-like constraints so that it is a solution of the full
set of Einstein-matter equations. e shall deal successively with the matter (Gauss-like)
constraints, and the Einstein constraints.



ur paper is organi ed as follows. In section 2, we first consider the paradigmatic
example of gravity coupled to a massless scalar field and to a Maxwell field in 4 spacetime
dimensions. The action (1.1) reads in this case

1 1 _
S[ga57¢7AW] = 5 ¢ Qb 5 gd (16)
For this simple example, we shall explicitly determine the subcritical domain the
critical value . such that the system is asner-like when . .. Because this case

is exemplary of the general situation, while still being technically rather simple to handle,
we shall describe in some detail the explicit steps of the Fuchsian approach.

In section 3, vacuum solutions governed by the pure Einstein action (1.2) with D 11
are considered. This system was argued in [13] to be asner-like and we show here how this
rigorously follows from the Fuchsian approach. ote that, contrary to what happens when
a dilaton is present, Fuchsian techniques apply here even though not all asner exponents
can be positive.

In sections 4 8, the results of the previous sections are generali ed to the wider class
of systems (1.1). First, in section 4, to solutions of Einstein s equation with spacetime
dimension D 3 and a matter source consisting of a massless scalar field, governed by the
action S [gap] S [gap, @]. This is the generali ationtoany D 3 of the case D = 4 treated
in [15]. In section 5, we turn to the general situation described by the action (1.1), without,
however, including the additional terms represented there by more . e then give some
general rules for computing the subcritical domain of the dilaton couplings guaranteeing
velocity-dominance (section 6). The inclusion of interaction terms is considered in the last
sections. It is shown that they do not a ect the asymptotic analysis. This is done first for
the Chern-Simons and Chapline-Manton interactions in section 7, and next, in section 8§,
for the Yang-Mills couplings (for some gauge group ), for which the action reads

, 1 , 1 —
Here the dot product, , 1s a time-independent, Ad-invariant, non-degenerate scalar

product on the Lie algebra of G (such a scalar product exists if the algebra is compact, or
semi-simple). Contrary to what is done in sections 2, 5 and 7, we must work now with the
vector potential (and not ust with the field strength), since it appears explicitly in the
coupling terms.

In section 9 we show that self-interactions of a rather general type for the scalar field
can be included without changing the asymptotics of the solutions. Explicitly, we add a
(nonlinear) potential term,

S lgamdl=  (¢) “gd (1.8)

to the action (1.1), where (¢) must fulfill some assumptions given in section 9.  (¢)
may, for example, be an exponential function of ¢, a constant, or a suitable power of ¢.
Similar forms for  (¢) were considered with D =4 in [31].

Finally, in section 10, we state two theorems that summari e the main results of the
paper and give concluding remarks.



1. he e er 1 Oor o r o

As we shall see the number of arbitrary functions contained in solutions to the velocity-
dominated constraint equations is equal to the number of arbitrary functions for solutions
to the Einstein-matter constraints. In this function-counting sense, our construction de-
scribes what is customarily called a general solution of the system. Intuitively speaking,
our construction concerns some open set of the set of all solutions (indeed, the asner-
like behaviour of the solution is unchanged under arbitrary, small perturbations of the
initial data, because this simply amounts to changing the integration functions).  ote
that, in the physics literature, such a general solution is often referred to as being a
generic solution. However, in the mathematics literature the word generic is restricted
to describing either an open dense subset of the set of all solutions, or (when this can be
defined) a subset of measure unity of the set of all solutions. In this work we shall stick to
the mathematical terminology. e shall have nothing rigorous to say about whether our
general solution is also generic. However, we wish to emphasi e the following points.
First, let us mention that the set  of solutions to the velocity-dominated equations
that are asymptotic to solutions of the complete equations is not identical to the set

of all solutions to the velocity-dominated constraint equations. The subset is de-
fined by imposing some inequalities on the free data. These inequalities do not change
the number of free functions. Therefore the solutions in  are still general . ne can

wonder whether there could be a co-existing general behaviour, corresponding to initial
data that do not fulfill the inequalities. For instance, could such bad initial data lead to
a generali ed mixmaster regime This is a di cult question and we shall only summari e
here what is the existing evidence. There are heuristic arguments, supported by numerical
study, [14, 32, 33, 34] that suggest that if one starts with initial data that do not fulfill the
inequalities, one ends up, after a finite transient period (with a finite number of collisions
with potential walls), with a solution that is asymptotically velocity-dominated, for which
the inequalities are fulfilled almost everywhere. In that sense, the inequalities would not
represent a real restriction since there is a dynamical mechanism that drives the solution to
the regime where they are satisfied. For the subcritical values of the dilaton couplings that
make the inequalities defining  consistent, there is thus no evidence for an alternative
oscillatory regime corresponding to a di erent (open) region in the space of initial data .
It has indeed been shown that the inequalities defining  are no restriction in a large
spatially homogeneous class [27]. Such rigorous results are, however, lacking in the inho-
mogeneous case. In fact, an interesting subtlety might take place in the inhomogeneous
case. The heuristic arguments and numerical studies of [33, 34] suggest the possibility that
the mechanism driving the system to  may be suppressed at exceptional spatial points
in general spacetimes, with the result that the asymptotic data at the exceptional spatial
points are not consistent with the inequalities we assume and lead to so-called spikes .
This picture has been given a firm basis in a scalar field model with symmetries [35] but
the status of the spikes in a general context remains unclear.

Finally, since we only deal with spacelike singularities, the classes of solutions we con-




sider do not contain all solutions governed by the action (1.1).  ther types of singularities
( timelike or null ones) are known to exist.  hether these other types of singularities
are general is, however, an open question.

1. 1 r p re

At each spatial point, the solution of the coupled Einstein-matter system can be pictured, in
the vicinity of a spacelike singularity, as a billiard motion in a region of hyperbolic space [36,
37, 3, 38]. Hyperbolic billiards are chaotic when they have finite volume and non chaotic
otherwise. In this latter case, the billiard ball generically escapes freely to infinity after
a finite number of collisions with the bounding walls. Subcritical Einstein-matter systems
define infinite-volume billiards. The velocity-dominated solutions correspond precisely to
the last (as 0) free motion (after all collisions have taken place), in which the billiard
ball moves to infinity in hyperbolic space.

1. O e o

e adopt a mostly plus signature ( ). The spacetime dimensionis D d 1.
Greek indices range from 0 to d, while Latin indices 1, ,d . The spatial Ricci tensor
is labeled  and the spacetime Ricci tensor is labeled ( ) . ur curvature conventions

are such that the Ricci tensor of a sphere is positive definite. Einstein s equations read
Gag = aop, where Gog = 45 gop 2 denotes the Einstein tensor and .3 denotes the
matter stress-energy tensor, 5= (2  g) S ¢*%, and units such that 87G = 1.
The spatial metric compatible covariant derivative is labeled , and the spacetime metric
compatible covariant derivative is labeled ( ) . The velocity-dominated metric compati-
ble covariant derivative is labeled  ,. According to the context, g denotes the (positive)
determinant of g, in d  1-decomposed expressions, and the (negative) determinant of ¢
in spacetime expressions.  henever or appears, denotes a strictly positive number,
arbitrarily small. e use Einstein s summation convention on repeated tensor indices of
di erent variances. ( hen the need arises to suspend the summation conventions for some
non-tensorial indices, we shall explicitly mention it.) In expressions where there is a sum
that the indices do not indicate, all sums in the expression are indicated explicitly by a
summation symbol. Indices on the velocity-dominated metric and the velocity-dominated
extrinsic curvature are raised and lowered with the velocity-dominated metric.

1. e ompo O

Consider a solution to the Einstein s equations following from (1.1), consisting of a Lorent
metric and matter fields on a D-dimensional manifold ~ which is di eomorphic to (0, )
for a d-dimensional manifold, , such that the metric induced on each = constant
hypersurface is Riemannian, for (0, ). Here D is an integer strictly greater than
two. Furthermore, consider a d 1 decomposition of the Einstein tensor, (G,3, and the
stress-energy tensor, .3, with a Gaussian time coordinate, (0, ), and a local frame
. on . ote that the frame , = ,( ) 1is time-independent. The spacetime metric



readsd = d  gu(, )*° where *= 2( )d (with * , = #)is the co-frame. Let

= y 4= . and Sy = 4. Define

= 2G 2 (1.9)
= ab ba (tI’ ) 2

= 0 is the Hamiltonian constraint. Similarly, , = 0 is the momentum constraint, where

. = G. . (1.10)
= b ba a(tr ) a

In Gaussian coordinates, the relation between the metric and the extrinsic curvature is

Gab = 2 ab (111)

The evolution equation for the extrinsic curvature is obtained by setting ?%, = 0, with

a — () a a a 1.12
b b b (D 2) b ( )
o= M (tr ) % “ (1.13)
Here ]
B =25% ﬁ((trS) ) “b
¢ r nd d in ourdi n ion
| o) O mo o

As said above, let us start by considering in detail, as archetypal system, the system defined
by the action (1.6), the spacetime dimension is D = 4 and the matter fields are a
massless scalar field exponentially coupled to a Maxwell field, with the magnitude of the
dilaton coupling constant smaller in magnitude than some positive real number determined

below, 0 . The stress-energy tensor of the matter fields is
O 40 L, O 40 o 1 o
= ¢ ¢ 59 a® ¢ [ a Zg of ]

() () aof — _ af
a Cb 4a,3 )
O ) =0,
() oy = 0



The 3 1 decomposition of the stress-energy tensor is best expressed in terms of the electric

a

spatial vector density *= ¢ “

and the magnetic antisymmetric spatial tensor 4.

