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Abstract

We discuss the fully non-linear formulation of multigravity. The concept of universality
classes of effective Lagrangians describing bigravity, which is the simplest form of multi-
gravity, is introduced. We show that non-linear multigravity theories can naturally arise in
several different physical contexts: brane configurations, certain Kaluza-Klein reductions
and some non-commutative geometry models. The formal and phenomenological aspects of
multigravity (including the problems linked to the linearized theory of massive gravitons)

are brie y discussed.




One of the most important problems which is facing theoretical physics now is the blending
of the Standard  odel (S ) with eneral elativity (). Whatever way we choose (the
most popular ones nowadays are based on some multidimensional constructions involving
extended ob ects), nobody doubts that it will definitely modify physics at short scales. On
the other hand, the current general paradigm is to keep eneral elativity unchanged at
lar e scales, but to add new forms of gravitating matter beyond the Standard  odel (dark
matter, dark energy) for explaining pressing astrophysical and cosmological facts such as
galactic rotational curves and the accelerating universe. In the present paper, we consider
an alternative paradigm: a modi cation of eneral elativity at large scales as a possible

explanation of some pressing cosmological issues (notably cosmic acceleration).

The modification of that we are going to consider is linked to the issue of massive
gravity (for very light gravitons, with ompton wavelength of cosmological scale).
generic prediction of multidimensional constructions is the existence of massive gravitons.
In particular, any Kaluza-Klein (KK) model predicts, besides a massless graviton, the
presence of an infinite tower of massive gravitons. However, it seems impossible to use the
tower of massive KK gravitons to modify gravity at large scales. Indeed, its spectrum is
generically regularly spaced (as illustrated on ig. 1a), so that, even if the first mode were
very light (i.e. of cosmological ompton wavelength), there would exist no regime where the
first mode (or first few modes) would be important, and where one could truncate away the
rest of the tower of massive states. In other words, as soon as the first mode is important,
we open the extra KK dimensions (see, however, below). The situation is, however, different
in some brane models. In particular, efs. 1-4 discovered the possibility (illustrated in

ig. 1b or ig. lc) of having a hierarchical ap, 1 2, between the first mode (or
first group, or even band, of modes) and the tower of higher modes. This situation, called
multi ravity (see 5 for a review and 6 for detailed presentation), makes it possible to
envisage an effective four-dimensional theory which contains only the massless and ultra-

light gravitons and discards the states of mass 9. The constructions 1-4 predict

see-saw-like spectra, | g , with  interpolating 5 between 0 1 and 1 2.
Such spectra are naturally compatible with the phenomenologically interesting situation

where ! is of cosmological order, while ' is smaller than the millimetre scale.

So far multigravity was only analyzed in the linearized approximation. The main em-
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igure 1:  egular spectrum on ( ig.1 a) versus bigravity ( ig.1 b) or uazi-localized gravity
( ig. 1 ¢). The last spectrum is continuous but the first band is very narrow in comparison
with the gap between bands.

phasis of this paper is to provide a fully non-linear formulation of multigravity, i.e. to write
down, and analyze, a class of consistent effective four-dimensional Lagrangians, describ-
ing, in some limit, the light-mode truncation of the hierarchical spectra of igs. 1b or lc.
Though we shall illustrate below our approach in the context of particular multidimensional
realizations (notably brane models exhibiting multilocalization 1, or uasi-localization

2
cept of  ea ly Coupled  orlds (W W). The concept of W W is very simple: one assumes

., , ), weview our considerations as concerning a very general phenomenon: the con-
that there are several Universes (labelled by 1 ), each endowed with its own
metric and set of matter fields , which are coupled only through some mixing
of their gravitational fields. We re uire that the theory describing the W W be near a
point of enhanced symmetry, in the sense that there exists a limit (say as some parameter
0) where the theory contains  diffeomorphism-like symmetries, corresponding to

massless gravitons. recent theorem 10 has proven that the only consistent non-linear



theory involving  massless gravitons is the sum of  decoupled -type actions

with (we use the signature )

() C ) (2)

Therefore, the only consistent action for a theory of worlds coupled only through gravity is
of the form

(1 2 ) (3)

1

When 0, the  worlds are non interacting (which implies that, from the point of view
of any observer in one world, the other worlds have only a meta-physical existence), and the
theory has the enormous symmetry iff |, where each diffeomorphism group iff acts
separately on its own metric and matter fields . In the interacting case, 0,
the symmetry of the full action must (again because of the theorem 10 ) be reduced to
(at most) one group of diffeomorphisms: the diagonal group of common diffeomorphisms

transforming all metrics as

(4)

This symmetry restricts the interaction term (1 ) to depend only on the invari-
ants one can make with several metrics. This even leaves room for extra kinetic terms built

from covariant derivatives such as (such terms do not exist in the case of one

metric because 0). However, in view of the many potential diseases associated to
modifications of the standard Einsteinian kinetic terms, and in the spirit of describing the
class of interaction terms most relevant at large scales, i.e. containing the lowest possible
number of derivatives ( namely zero, as expected from a generalization of the mass terms

that appear in linearized multigravity), we shall only consider ultra-local interaction terms,

i.e.