_ 1 [ ab 1 a b 1 ab ¢
- 9 ( QD) g a(ﬁb) b(¢) ggab 29 g ac b 5
6u) ="
a — a — abs
g
a ac 1 a C 1 C
b = 97 0(@) o(#) o e 5 "9
1 .
9% e v 79 e (2.1)
The matter constraint equations are
Y =0 (2.2)
ol be) e =0 (2.3)
Here ¢, are the (time-independent) structure functions of the frame, [ 4, 5] = & .. The
matter evolution equations are
t — ab . —q, a b _ab ¢ e 2.4
¢ (tr) ¢ g b 57 2979 b (2.4)
a — ac b ac 1 a  c — b
= ol 99" - ) (9" 5499 990 o . (25)
1 1
b = 2 o=@ © p——0c 2.6
( = ) = (2.6)
elo om e eol o e o ol o

The asner-like, or velocity-dominated, evolution equations are obtained from the full
evolution equations by (i) dropping the spatial derivatives from the right hand sides of
(1.13), (2.4), (2.5) and (2.6) (note that &-terms count as derivatives and that we keep
the time derivatives of the magnetic field in (2.6) even though ., = .4, »Aq) and
(ii) dropping the p-form terms in both the Einstein and dilaton evolution equations. This
is a general rule and yields in this case

Gab = 2 b, (2.7)
o o= (tr ) %, (2.8)
¢ (tr ) ¢ =0, (2.9)
o=, (2.10)
b = 0 (2.11)

(As we shall see below, interaction terms of Yang-Mills or other types if any should
also be dropped.)

It is easy to find the general analytic solution of the evolution system (2.7) (2.11)
since the equations are the same as for Bianchi type I homogeneous models (one such set

10



of equations per spatial point). Taking the trace of (2.8) shows that 1 tr = ().
By a suitable redefinition of the time variable one can set ( ) to ero. Then (2.8) shows
that oy %y is a constant matrix (which must satisfy tr = ¢, =1, and be such
that g.c( ) © is symmetric in a and b),

()= “ (2.12)

In ecting this information into (2.7) leads to a linear evolution system for g Gab =
2 ¢ac °p, which is solved by exponentiation,

gar( )= Gacl ) — (2.13)

The other evolution equations are also easy to solve,

¢() = Aln , (2.14)
() = (215)
() = w (2.16)
In (2.13) () denotes the exponentiation of a matrix. uantities on the left hand

side of (2.12) (2.16) may be functions of both time and space, while all the time de-
pendence of the right hand side is made explicit. For instance, (2.16) is saying that the
spacetime dependence of the general magnetic field  ,( , ) (solution of the velocity-
dominated evolution system) is reduced to a simple space dependence  ,( ) (where 4
is an antisymmetric spatial tensor). Let p, denote the eigenvalues of ¢, ordered such
that p  p  p. Sincetr =1, we have the constraint

p p p =1 (2.17)

In the works of B L the matrix solution (2.13) is simplified by using a special frame
with respect to which the matrices gu( ) and % are diagonal. However, as emphasi ed
in [15], this choice can not necessarily be made analytically on neighbourhoods where the
number of distinct eigenvalues of % is not constant. To obtain an analytic solution, while
still controlling the relation of the solution to the eigenvalues of %, a special construction
was introduced in [15]. This construction is based on some (possibly small) neighbourhood

of an arbitrary spatial point and uses a set of auxiliary exponents ,( ). These
auxiliary exponents remain numerically close to the exact  asner exponents p,( ), are
analytic and enable one to define an analytic frame (see below). To construct the auxiliary
exponents ,( ) one distinguishes three cases

Case I (near isotropic) If all three eigenvalues are equal at , choose a number

0 so that for ,maxgs pal ) pu( ) 2. In this case define , =1 3 on
a=1,2,3.

Case II (near double eigenvalue)  If the number of distinct eigenvalues at s two,
choose 0 so that for , MaXy,p Pa Db 2, and p, pp 2 for some

pair,a , b, a = b, shrinking  if necessary. Denote by p the distinguished exponent not
equal to p, , py. In this case define =p and , = , = (1 ) 2 on

11



Case III (near diagonali able) If all eigenvalues are distinct at | choose 0 so

that for ,min - po( ) pe( ) 2, shrinking  if necessary. In this case define
a b
@ = Pg ON
The frame , , called the adapted frame, is required to be such that the related (time-
dependent) frame () « 1s orthonormal with respect to the velocity-dominated
metric at some time 0, such that gu( ) = - (Here and in the rest of the

paper, the Einstein summation convention does not apply to indices on , and p,. These
indices should be ignored when determining sums. Furthermore, quantities with a tilde
will refer to the frame () .)
In addition, in Case II it is required that be an eigenvector of  corresponding to
and that ,, ; span the eigenspace of  corresponding to the eigenvalues p, , p, . In
case III it is required that the , be eigenvectors of  corresponding to the eigenvalues
o pa). In all cases it is required that , be analytic. The auxiliary exponents, .,
are analytic, satisfy the asner relation « = 1, are ordered ( ), and satisfy
P, p and max, , Pa 2. If , = 4, then gu, ¢*°, gy and ¢ all
vanish, and the same is true with ¢ replaced by
Equations (2.12)  (2.16), with the form of g,( ) and %, speciali ed as given ust
above, are the general analytic solution to the velocity-dominated evolution equations in
the sense that any analytic solution to the velocity-dominated evolution equations takes
this form near any by choice of (global) time coordinate and (local) spatial frame.

elo om e o r e o

hen written in terms of the velocity-dominated variables, the velocity-dominated con-
straints take the same form as the full constraint equations, except the Hamiltonian con-
straint, which is obtained by dropping spatial gradients and electromagnetic contributions
to the energy-density. This is a general rule, valid also for the more general models con-

sidered below. Thus, if we define

a = Qb a( ¢) L— ’ abs
g

we get =0 and , = 0 for the velocity-dominated constraints corresponding to the
Hamiltonian and momentum constraints, with

s = b e W(tr ) (2.19)



For the solution (2.12) (2.14) the velocity-dominated Hamiltonian constraint equation
is equivalent to

pa A =1 (2.20)

The conditions (2.17) and (2.20) are the famous asner conditions when the dilaton is
present.  hile p is necessarily non-positive when A = 0, this is no longer the case when
the dilaton is nontrivial (A = 0) all p, s can then be positive. This is the ma or feature
associated with the presence of the dilaton, which turns the mixmaster behaviour of (4-
dimensional) vacuum gravity into the velocity-dominated behaviour. e shall call (p,, A)
the asner exponents (because they are the exponents of the proper time in the solution
for the scale factors and exp ¢) and refer to (2.17) and (2.20) as the asner conditions
(note that A is often denoted p to emphasi e its relation to the kinetic energy of ¢, and
its similarity with the other exponents).
A straightforward calculation shows that

2r ) = 0, (2.21)

o (v ) o = %a( ) (2.22)

Thus if the velocity-dominated Hamiltonian and momentum constraints are satisfied at
some 0, then they are satisfied for all 0. Similarly, since * and 5 are
independent of time, if the matter constraints are satisfied at some time 0, then they
are clearly satisfied for all time.

r 1 leo 1 o o pl

ur ultimate goal is to show that the velocity-dominated solutions asymptotically approach
(as 0) solutions of the original system of equations. e shall prove that this is the
case provided the asner exponents p, A, sub ect to the asner conditions

P ( pg) A =0, pa =1 (2.23)

obey additional restrictions. These restrictions are inequalities on the asner exponents
and read explicitly

% A 0, p 0, 2 A 0 (2.24)

As explained in [1], and rigorously checked below, these restrictions are necessary and suf-
ficient to ensure that the terms that are dropped when replacing the full Einstein-dilaton-
Maxwell equations by the velocity-dominated equations become indeed negligible as 0.
More precisely, the first condition (respectively the third) among (2.24) guarantees that
one can neglect the electric (respectively, magnetic) part of the energy-momentum tensor
of the electromagnetic field in the Einstein equations, whereas the condition p 0 is
necessary for the spatial curvature terms to be asymptotically negligible. The conditions
(2.24) define the set  of velocity-dominated solutions referred to in the introduction.

It is clear that if  is small enough in particular, if =0 the inequalities (2.24)
can be fulfilled since the asner exponents can be all positive when the dilaton is included.
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But if is greater that some critical value ., it is impossible to fulfill simultaneously
the asner conditions (2.23) and the inequalities (2.24), because one of the terms A
becomes more negative than 2p is positive. In that case, the set  is empty and our
construction breaks down. For ¢, however, the set  is non-empty and, in fact,
stable under small perturbations of the asner exponents since (2.24) defines an open
region on the asner sphere. e determine in this subsection the critical value . such
that (2.23) and (2.24) are compatible whenever

To that end, we follow the geometric approach of [3, 39] In the 4-dimensional space of
the asner exponents (p,, A), we consider the wall chamber defined to be the conical
domain where

pp P, 2p, A 0, p, 0, 2p, A 0 (2.25)
These inequalities are not all independent since the four conditions
p p p, 2p A 0, 2p A 0 (2.26)
imply all others. The quadratic asner condition (2.23) can be rewritten

G pp =0, (p ) (paaA) (227)

where G defines a metric in  asner-exponent space
dS =G dpdp = dp, ( dp,) (dA) (2.28)

The metric (2.28) has Minkowskian signature ( , , , ). An example of timelike direc-
tion is given by p = p = p , A = 0. Inside or on the light cone, the function p, does
not vanish. The upper light cone (in the space of the asner exponents) is conventionally
defined by (2.27) and the extra condition p, 0. It is clear from our discussion that the

asner conditions (2.23) and the inequalities (2.24) are compatible if and only if there are
lightlike directions in the interior of the wall chamber (by rescaling p P, 0,
one can always make p, = 1 for any point in the interior of the wall chamber so that this
condition does not bring a restriction). The problem amounts accordingly to determining
the relative position of the light cone (2.27) and the wall chamber (2.26).

This is most easily done by computing the edges of (2.26), the one-dimensional
intersections of three faces among the four faces (2.26) of . There are four of them (i)
p=p=A=0p = (i)p=A4=0p =p = (iii)2p =2p =2p = A=
and (iv)2p =2p =2p = A= |, where in each case, 0 is a parameter along the
edge (= 0 being the origin). The vectors (A =1,2,3,4) along the edges corresponding
to =1, namely (0,0,1,0), (0,1,1,0), (1 2,1 2,1 2,1 )and (1 2,1 2,1 2, 1 ) form
a basis in  asner-exponent space. Any vector can thus be expanded along the

= . A point in asner-exponent space is on or inside the wall chamber if
and only if its coordinates p in this basis fulfill p 0 with  inside when p 0 for
all A . Thus, if all the edge vectors are timelike or lightlike, the asner conditions
are incompatible with the inequalities (2.24) since any linear combination of causal vectors
with non-negative coe cients is on or inside the forward light cone (the s are future-
directed since p  p p 0 for all of them). If, however, one (or more) of the edge
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vectors lies outside the light cone, then, the asner conditions and the inequalities (2.24)
are compatible. The nature of some of the edge vectors depends on the value of the dilaton
coupling  while the first one is always lightlike and the second one always timelike, the
squared norm of the last twois 3 2 1 =(2 3 ) (2 ). This determines the critical
value

[

Wl o

(2.29)

such that the edge vectors are timelike or null (incompatible inequalities) if ., but
spacelike (compatible inequalities) if .. ote that the value of that arises from
dimensionally reducing 5-dimensional vacuum gravity down to 4 dimensionsis = 6 and
exceeds the critical value. This explains the conclusion reached in [14] that the gravity-
dilaton-Maxwell system obtained by alu a- lein reduction of 5-dimensional gravity is
oscillatory.

e shall assume from now on that . and that the asner exponents fulfill the
above inequalities. For later use, we choose a number 0 so that, for all ,

2p A, 2p A and p 2. Reduce if necessary so that 7. 1f
is reduced, it may be necessary to shrink  so that the conditions imposed in section 2.2
remain satisfied. In section 2.5 it is assumed that and are such that the conditions
imposed in section 2.2 and the conditions imposed in this paragraph are all satisfied.

h em h h e le o he e m er
eol o e o

Theorem 3 in [15] (theorem 4.2 in preprint version), on which we rely for our result, states
that a Fuchsian equation ( as we mentioned above, an equation of the form (1.5) where

satisfies a positivity condition and is regular, which includes a boundedness property)
has a unique solution  that vanishes as 0, and furthermore spatial derivatives of
of any order vanish as 0, as shown in [28]. ur goal is to recast the Einstein-matter
evolution equations as a Fuchsian equation for the deviations from the velocity-dominated
solutions. Thus, we denote the unknown vector as

:( ab? abca aba sy oas 9 a’ ab) (230)
where the variables ¢, are related to the Einstein-matter variables by
Gab — YGab YGac “ Cb; (231)
(%) = “bes (2.32)
ab = gac( cb “ Cb), (233)
¢ = ¢ 7, (2.34)
o) = o (2.35)
= 5 (2.36)
= Py (2.37)
b = a  oa (2.38)



s the exponentiation of a matrix with components

In the first of these equations

¢y such as occurs in (2.13). The expression * is for each fixed value of ¢ and b the number
which is raised to the power given by the number ¢ (defined below). In equations (2.31)
and (2.33) there is no summation on the index b (but there is a summation on ¢). In

(2.38) 4 is a totally antisymmetric spatial tensor, which contributes three independent

components to . This assumption is consistent with the form of the evolution equation
for 4, equation (2.46) below. The exponents appearing in (2.31) (2.38) are as follows.
Define =4, = 100 and = 200 (where is the same (small) quantity which

entered the definition of the auxiliary exponents , in section 2.2 and which was further
restricted at the end of section 2.4). All of these quantities are independent of and
Finally define

ab:2max(b a,O) =2 ab 2[1

ote that the numbers ¢, are all strictly positive. In the second definition of %, we
have used the fact that the , s are ordered. The role of “; is to shift the spectrum of
the Fuchsian-system matrix , in equation (1.5), to be positive. It is not clear to what
extent the choice of
that the (triangle-like) inequality (42) of [15] (inequality (5.9) in preprint version) is a key
property of these coe cients. e shall further comment below on the specific choice of
“y and its link with the B L-type approach to the cosmological behaviour near = 0.

hen writing the first-order evolution system for ~we momentarily abandon the re-

p 1s fixed by the requirement of getting a Fuchsian system. It seems

striction that g, and ,; be symmetric, as in [15]. Thus we need to define g*°, and we
do so by requiring that g,,¢"° = ,°. This implies that ¢*’¢g,. = .. e lower indices on
tensors by contraction with the second index of g,;, and also raise indices on tensors by
contraction with the second index of ¢**. This choice is so that raising and then lowering
a given index results in the original tensor, and the same for lowering and then raising an
index. The position of the indices on quantities appearing in  and other such quantities
is fixed. Repeated indices on these quantities imply a summation. n the other hand, as
we already mentioned above, one qualifies the summation convention by insisting that in-
dices repeated only because of their occurrence on p,, ,, %, and other such non-tensorial
quantities should be ignored when determining sums.
Substituting (2.31) (2.38) in the evolution equations yields equations of motion for

of the form (1.5)

(2.39)
e = (%) [ “p) (2.40)
oSS O )l ) = T (tr ) % O M) (2.41)
— 0 (2.42)
«= W) )al) (2.43)
= > Pftr )4 F) Pg™ a b “a

g gg0m ' 7979 ac s (2.44)

o= (g )
(49" %é‘g“) 99" - (2.45)



1 R 1
ab ab — g 2 a(——gbc - ) ,;b——gc (246)
g g

All the quantities entering these equations have been defined, except  %;. This is done

by taking the Ricci tensor of the symmetric part g(,s) of gas [15]. More explicitly, p =

g% o, with
ab = ab — ( ab) '-’1( b) ab b a a b
(2.47)
and the connection coe cients in the frame , |
C 1 C 1 C
w=5 9 alge))  elgca) @) @ 96y . 5w (2.48)

Here, ¢* is defined as the inverse of J(ap)- nce it is shown that the tensor g,; in equation
(2.31) is symmetric, then it follows that %, = ¢ and that equations (2.39) (2.46) are
equivalent to the Einstein-matter equations.

A good deal of the work needed to show that equation (1.5) (as written out in equations
(2.39) (2.46)) is Fuchsian was done in [15], in the massless scalar field case considered
there. The form of the velocity-dominated evolution and the form of the function are
the same in the two cases except for the crucial addition of new source terms and new
evolution equations involving the Maxwell field. The presence of the new components does
not alter already existing parts of the matrix | nor already existing terms in . The
di erence between  here and  in the massless scalar field case considered in [15] is that
here there are additional rows and columns, such that the only non-vanishing new entries
are on the diagonal and strictly positive. Therefore the argument in [15] that their
satisfies the appropriate positivity condition implies that our  satisfies the appropriate
positivity condition.

n the other hand, it is crucial to control in detail the new source terms in , connected
to the Maxwell field, which were absent in [15]. It is for the study of these terms that the
results of [1], and in particular the inequalities (2.24) which were shown there to guarantee
that Maxwell source terms become asymptotically subdominant near the singularity, be-

come important. Recall that the crucial criterion for the source (, , , ) is that it be

(), for some strictly positive . In regard to this estimate, we use the notation big

and small  as follows. Given two functions (, , , )and G(, , , ) we use

the notation (G, to denote that, for every compact set , there exists a constant
and a number 0 such that (, , , ) G(, ,, ) when(, , ) and
0 (see Definition 1 in [15]). If G is a function only of (e.g. a power of ), then
we replace G with = (G). If (, ,, )= ( ),then by reducing the value of

(keeping it positive) we have that (, , , )= ( ) with a small o which denotes
that tends to ero uniformly on compact sets  as 0.

The new source terms involving the Maxwell field are the last four terms in =~ % (see
equation (2.1)), the last two terms on the right hand side of equation (2.44) and the terms
of the right hand sides of equations (2.45) and (2.46).
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The calculation of the estimates starts in the frame, , , defined in section 2.2. For
more details concerning the basic estimates, we refer the reader to [15]. In the frame
the asner-like metricis ( (2.13))

Gab = gac( ) - 5 (249)
b
ab ( ) ° ch
9" = - 97 ), (2.50)
where the matrix is the diagonal matrix “; « s which commutes with .  ith our
choice of frame, gus( )= awand ¢*( )= “° InLemma?2 in [15] (lemma5.1 in preprint
version), the form of (2.49) and (2.50) is considered and it is shown that g, = ( ) and
g**= (). It is useful to write down expressions for the proposed metric and extrinsic

curvature in the frame , . The components in terms of this frame are

o [+
Gab = Gab Gac b
[+ (o] [+
ab — gac( b b)
Here, ¢ = ¢ e b= a4 b is symmetricin a, b, % = ° . To get an estimate
9 b b y ) b a

for the inverse metric, we note first that the inverse of g,. ¢ is given by ¢°* g.. Thus it

is possible to express the latter quantity algebraically in terms of g, and ¢,.  ow define

o= (0 g g, (2.51)

which, from what we ust observed, can be expressed algebraically in terms of known
quantities and %,. Then one has

gab: gab o ac gcb (252)

As a consequence of an argument given in [15] which uses the (triangle-like) inequality (42)
of that paper ((5.9) in preprint version) and the matrix identity preceding it, this exhibits

e, as a regular function of *,. In particular, if it is known that ¢, is (1) then the same
is true of 9.