(1() () (5)



where is a mass scale (henceforth replacing as small parameter ) and where is a
scalar density made out of the values of the  metrics at the same point . We assume,
for simplicity, that the  weakly coupled worlds live on the same abstract manifold,
i.e., in other terms, that one is given a family of (smooth) canonical one-to-one maps:

world world

The aim of this paper is threefold: (i) to motivate the possibility of the effective action
(3), (5) by considering several different specific models (brane models, Kaluza-Klein mod-
els and non-commutative geometry ideas) (ii) to delineate and parametrize the various

universality classes of non-linear multigravity and (iii) to sketch the main ualitative
conse uences of such non-linear multigravity theories and to contrast them with the usual

paradigm of massless plus massive gravitons which is based on a linearized approximation.

It should be noted that theories defined by (3), (5) (in the bigravity case: 2) were
first introduced in the seventies 11 as a model for describing a sector of hadronic physics
where a massive spin-2 field (the  meson , with Planck mass I e inE .(2)
plays a dominant role. It was then called strong gravity orthe - theory . Our work not
only proposes to revive, within a new (purely gravitational ) physical context, this early
proposal, but initiates the task of systematically studying the general phenomenological
conse uences of the action (3), (5). The present paper will only brie y sketch the new
physical paradigm following from such actions. In subse uent papers, we shall discuss
in detail the cosmological conse uences of such theories 12, as well as its strong-field

phenomenology 13 .

or simplicity, we focus, in this paper, on the case of bigravity |, i.e. 2. Understanding
this case is a prere uisite for understanding the general multigravity case ( 2). Let us
note also that the bigravity potentials that we discuss here can be immediately used in
the general case. Indeed a rather general class of  -metric potentials  ( ),
E . (5), is the class containing only two-metric interactions : ( ). or

instance, one can define a crystal-like many-world with nearest neighbour interactions

only ( 1)



ara tr at ar a ts

Using, when 2, the notation (for Left ) and (for  ight ), and

factoring a conventional average volume factor ( )'' out of the scalar density ,

the generic bigravity action reads

C )0 ) (6)

ote that the bigravity action (6) contains 5 dimensionfull parameters: two Planck masses

and , two cosmological constants | (with dimensions ), and the coupling

mass scale

efore proceeding, we note that the mass scale , entering E . (6), will be treated here
as a constant parameter determining the coupling of the two worlds. However, one should
keep in mind the possibility that it be replaced by a uctuating field. This is suggested,
in particular, by the brane realizations of bigravity where the value of depends on the
physical distance between the branes, which is controlled by dilaton/radion fields.  more
general model where (), and where one adds a kinetic term for (), may play an
important role in addressing crucial cosmological issues (such as in ation) in the context
of multigravity theories.

The common diffeomorphism invariance (4) restricts the scalar potential  ( ) en-

tering E . (6) to depend only on the invariants of the mixed tensor b e

()

In 4 dimensions, there are (because of ayley s theorem) only 4 independent scalar invari-

ants which can be made from . or instance, using a matrix notation for , one can take
the first 4 traces of the powers of the matrix , say
tr( ) 1234 ()




Let us introduce the 4 eigenvalues , ( 0 3) of ,i.e. the 4 eigenvalues of the
metric  with respect to . They can be defined either by a 4, 0r by writing the

two metrics in a special bi-orthogonal vierbein * such that

111 222 ()

It is easily seen that, apart from an exceptional case (where two eigenvalues coincide,
and correspond to a null eigenvector), it is generically possible to write E . (), though

maybe with a complex vierbein . Indeed, two (but at most two) eigenvalues, say , 1

(one of which necessarily corresponds to a time-like direction) can become complex. We
shall focus on the case where the 4 eigenvalues , 1, o, are real and positive. s
we shall only deal with symmetric functions of the eigenvalues, this restriction is mainly a
notational convenience which can be relaxed by analytic continuation. It is then convenient

1

to parametrize the invariants of by means of the logarithms of the eigenvalues

of
. In a (10)

(the , s should not be confused with the mass scale  in front of ) and to introduce, as

basis of independent scalars, the 4 symmetric polynomials

a (11)

With this notation, our first result is that the most general (densitized) potential can

be written as
( ) ()7 (1 2 ) (12)

where is an arbitrary function of the 4  s.