To better grasp the usefulness of the introduction of the exponents “, and ¢, and
the link of the Fuchsian estimates with the approximate estimates used in the B L-like
works, let us consider more closely the simple case where all the asner exponents are
distinct (Case III). In this case p, = , and one can diagonali e the asner-metric, so
that, in the rescaled frame ,, we have simply (for all ) gab( ) = ap. In such a case,
the B L-type estimates would be obtained (in the time-dependent rescaled frame ,) by
approximating the exact metric by its asner limit, i.e. simply g,, ()= 4. By contrast,
the estimates of the Fuchsian analysis are made with the exact metric, gup( ) = @ %,
in which %, being part of | is considered to be in a compact set and hence is bounded.
As the diagonal “, = 0, we see that (in the frame ,) the diagonal components of
the Fuchsian metric asymptote those of the B L metric, and that both are close to
one. Concerning the non-diagonal components (in the frame ,) of the Fuchsian metric
we see that they are constrained, by construction (i.e. by the choice %, = ., ), to
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tend to ero faster than . This closeness between the metrics used in the two types
of estimates explains the parallelism between the rigorous results derived here and the
heuristic estimates used in B L-type works. If we come back to the general case where
the asner metric cannot be diagonali ed in an analytic fashion, the optimal estimates
become worse by a negative power of (coming from the estimate of the matrix di erence
2( ) in equations (2.49), (2.50) above). The proposed metricin the frame , satisfies

then

ab and  ¢*

The proposed inverse metric in the adapted frame is

ab __ ab a a ch

g =49 c 9
The proposed metric in the adapted frame satisfies

Gab and ¢ (2.53)

Estimates of spatial derivatives of the proposed metric are also needed.

c(gab) and c(gab) )
o(gas) and (g™ (2.54)

for some strictly positive

The determinant of the proposed metric also appears in some of the new source terms.
From (2.13), the form of g¢u( ) and tr = 1, one gets g = . From (2.49) and
gu( ) = a5 one gets g = 1. The expression for the determinant is a sum of terms of
the form ¢,pg.49 , such that in each term, each index, 1, 2, 3, occurs exactly twice. From
the asner relation for the , s and the relation between the two frames, it follows that

g = g. Considering the form of the various expressions, one then obtains 1 g = (),
g= (),1 g= ( )yandl g 1 g= > )= ). Spatial
derivatives of the determinant also appear in . Considering the form of g g and that

o( g) =0, it follows that ,(g)= (* ), and

(9)= ( ° ) (2.55)

Finally,

9 )= = ( ° )

29

Let us now consider the new source terms in , beginning with the last four terms of

(o} a

®,. To estimate the contributions of and 5 it is su cient to note from (2.37)
and (2.38) that * = (1) and ., = (1). Then we get, using the definition of %, and
(2.53),
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for some strictly positive . The crucial inputs in getting these estimates are the inequalities
(2.24). e recall also that the quantity (linked to (2.24) being satisfied) was introduced
at the end of subsection 2.4. The estimate of the last two terms on the right hand side of
(2.44) is

1
5 a b _ B —
~Ya - - 3
5%t ( ) ()
Bgabgc ac b = ( g )= ()
The right hand side of (2.45) is (2 # )= (). The right hand side of (2.46)
is (> F ) = (). The other terms which occur in  were estimated in [15],
resultingin = ().
To show that we indeed have a Fuchsian equation, we need to check not only that
= (), but also that = () and = (), along with other regularity

conditions [15, 28]. In [15] it is shown that is regular with equation (31) in that paper and
the remarks following equation (31). In our case there is a factor involving the determinant
of the metric in various of the termsin  which are not present in the case considered in [15].
The discussion surrounding equation (31) in [15] applies to our case as well, even for terms
in containing ¢ . The asner-like contribution is the leading term, and this function
of and can be factored out.  hat is left is of the form (, , , )(1 (, . )
which is analyticin at = 0. The conditions listed following equation (31) hold. Thus
we conclude that (1.5) as written out in (2.39) (2.46) is a Fuchsian equation.

It remains to show that g, is symmetric, so that equation (1.5) as written out in (2.39)

(2.46) is equivalent to the Einstein-matter evolution equations. The structure of the
argument is the same in any dimension and so it will be written down for general d . The
number of distinct eigenvalues of %, 1s maximal almost everywhere. Thus it is enough to
show that ¢g,, and ,; vanish in the case that the asner-like metric is diagonal, since
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then by analytic continuation they vanish on the entire domain. e therefore consider the
case that the asner-like metric is diagonal.

The redefinitions (2.31), (2.33) from the variables g5, 4 to the variables ¢, %, were
viewed in the previous subsections as a change between variables with no particular sym-
metry properties in their indices (18 on each side). ne can, however enforce g,, = 0 by
assuming that ¢ is symmetric and vice-versa. Indeed, under our diagonality assumption
for the asner-like metric, gup( )= ¢ % where %, = , is in
(a,b). Accordingly, imposing the symmetry %, = °, algebraically ensures the symmetry

of g,5. Similarly, one can enforce ,; to vanish by imposing consistent constraints on %,
inserting (2.31) into (2.33) (with the velocity-dominated solution diagonal) and writing

out the constraint 4 pa = 0 gives the following condition on %
ot tm P 0 (%% P f) =0, (2.56)
with (). = 2p ac 2p be 2p ab 2p. . These conditions show that

there are only six independent components among the “;, which can be taken to be those
with @ b. This is because, the relation (2.56) can be solved uniquely for the components
“, with @ b, given the other ones, at least for small. That this is true can be seen
as follows. Rearrange the equations (2.56) so that the terms containing “, with a b
are on the left hand side and all other terms are on the right hand side. The result is
an inhomogeneous linear system of the form A(, ) (, )= (, ) where A(, ) and
(, ) are known quantities and denotes the components %, with a b which we want
to determine. Furthermore A( , ) = (1), where denotes the identity matrix. It
follows that A( ) is invertible for small, which is what we wanted to show. The solution
“ (a  b) remains moreover bounded when ba and %, are in a compact set. e shall
assume from now on that “; is symmetricand %, constrained by (2.56), so that symmetry
of the metric is automatic. The redefinitions (2.31), (2.33) from gup, o to %, % can
now be viewed as an invertible change of variables, from 12 independent variables to 12
independent variables. e can also clearly assume %, in (2.32) to be symmetric in «, b.
ith these conventions, there are less components in  than in the previous subsections.
The independent components can be taken to be ?;, %, and %, with a b, together
with the matter variables. An independent system of evolution equations is given by (2.39)
(2.41) with @ b for the gravitational variables, and the same evolution equations as
before for the matter variables. These evolution equations are equivalent to all the original
evolution equations, since the equations (2.39) (2.41) with @ b are then automatically
fulfilled, as can be shown using the fact that the Einstein tensor and the stress-energy tensor
are symmetric for symmetric metrics. To see this it must be shown that given a symmetric
tensor Sy, the vanishing of S% = ¢*°Sy for a b implies that S,; = 0. Consider the
linear map which takes a symmetric tensor S, raises an index, and keeps the components
of the result with @  b. This is a mapping between vector spaces of dimension d(d 1) 2
and can be shown to be an isomorphism by elementary linear algebra. This proves the
desired result.
ow, this reduced evolution system is also Fuchsian. This follows from the same reason-
ing as above, which still holds because all components of | including the non-independent
ones, can still be assumed to be bounded. Therefore, there is a unique  that goes to
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ero, which must be equal to the one considered in the previous subsections. The metric
considered previously is thus indeed symmetric.

Given an analytic solution to the velocity dominated evolution equationson (0, ) ,such
that inequalities (2.24) are satisfied, we now have a solution to a Fuchsian equation (and
a corresponding solution to the Einstein-matter evolution equations) in the intersection of
a neighbourhood of the singularity with (0, ) where is a neighbourhood of an
arbitrary point on . These local solutions can be patched together to get a solution to
the Einstein-matter evolution equations everywhere in space near the singularity. It may
seem like there could be a problem patching together the solutions obtained on distinct
neighborhoods with non-empty intersection because the Fuchsian equation is not the same
for di erent allowed choices of and adapted local frame. The construction is possible
because di erent allowed choices of and local frame result in a well-defined relationship
between the di erent solutions which are obtained, such that the corresponding Einstein-
matter variables agree on the intersection (up to change of basis). It therefore follows that
given an analytic solution to the velocity dominated evolution equations on (0, ) ,
such that inequalities (2.24) are satisfied, our construction uniquely determines a solution
to the Einstein-matter evolution equations everywhere in space, near the singularity.

e m er o r

The time derivative of the matter constraint quantities (the left hand side of equations (2.2)
and (2.3)) vanishes. If the velocity-dominated matter constraints are satisfied, the matter
constraint quantities are (1). A quantity which is constant in time and (1) must vanish.
Therefore the matter constraints are satisfied.

It remains to show that the Hamiltonian and momentum constraints are satisfied, that
and ,, defined in (1.9) and (1.10), vanish. Since we now have a metric, g , it follows that

G = 0. Since the matter evolution and constraint equations are satisfied, it follows
that = 0. From the vanishing of the right hand side of (1.12) and the vanishing of
the covariant divergence of both the Einstein tensor and the stress-energy tensor, it follows
that

= 2tr) 2 *, (2.57)
L= () . % . (2.58)
ow define = ' and , = ay With 0
=21 tr) 2 o, (2.59)
coa= 0 ). (2.60)



n the right hand side of (2.59) and (2.60) and , are to be considered as components
of =( , 4). Ifitis shown that (2.59) and (2.60) is a Fuchsian system, then there is a
unique solution such that = (1). Itis clear that = 01isa solution to (2.59) and (2.60).
If it is shown that = (1) and , = (1), (i.e. that = ( Hand ,= ( ),
then they must be this unique solution. Furthermore, it is su cient to consider the case
that the asner-like metric is diagonal, since the number of distinct eigenvalues of % is
maximal on an open set of . If the constraints vanish on an open set of their domain,
then by analytic continuation they vanish everywhere on their domain.

Therefore we consider the case that the asner-like metric is diagonal and show first
that

I tr = () (2.61)
“ao= ) (2.62
(when , is bounded) so that the system (2.59), (2.60) is Fuchsian (the complete regularity
of (, , , ) defined by (2.59) and (2.60) can be easily verified) and second, that
- (o (263
. = ) (2.64

Some facts which will be used to show this follow. Consider indices a 1,2,3 . The
following inequalities hold for some positive integer  and for real numbers, ,, ordered
such that if a b, then p. (In later sections we define ordered auxiliary exponents,

e, for a 1, ,d , for arbitrary fixed d 2. Then (2.65) (2.67) hold more generally

for indices in 1, ,d .)

a a 1 a An 0 (2-65)
a a 1 a An 2 a a (266)
a a 1 a an 2 a a (2-67)

The latter two inequalities hold for any , in 0, |
In the case that the asner-like metric is diagonal, , = p,. The metric in the frame

a 18 gab = ab,

gab — ab b ,

ab ab a a

g = b

The extrinsic curvature satisfies Y= %y Dy,
a a (07 a

b = b Pb bs
( a a ) (0] a
b b - by
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and tr = 1,
tr = 1 2 tr, (2.68)
(tr ) (v ) = (%) (2.69)
The following estimates will also be useful.

a b a b 9 a a o o a b

b oa b a4 = a Pa b oa
= ") (2.70)
and
o(tr tr )= 4 “tr )= ( “) (2.71)
The structure functions of the frame , are
b = o a(ps) 5 Inoa(pa) %

It is convenient to have an estimate of ¢, the connection coe cients (2.48) in the frame
« , term by term.

Term A 9" g ) : (2.72)

Term B 9 u(9a) : (2.73)

Term C 9 (9a) : (2.74)

Term D G : (2.75)
b

Term E Cp o : (2.76)

Term F 5, (2.77)

The di erence between the connection coe cients for the metric ¢, and those for the

Cc

asner-like metricis = ¢, °y- 1t 1s useful to have the estimates

a a

1
= gab C(gflb) ac 9

ac ~ 5
and
a 1 ab o
ac — 59 c(gab) (278)
First, we show (2.61) and (2.62). From equation (2.68),1  tr = ( ® ). Similarly, we
can estimate * ,
a . = gab -
ab c
= Jg a( b ) ab ¢



The first term is

9 s ) (2.79)

From (2.72) (2.76) the second term is

9w (2.80)

From (2.79) and (2.80), the desired estimate, * , = ( ') is obtained. Thus, the
system (2.59), (2.60) is Fuchsian.

ext we turn to (2.63) and (2.64). A term that appears in the momentum constraint
is ., %. The estimate is needed in the adapted frame, and the covariant derivative is

calculated in the frame , . This adds a factor of

Furthermore, the quantity whose estimate will be required is the di erence between this
term and the corresponding term in the velocity-dominated constraint,

a b o 'y o= a( ab ab) ic cb ZC( Cb Cb) (2-81)

ab e b o (2.82)

The right hand side of (2.81)is ( * ). The terms in line (2.82) originating from

Term E of the connection coe cients (see (2.76)) are cancelled in the sum, due to the

a a

antisymmetry of _, and the symmetry of and For estimating the rest of the

terms in line (2.82), it is convenient to rewrite this line as,

ab e b e = b Zb( ‘e ac) ) (2-83)
with
c 1 o b o c o a
T KR BN I (2.84)
o c [ a( o b ) b( o a) ( o ab)] (285)
ke oy T (2.86)
o b e o c 5 o c @ b . (287)

The terms in line (2.87) need not be considered since they originate from Term E of the
connection coe cients and as stated above the contribution from this term is cancelled by
termsin = ¢ “ . So considering only lines (2.84) (2.86), the first term on the

[

right hand side of (2.83) is
ob Pa = (% ) terms which are cancelled by . (2.88)

Since the terms in the sum come with di erent weights, p,, (2.78) cannot be used in (2.88).
But the estimate is straightforward. For example, the term in (2.88) originating from
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the 3rd term in line (2.86) = ® ). Finally

a

consider the rest of the right hand side of (2.83),

[

@ e ) b(ga) (gab) Ga s P 4 o O (2.89)

DO | =

For all terms except the 5th term in (2.89), the estimate, ( ® ) can be obtained
from (2.72) (2.77). The fifth term originates from Term E of the connection coe cients,
and was already considered above. Therefore

a ab a ab = ( “ ) (290)
ext the matter terms are estimated. For the Hamiltonian constraint, an estimate of
is needed.
(¢ (& = 2 ¢ °( ) )

Therefore,
= ) (2.91)
The di erence between the matter terms in the momentum constraint and in ~ , is
¢ o) ¢ o @) = ¢u(7) (P )ue) = (7,
(" " w) o= () (292

Estimates related to the determinant which are relevant to (2.92) can be found immediately
preceding equation (2.55). From the estimates ust obtained,

a o= ( ) (2.93)
From = ( ® ) (shown in [15]) and from = 0, (2.70), (2.69), (2.91) and the
relative magnitude of the various exponents, it follows that = ( Y. From , =0,

(2.90), (2.71), (2.93) and the relative magnitude of the various exponents, it follows that

o= )-
Since (2.63)  (2.64) are satisfied, the Hamiltonian and momentum constraints are
satisfied.
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o he mbero rb rr o

The number of degrees of freedom of the Einstein-Maxwell-dilaton system in 4 spacetime
dimensions is 5 2 for the gravitational field, 2 for the electromagnetic field and 1 for the
dilaton. Hence, a general solution to the equations of motion should contain 10 freely
ad ustable, physically relevant, functions of space (each degree of freedom needs two initial
data, and ). This is exactly the number that appears in the above asner-like solutions.

The metric carries four, physically relevant, distinct functions of space. This is the
standard calculation [4].

The scalar field carries two functions of space, A and

® and 4. These are

The electromagnetic field carries six functions of space,
physically relevant because they are gauge invariant, but they are sub ect to two

constraints, leaving four independent functions.

A di erent way to arrive at the same conclusions is to observe that the respective number
of fields, dynamical equations and (first class) constraints are the same for the velocity-
dominated system and the full system. Hence, a general solution of the velocity-dominated
system (in the sense of function counting) will contain the same number of physically
distinct, arbitrary functions as a general solution of the full system. This general argument
applies to all systems considered below and hence will not be repeated.

In [15] a di erent way of assessing the generality of the solutions constructed was used.
This involved exhibiting a correspondence between solutions of the velocity-dominated
constraints and solutions of the full constraints using the conformal method. That method
starts with certain free data and shows the existence of a unique solution of the constraints
corresponding to each set of free data. It is a standard method for exploring the solution
space of the full Einstein constraints [42] and in [15] it was shown how to modify it to
apply to the velocity-dominated constraints.  hile it is likely that the conformal method
can be applied in some way to all the matter models considered in this paper, the details
will only be worked out in two cases which su ce to illustrate the main aspects of the
procedure. These are the Einstein-Maxwell-dilaton system with D = 4 (this section) and
the Einstein vacuum equations with arbitrary D 4 (next section).

The procedure presented in the following is slightly di erent from that used in [15].
Even for the case of the Einstein-scalar field system with D = 4 it gives results which
are in principle stronger than those in [15] since they are not confined to solutions which
are close to isotropic ones. In the presence of exponential dilaton couplings a change of
method seems unavoidable. ne part of the conformal method concerns the construction
of symmetric second rank tensors which are traceless and have prescribed divergence from
the truly free data. In this step there is no di erence between the full constraints and the
velocity-dominated ones and there is also no essential dependence on the dimension. In
view of this we say, with a slight abuse of terminology, that the free data consists of a
collection ¢up, a5, @, ¢, %, o Where g, is a Riemannian metric, 4 is a symmetric
tensor with vanishing trace and prescribed divergence with respect to g,;, 1s a non- ero

® and ,; are ob ects of the same kind as

constant, ¢ and ¢ are scalar functions and
elsewhere in this section. All these ob ects are defined on a three-dimensional manifold.
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ext we introduce a positive real-valued function  which is used to construct solutions of
the constraints from the free data. Define g,p =  Gup, ap = ab Gab, ¢ = o .
The ob ects gup, aps ¢, ¢, ¢ and ; satisfy the constraints provided the divergence of
b 18 prescribed as . and  satisfies a nonlinear equation which in the case of the full
Einstein equations is known as the Lichnerowic equation. In the case of the velocity-
dominated constraints it is an algebraic equation. The Lichnerowic equation is of the

form
1 3
= « = =0 2.94
: « o ? (2.94)
Here =1, = 3and = 7. The functions @ depend on the free data and their
exact form is unimportant. All that is of interest are that each a is non-negative and that
at any point of space a =01 «»=0,a =01 the electromagnetic data vanish and
a =01 ¢ and . vanish. ext consider the velocity-dominated constraints for d = 3.
The analogue of the elliptic equation (2.94) is the algebraic equation
3
b — =0 2.95
! (2.95)

Here b is a non-negative function which vanishes at a point of space 1 ¢ and ,; vanish.
This can be solved trivially for 0 provided b does not vanish at any point since the
mean curvature  is non- ero. For each choice of free data satisfying this non-vanishing
condition there is a unique solution  of (2.95).

In order to compare the sets of solutions of the full and velocity-dominated constraints
in these two cases it remains to investigate the solvability of the elliptic equation (2.94) for

. A discussion of this type of problem in any dimension can be found in [43]. e would
like to show that for suitable metrics on a compact manifold the equation for  always
has a unique solution, the situation is exactly as in the case of the velocity-dominated

equations. The problem can be simplified by the use of the Yamabe theorem, which says
that any metric can be conformally transformed to a metric of constant scalar curvature

1, 0 or 1. In the following only the cases of negative and vanishing scalar curvature of
the metric supplied by the Yamabe theorem will be considered. A key role in the existence
and uniqueness theorems for equation (2.94) is played by the positive eros of the algebraic
expressions 8 a * 6 and 8 a * 6 . Provided , @ does not
vanish anywhere it is possible to show that each of the algebraic expressions has a unique
positive ero for each value of the parameters.

The significance of the information which has been obtained concerning the eros of
certain algebraic expressions is that it guarantees the existence of a positive solution of the
corresponding elliptic equations for any set of free data satisfying the inequalities already
stated using the method of sub- and supersolutions ( [43]). In the case of equation
(2.94) uniqueness also holds. For in that case the equation has a form considered in [44] for
which uniqueness is demonstrated in that paper. The advantage of the three dimensional
case is that there the problem reduces to the analysis of the roots of a cubic equation,
a relatively simple task compared to the analysis of the eros of the more complicated
algebraic expressions occurring in higher dimensions.

For the purpose of analysing asner-like (monotone) singularities it is not enough to
know about producing ust any solutions of the constraints. It is necessary to know that
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we can produce a su ciently large class of solutions which satisfy the inequalities necessary
to make them consistent with asner behaviour. Because of the indirect nature of the way
of solving the momentum constraint (which has not been explained here) it is not easy to
control the generali ed asner exponents of the resulting spacetime. There is however, one
practical possibility. Choose a spatially homogeneous solution with Abelian isometry group
(for d = 3 this means Bianchi type I) which satisfies the necessary inequalities. Take the
free data from that solution and deform it slightly. Then the generali ed asner exponents
of the final solution of the velocity-dominated equations will also only be changed slightly.
If the homogeneous solution is defined on the torus then it is known that any other
metric of constant scalar curvature has non-positive scalar curvature. Therefore we are in
the case for which existence and uniqueness is discussed above. e could also start with
a negatively curved Friedmann model.

cuu o ution it

The second class of solutions we consider is governed by the action (1.2), with D 11. The
d 1 decomposition is as in section 1.6, with the matter terms vanishing. The asner-like
evolution equations are (2.7) and (2.8). The general analytic solution of these equations is
given by (2.12) and (2.13). To obtain this form, we again adapt a global time coordinate
such that the singularity is at = 0. e label the eigenvalues of |, p, | pg, such that
pa pyifa b, The eigenvalues again satisfy ¢ p =1, coming from tr = 1. As in
the D = 4 case, in order to preserve analyticity even near the points where some of the
eigenvalues coincide, while retaining control of the solution in terms of the eigenvalues, we
introduce a special construction involving auxiliary exponents and an adapted frame.

In higher dimensions, there are more possibilities to take care of, but the idea is the

same as in the D = 4 case. Consider an arbitrary point . Let  be the number of
distinct eigenvalues of  at . Let be the multiplicity of p 1, , ,withp
such that py is strictly less than p ifb A. Thusp , ,p are equal at . For
each integera A, A 1 , define
1
.= — p;
J
on a neighbourhood of ., .  ote that if = 1, then = p . Shrinking if
necessary, choose 0 such that for , for a A, LA 1 and for
b A;, LA ;1 ,if = [ then p, p 2, whileif = |, p, m 2.
The adapted frame , 1is again required to be analytic and such that the related
frame , is orthonormal with respect to the asner-like metric at some time 0,
with , = «- In addition, it is required that ., span the eigenspace
of  corresponding to the eigenvalues p , .p . ote that if =1 then is
an eigenvector of  corresponding to the eigenvalue . The auxiliary exponents, ,, are
analytic, satisfy the asner relation (  , = 1), are ordered ( , p fora  b), and satisfy
P, d Pd and maX, o Pa 2. If a = by then Gab, gabv YGab and gab all

vanish, and the same is true with ¢ replaced by
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The velocity-dominated constraints corresponding to the Hamiltonian and momentum
constraints are =0and , =0, with and . as in equations (2.18) and (2.19),
with the matter terms vanishing. For the solution (2.12)  (2.13) the velocity-dominated
Hamiltonian constraint equation is equivalent to  p, = 1. Equations (2.21) (2.22) are
satisfied, so if the velocity-dominated constraints are satisfied at some , then they are
satisfied for all 0.

For this class of solutions, the inequality [13],

2p  p Pd 0, (3.1)

defines the set  which was referred to in the introduction. As shown in [13], this inequality
can be reali ed when the spacetime dimension D is equal to or greater than 11. As
in our Maxwell archetypal example above, we expect that this inequality will be crucial
to control the e ect of the source terms (here linked to the spatial curvature) near the

singularity. It is again convenient to introduce a number 0 so that, for all ,
4 2p  p pa . Reduce if necessary so that (2d 1). If is reduced,
it may be necessary to shrink so that the conditions imposed above remain satisfied.

It is assumed that and  are such that the conditions imposed above and the condition
imposed in this paragraph are all satisfied.
e again recast the evolution equations in the form (1.5) and show, for D 11, that

(1.5) is Fuchsian and equivalent to the vacuum Einstein equation, with quantities
and as follows. Let = ( %, °© , ) be related to the Einstein variables by (2.31)

(2.33). For general d define = (d 1) and define “; in terms of  as in section
2. Let and , be given by equations (2.39) (2.41), with % = 0. The argument
that  in equation (1.5) satisfies the appropriate positivity condition is analogous to the
part of the argument concerning the submatrix of  corresponding to ( , ) in [15]. A
transformation to a frame in which g, is diagonal induces a similarity transformation of

. The eigenvalues of the submatrix are calculated in this representation in [15], and the
generali ation of the calculation to integer d 2 is straightforward.

To obtain = () requires the estimate “= (). The strategy used here
is di erent from that used to estimate the curvature in [15]. The general problem is one of
organi ation. There are many terms to be estimated, each of which on its own is not too
di cult to handle. The di culty is to maintain an overview of the di erent terms. The
procedure in [15] made essential use of the fact that the indices only take three distinct
values and in the case of higher dimensions, where this simplification is not available, an
alternative approach had to be developed.

First %, is estimated by considering each of the five terms in the expression (2.47)
These five terms are expanded by considering each of the six terms in (2.48) if the indices

on ¢, are distinct, but carrying out the summation before estimating  ¢,. There are
thus 55 terms to estimate.  hile many of these terms are actually identical up to numerical
factors, the ease with which each term can be estimated, using the inequalities (2.65)
(2.67), led to estimation of all 55 terms, rather than first combining terms. e do however,
take into account that , =0if = for obtaining the estimates.

nce an equation such as (1.5) is shown to be Fuchsian, then it follows that spatial

derivatives of  of any order are (1). At the stage of the argument we are at here, we
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cannot assume = (1). This means that “p. must be used for ;( *,) in places
where a spatial derivative of ,( *,) occurs. This makes a slight di erence, compared to
section 2.6, in what estimate of the terms in the connection coe cients is used for the
first and second terms of (2.47) ( is replaced by ). There are additional di erences
from (2.72) (2.77), because there it is assumed that the asner-like metric is diagonal.
The estimates g, = ( )and ¢**= (), obtained in Lemma 2 of [15], hold in the

case we are considering, so that g and (see [15]) ¢ . This adds
factors of to the estimate of terms in the connection coe cients.
ith these considerations, from (2.48),
a 1 ab a
ac — 5 g C(g(ab)) ac (32)

Here we do not write out the estimates of all 55 terms, but instead give some examples,
with a number designating which term of (2.47) is being considered (1 ~ 5), and a letter
designating which term of (2.48) is being considered (A F). Thus, for example, term 1C

is
9 (g9 (9))
(3.3)
Term 3E is
9 9 9 ¢
c j ¢
(3.4)
In term 4, g, ., the terms resulting from expanding , are designated by
small letters a  f, and those from _ are designated by capital letters A F. Term 4dA
is
9" 9 96y 9 <9 )
¢ J
(3.5)
Term 4eD is
9" 9 965 " 9 9o
e J
! (3.6)
Term 5D is
9 990 )
c 7 c b
! (3.7)
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The estimates of the remaining terms are obtained as these. The examples include one of
the terms which limits the estimate for each possible choice of indices a and b. The result

1s,

ab 1 1 (38)

And

11 (d ) (d ) _— ( ) (39)

The estimate of the rest of the terms in  is obtained straightforwardly by checking
that the exponent of in each case is strictly positive. The other regularity conditions
that  should satisfy are shown to hold by equation (31) in [15] and the remarks following
equation (31). The symmetry of g, is shown for all ds in subsection 2.5.3. That the
Hamiltonian and momentum constraints are satisfied is shown by the direct analogue of
argument made in section 2.6 and the estimate = ( 1) obtained from equation (3.8).
The only change is that equation (2.80) is replaced by

9w . (3.10)

To conclude this section we discuss the solution of the velocity-dominated constraints
for the vacuum equations and D 4. The case D = 3 could be discussed in a similar way
but the analogue of the Lichnerowic equation has a di erent form and so for brevity that
case will be omitted. The discussion proceeds in a way which is parallel to that of the last
section. As already indicated there, the essential task is the analysis of the Lichnerowic
equation. In the present case we start with free data ¢,;, .5 and where ,; has ero
divergence. The actual data are defined by g, = (d )gab and ., = ab Gab-
The constraints will be satisfied is  satisfies the following analogue of the Lichnerowic
equation

d 2 b d(d 2) _
- @ a _ = A1
The corresponding equation in the velocity-dominated case is
d 2 d(d 2) _
ab -~ = = A2
Ad 1) “ 4 0 (3.12)

As in the case of (2.95) it is trivial to solve (3.12) provided ,; does not vanish at any
point. To determine the solvability of equation (3.11) it is necessary to study the positive

eros of the algebraic expressions b~ a  andb = a = wherea 0and
b 0. The second expression is very close to what we had in the velocity-dominated case
and clearly has a unique positive ero for any values of a and b satisfying the inequalities
assumed. Looking for positive eros of the first algebraic expression is equivalent to looking
for positive solutions of 7« b = 0. ote that the function on the left hand
side of this equation is evidently decreasing for all positive | tends to infinity as 0
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and tends to b as . Hence as long as the constant b is non- ero this function
has exactly one positive ero, as desired. This is what is needed to obtain an existence
theorem. It would be desirable to also obtain a uniqueness theorem for the solution of
(3.11). To obtain solutions of the velocity-dominated constraints of the right kind to be
consistent with  asner-like behaviour we can use the same approach as in the last section,
starting with asner solutions with an appropriate set of asner exponents.

C r d

Consider Einstein s equations, ) 3, with a massless scalar field as source, the action
given by S [gag] S [gap, @], and d 1 decomposition as in section 1.6. The stress-energy

tensor is !

=) 40) 4 59 () 60D g (4.1)
Thus = - ( ¢) g o(d) 5(d) , & = ¢ o(@), and T = g% 1(¢) [(P). A
crucial step in the generali ation to arbitrary D 3 is that the cancellation of terms

involving ¢ in the expression for % is not particular to D = 4. The scalar field satisfies
() ,0) 2% =0, which has d 1 decomposition

¢ (tr) ¢=¢" 4 10 (4.2)

Let the asner-like evolution equations be equations (2.7) (2.9), with solution (2.12)
(2.14) for time coordinate as in section 3. Given a point , let the neighbourhood

, the (local) adapted frame and the constant be as in section 3. Define = -( ¢)
and , = ¢ o ¢). The velocity-dominated constraints corresponding to the Hamil-
tonian and momentum constraints are =0and , =0, with and , given by
equations (2.18) and (2.19). For the solution (2.12) (2.14) the velocity-dominated Hamil-
tonian constraint is equivalent to p, A = 1. Equations (2.21) and (2.22) are satisfied
so if the velocity-dominated constraints are satisfied at some , then they are satisfied for
all 0. The restrictions defining the set  are the inequality (3.1) and, in addition, that,

for all ,A=0. From p, A =11t follows that p, 1 for each a. Therefore,
since  p, =1, p Pd 0. The constant 0 is chosen so that, for all ,
4 2p  p pg and
2p 2pqg (4.3)
ow reduce if necessary so that (2d  1). As before, this may in turn require
shrinking
The unknown = ( %, %, ", , a4, ) is related to the Einstein-matter variables

by (2.31) (2.36). The quantities and appearing in equation (1.5) are given by the
evolution equations (2.39) (2.43) and

= P4 Py Pgt L e g (4.4)
The argument that the matrix  satisfies the appropriate positivity condition is analogous
to the argument in [15]. Regarding the estimate = ( ), the estimate 4 =
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() was obtained in equation (3.9). The estimate > % = ( ) follows from the
inequality (4.3) and from 4  pg. The only other terms in  whose estimates are not
immediate from the estimates made in [15] are the last two terms on the right hand side of
equation (4.4). The covariant derivative compatible with the symmetri ed metric is used

in equation (4.4) for convenience. From the estimate ¢*° [15], equations (2.53)
and (2.54),
g’ and  (gan)
Therefore,
ab C ab c 1 C a
v w = 97 9 W) 5 Gan) 90
and

The other regularity conditions that should satisfy are again shown to hold by equa-
tion (31) in [15] and the remarks following equation (31). That g, is symmetric (so that
equation (4.4) and equation (4.2) are equivalent) is shown as in subsection 2.5.3. That
the Hamiltonian and momentum constraints are satisfied is shown by the analogue of the
argument made in section 2.6 and the estimate = ( 1) obtained from equation (3.8).

ote that the case D = 3 of this result has an interesting connection to the Einstein
vacuum equations in D = 4. As it follows from standard alu a- lein lines, the solutions of
the latter with polari ed (1) symmetry are equivalent to the Einstein-scalar field system
in D = 3 (see e.g. [40] and [41], section 5). Hence the result of this section implies that
we have constructed the most general known class of singular solutions of the Einstein
vacuum equations in four spacetime dimensions. These spacetimes have one spacelike
illing vector.

tt r d dri d ro or ot nti

| O O mo o

e now turn to the general system (1.1), but without the interaction terms more . These
are considered in section 7 below. The action is the sum of (1.2), (1.3) and  additional
terms, each of the form (1.4). The argument is based on that of section 4. It is enough
here to note the di erences. Furthermore, since there is no coupling between additional
matter fields, the di erences from the argument made in section 4 can be noted for each
additional matter field independently of the others. Therefore consider the th additional
matter field,



with A an  ;-form. This matter field contributes the following additional terms to the

stress-energy tensor, equation (4.1),

1 a1 1 o o

= — Qp-ap 2( ; 1) g A -rOp

J

Define "7 = g “7n . If ; =0, is a spatial scalar density. Throughout

this section and the next we use the following conventions. If ; = 0, then , .., 1isa
scalar, a5,  Ga, b, = 1, etc. The d 1 decomposition of the contribution of this matter

field to the stress-energy tensor is

— 1 g ) g 5 a1+an blbn
29 i a101 an On
1 a b An bn
ﬁg q a ay b by 5 (51)
j
1
a = — br---bn aby by (52)
j
1 ac C
ab = g _]gb 1gC gbn n " ! "
j
J a cietn 1 on
(d 1) bgCl 1 gCn n
j
1 ac 11 n n
— 9"y g T
j
J bgu gcn n
(d D 1) S "
The th matter field satisfies
ey =0, 5.3)
) .= 0, 5.4)
with d 1 decomposition into constraint equations,
1
a( “ "bn) cca @b b 5 sc @b e tn = 07 (55)
)
al b by ) (]27) bbb, = 0, (5.6)
and evolution equations,
a1-an _ b( —gbc ga1c1 gan Cn o ey ) bgbc ga1c1 gan Cn
1 a c _ajic c an Cn .
5 5979 9t g J coen (5.7)
1
@ an (; 1 (—ggm b Gan by e )
1)
( ]2 E) 2 Caalgc by Ga b Ga, bn brobn (58)
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The th matter field contributes the following terms to the evolution equation (4.2) for ¢.

tr = 7] a . ay-an  byebp
J ab an bn
5 9 g a apy b by (59)
2(; 1)
elo om e em
The asner-like evolution equations corresponding to this matter field are aran =
and @ wa, = 0. The quantities “* and ,.,, are constant in time with

analytic spatial dependence and both are totally antisymmetric.
The velocity-dominated matter constraint equations are equations (5.5) and (5.6) with
and substituted for and . Since all quantities in the velocity-dominated matter
constraints are independent of time, if the matter constraints are satisfied at some time
0, then they are satisfied for all 0. This matter field does not contribute to
Its contribution to , is the term shown on the right hand side of equation (5.2) with g,
and substituted for g, and . The velocity-dominated constraints corresponding
to the Hamiltonian and momentum constraints are =0 and , = 0, with and
o given by equations (2.18) and (2.19). Equations (2.21) and (2.22) are satisfied, so as
before, if the velocity-dominated constraints are satisfied at some 0, then they are
satisfied for all 0.
The presence of the matter field AU) puts the following restrictions on the set  [1].

2p 2p ;A 0 and  2p 2pg ;A0 (5.10)

The restrictions generali e the inequalities (2.24) found for a Maxwell field in 4 dimensions
and, like them, guarantee that one can asymptotically neglect the p-form AU) in the
Einstein-dilaton dynamical equations.
The constant  is reduced from its value in section 4, if necessary, so that, for all ,
2p 2p ;A and 2p 2pg ;A I is reduced, it may be
necessary to reduce , and in turn shrink , so that the conditions imposed in section 4
are still all satisfied.

h proper m e

The th matter field contributes the following components to the unknown in the Fuch-
sian equation (1.5).

a1 -an _ a1 -an B ai-an : 511)

g ay = aan P oa o, (5.12)
Here, = 100 as above, “"™" is a totally antisymmetric spatial tensor density, so
contributes ¢ independent components to , and 4 ..., is a totally antisymmetric

d

spatial tensor, so contributes components to . This is consistent with the form of

the evolution equations. ote that “" = (1) and , .., = (1).
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This matter field contributes additional rows and columns to the matrix  such that
the only non-vanishing new entries are on the diagonal and strictly positive. Therefore,
the presence of this matter field does not alter that  satisfies the appropriate positivity
condition.

The terms in the source  which must be estimated on account of the th matter field
are the following. It contributes terms to the components of  corresponding to  through

its contribution to  %.
1 ac Cn 1 n
_gb lgC gcn n
g
1 n n @
P : = (° )= () (5.13)
Cg%g gt Tt e b
11 n n o ( )
L L R AT

Here it is used that both “*"" and , .., are totally antisymmetric, so that the sums
indicated by a summation symbol are not over all indices. ote that the inequalities (5.10)
have been crucially used in getting the estimates (5.13) and (5.14). The desired estimates
for the other two terms are obtained similarly.

The terms contributed to the component of  corresponding to by the th matter
field are obtained by multiplying the right hand side of equation (5.9) by 7.

ST b ~ (= () (1)

Pgt g e b = (0 ) Y= () (516)

The termsin  corresponding to “*"™*" for the th matter field are obtained by multiplying
the right hand side of equation (5.7) by ~ #. These termsare (7 () )= ().
The termsin corresponding to , ..., for the th matter field are obtained by multiplying

the right hand side of equation (5.8) by ~ #. These terms are ( # )= ().
Thus the terms which occur in  due to the th matter field are ().

The time derivative of the matter constraint quantities for the th field (the left hand
side of equations (5.5) and (5.6)) vanishes. If the velocity-dominated matter constraints are
satisfied, the matter constraint quantities are (1). A quantity which is both constant in
time and (1) must vanish. Therefore the matter constraints for the th field are satisfied.

ext the matter terms due to the th field in the Einstein constraints are estimated, in
order to verify that they are consistent with equations (2.63) and (2.64). The contribution
to the Hamiltonian constraint is, from equation (5.1),

;galbl Gan by " bt = ( ) = ( )7 (5'17)
A = ( )= 1) (5.18)
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The contribution to the momentum constraint is

1 1
a a = (—E ——g) Pt et (5.19)
1
—
g

b-bn aby---bn br-bn aby by ) = ( )

Estimates related to the determinant which are relevant to (5.19) are analogues of the
estimates for d = 3 immediately preceding equation (2.55). The form of these estimates
g

(> %), ulg =

Jd9)= (), (5.20)

for general d will now be presented. These are 1 ¢ 1

(= 1),

and

tr In tiono u critic do in

he explicit determination of the subcritical range of the dilaton couplings for which the
inequalities on the asner exponents are consistent so that  exists may be a complicated
matter. e consider in this section a few cases and give some general rules. As in subsection
4, we introduce the metric

dS =G dpdp = dp, ( dp,) (dA) (.)

in the D dimensional space of the asner exponents (p,, A) (p ). his metric has again
Minkowskian signature ( , , , , ). he forward light cone is defined by

G pp =, Pa (.)

he asner conditions met in the previous section are equivalent to the conditions that
the asner exponents be on the forward light cone (since p, = can always be achieved
by positive rescalings).
he wall chamber  is now defined by

p P Pd (.3)
p P P (.4)
and, for each p form,
p P p LA (.5)
PP P 24 ()

hese inequalities may not be all independent. he question is to determine the allowed
values of the dilaton couplings for which the wall chamber contains in its interior future
directed lightlike vectors. t is clear that this set is non empty since the inequalities can
be all fulfilled when the couplings are ero (the p, s can be chosen to be positive in the
presence of a dilaton).
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d e 1 o ell em me o

e consider first the case of a single form in D 4 dimensions. his case is simple
because the inequalities ( .4) are then consequences of ( .5) and ( . ), which read

p —A , p p pa —A (.7

Furthermore, the number of faces of the wall chamber (defined by these inequalities and
( .3)) is exactly D and the edge vectors form a basis. hus, the analysis of subsection .4
can be repeated.

A basis of edge vectors can be taken to be

s ) (.8)

n ( .9), the first components are equal to 4 and the next d components are
equal to
he first vector is lightlike. he th vector in the group ( .9) has squared norm

(d I (d 3) d 4 ) _
) o T )
while ( . ) and (. ) have norm squared equal to
dd ) X (-3)
and i
aa ) ML (-4

respectively.  he subcritical values of  must (by definition) be such that at least one
of the expressions ( . ), ( . 3) or ( . 4) is positive. o determine the boundaries

[

of the subcritical interval, we first note that ( . 3) is positive whenever , with
= d(d ). imilarly, ( . 4) is positive whenever with = (d
) d(d ). o analyse the sign of ( . ), we must consider two cases, according to
whether (d 3) dis positive or negative.
fd 9, the factor (d 3) dis always positive (for any choice of |, =
., ,d ) and the expression ( . ) is positive provided , with
(d (d 3) d



he critical value . is equal to the largest number among and . his largest
number is  for d = 3,4,5, , for d =7 and for d =8. e thus have the following
list of critical couplings

4 37
c = T —, d:4
3
3
c = T =, d:5
)
4_
e = =, d:
)
e = =, d:?
3
4_
C:——7 d:8 .
7 ()

ote that the value of the dilaton coupling that comes from dimensional reduction of
vacuum gravity in one dimension higher

d
= — .7

- (.7
is always strictly greater than the critical value, except for d = 8, where = .. ( he
corresponding values of the asner exponents are those of the point on the asner sphere
exhibited in [ 3] for D = | where all gravitational inequalities are marginally fulfilled.)

fd 9, the factor (d 3) disnon positive for
d 3 (d 9)(d ) d 3 (d 9)(d )

(-38)

(this always occurs for = 3).  hus, the expression ( . ) is positive for such s no
matter what is. his implies that the critical value of is infinite,

=, d 9 (.9

he fact that D = appears as a critical dimension for the instein dilaton Maxwell
system, above which the system is velocity dominated no matter what the value of the
dilaton coupling is in the line of the findings of [ 3], since the edges ( .9) di er from those
of the pure gravity wall chambers only by an additional component along the spacelike
dilaton direction.

e 1 o em ho e orm

he same geometrical procedure for determining the critical values of the dilaton couplings
can be followed when there is only one p form in the system (p= ,p=D ), because in

4



that case the wall chamber has exactly D faces and the edge vectors form a basis. ndeed,
the gravitational inequalities ( .4) are always consequences of the symmetry inequalities

( .3) and the form inequalities ( .5) and ( . ) (for ;= and ;=D ),

p P pa = (p p LA (p p pa LA (L)

o, if there is only one p form (withp= andp=D ), the D symmetry inequalities
( .3) together with the two form inequalities ( .5) and ( . ) completely define the wall
chamber, which has D faces. e shall not provide an explicit example of a calculation of

. for such a system, since it proceeds as for a form.

hen there is more than one exterior form, one can still drop the gravitational inequal

ities (if there is at least one p form with p = and p =D ), but the situation is more

involved because the inequalities corresponding to di erent forms are usually independent,

so that the wall chamber has more than D faces (its intersection with the hyperplane

p. = is not a simplex). he calculation is then more laborious.  he same feature
arises for a  form, which we now examine.

orm me o

e consider the case of a form in 4 spacetime dimensions. As explained above, we impose
the condition = to the corresponding dilaton coupling .  ithout loss of generality (in
view of the ¢ ¢ symmetry), we can assume . he inequalities defining the
subcritical domain relevant to the form case can be brought to the form

p
A

3
3
|
e
P N N N
w
~— ~—

pop 4

p P 5

e denote by , , , and the corresponding border hyperplanes ( p =
A = etc). he inequalities ( . ) ( . 5) guarantee that all potential walls are
negligible asymptotically. hey are independent. he five faces , , , and intersect

along the 7 one dimensional edges generated by the vectors

A ) - - -




:(777) (3)
:(777) (3)

:(777_> (3)

Among these vectors, neither  nor  bound the subcritical domain since  is such that
p p ( A (changing its sign would make A ), while is such that p
(changing its sign would make p  p ).

he edge vectors , , ., | form a complete (but not linearly independent) set.
Any vector can be expanded as

he coe cients , , , , arenot independent but can be changed as
’ ’ 3 ( 34)
For ( .33) to be interior to the wall chamber, the coe cients , |, |, and  must

fulfill

) ) 5 5 ( 35)
sing the above redefinitions, which leave the inequalities invariant, we can make ,
A=, .3, ,7, with at most two s equal to ero. ndeed,let =min( , , , ).
Assume for definiteness that = (the other cases are treated in exactly the same way).
ne has then . ake = in the redefinitions ( .34).  his makes  equal
to ero and makes  equal to ( ) . ecause of ( .35), the new and  are

strictly positive, as claimed. hus, one sees that any vector in the wall chamber can be

expanded as in ( .33) with non negative coe cients. ut the vectors , , | and
are all future pointing and timelike or null when 8 3. t follows that for such s,
there is no lightlike direction in the interior of the wall chamber. Conversely, if 8 3,
the vector  is spacelike and one can find an interior vector (, ) that
is lightlike. e can thus conclude
8 e

c= 3 for a form in 4 dimensions, (.3)

i.e., the system is velocity dominated for 83

he action for the matter fields in the case of a form A coupled to a dilaton ¢ is

S 90,0 A= - (& ¢ A A) gd (.37)

ote that this is the action for a wave map (also known as a nonlinear  model or hyper
bolic harmonic map) with values in a two dimensional Riemannian manifold of constant

negative curvature. ts curvature is proportional to . hus we obtain an interesting
statement on velocity dominated behaviour for the instein equations coupled to certain
wave maps. ote for comparison that wave maps in at space occurring naturally in

the context of solutions of the vacuum instein equations with symmetry, for instance in
Gowdy spacetimes ( [34]), are defined by a agrangian of the above type (using the at
metric) with =



olle o o 1 orm

e now turn to a system of several forms. t is clear that if these have all the same
dilaton coupling, as in the Yang Mills action ( .7), then, the critical value of is ust that
computed in ( . ) and ( . 9) since each form brings in the same walls. he situation is
more complicated if the dilaton couplings are di erent. ne could naively think that the
subcritical domain is then ust the Cartesian product of the individual subcritical intervals
[ ), U] but this is not true because the intersection of the wall chambers associated
with each form may have no interior lightlike direction, even if each wall chamber has
some.

his is best seen on the example of two forms in D spacetime dimensions with opposite

dilaton couplings. he relevant inequalities, from which all others follow, are in this case

p -4 , p -A (.38)
p P Pd (.39)
and can be easily analysed because they determine, in this particular instance, a simplex in
the hyperplane  p, = . t follows from ( .38) that p . he edge vectors can be taken
tobe(, ,,, ,,)( eros, d ones, = , ,d Yand (,, ,, ).
he first d edge vectors are timelike or null, while the last two are spacelike provided
did ) 4 . his yields
.= ———for two forms with opposite dilaton couplings (4)
d(d )

Accordingly, . is finite for any spacetime dimension (and in fact, tends to ero as d ),

even though .= for a single form whenever d 8.
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