U rsat cass s

In the same way as the various mathematical forms of the Landau free energy define uni-
versality classes of phase transitions, we can define universality classes of bigravity theories
by considering as e uivalent the functions ( ,) leading to (essentially) the same multi-

gravitational phenomenology. s we shall see below and in 12, 13 , some of the important



ualitative features of the function ( ,) are: (i) its behaviour near 0, (ii) its be-
haviour when , and (iii) the existence or non-existence of critical points where

some derivatives » vanish.

s a first example of a universality class, we can define the class of s which reduce (in

absence of cosmological constants in (6), i.e. 0), in the linearized approximation,

to the Pauli- ierz mass term . The linearized approximation corresponds

to the particular case where and are both near the same at metric , l.e.

, , with 1 and 1. In this limit the above ob ect

' reads (where the indices on ~ and  are raised by ).

It is then seen that the eigenvalues of are , 1 «, where 1 are the eigenvalues
of . With the identification of the massive graviton mode as

(see below), one then sees that the Pauli- ierz mass term is obtained if the

function ( ,) behaves (modulo a positive factor that can be absorbed in the mass scale

) as

(o) 2 2 2 u when , 0 (13)

The behaviour (13) near , 0 defines the universality class of Pauli- ierz-like bigravity.
ote that one can imagine a case where the potential  does not have uadratic terms
when , 0. In the linearized approximation, one would see two massless gravitons, while
the full theory would contain two interacting metric field (and only one common

diffeomorphism invariance).

s a second example of the concept of universality class, we can define the class of

potentials  ( ) which are symmetric under the exchange . It is easily seen
that under the exchange , the eigenvalues , get inverted ( , . ) so that
the logarithmic eigenvalues , change sign: «- The class of exchange-symmetric

potentials therefore corresponds to the class of functions ( ,) which are even in the  s.

In terms of the s this becomes ( 1 - ) (1 2 ).

s a further example of universality class, we can consider the class of functions which
depend only on the first two invariants , o and o . 2 (1 2).
We shall see that this class appears naturally in brane models, and our (preliminary)
investigations suggest that this class might be general enough to describe all the possible

ualitative features of a general bigravity theory.



E at S t

The e uations of motion derived from the bigravity action read

2t () 5 () (14

Here 2( ) 2 denotes the stress-energy tensor of the matter on the

left brane ( ( )), while denotes the effective

stress-energy tensor (as seen on the left brane) associated to the coupling term

O N

The corresponding expressions for the right brane are obtained by the exchange
or instance
) S — (16)

4

The ianchi identities 0 , and the conservation of the material

1
2
energy tensor ( 0 when the matter e uations of motion are satisfied) imply the

constraints:

0 and 0 (1)

ctually these two constraints are not independent because the invariance of under the

unbroken diagonal diffeomorphism group implies the identity

The explicit expressions of the derivative terms »in E s. (15), (16) tends to be
rather complicated. However, they ac uire a simple form when written in the special

frames with respect to which both and are diagonalized (such as in E . ()). The

mixed components of  and with respect to any such frame (which can differ from the



particular * of ( ) by arbitrary rescalings * ¢ * because such rescalings leave ¢, and
¢ invariants) take the simple form: (no summation on the frame index )
aa 2 - _
4 a
¢ 2 - — 1
a 4 a ( )
with vanishing of the off-diagonal components (we recall: by b)-

Here, we considered the scalar potential as a function of the ,s. If is given as a

function of the s, E . (11), the derivative entering E s. (1 ) takes the explicit:

(s ) 2 ,— 31— 4 ,— (1)

This explicit expression illustrates the third type ((iii)) of universality class mentioned

above: If there exist critical points where 0 (without restriction
on ), such points give rise to a and a with the local e uation of state
o2, (and similarly for ), i.e. such that and . In some

cases, such critical points can be fixed points and can give rise (in the vacuum case ,
i.e. in absence of material ') to bi-( )dS solutions of the coupled field e uations.

ote in this respect that the perturbative limit , 0 is a critical point in the sense

that , independently of the value of | so that , 0 (i.e. ) can be
a (perturbative) fixed point of the coupled vacuum e uations, corresponding to a bi-( )dS
solution, if the corresponding (constant) curvature ( ) satisfies the two
e uations
2 2 2 —
4
2 2 2 — 20
. 20

In the Pauli- ierz universality class the right-hand sides of E s. (20) vanish and one has

2

the usual relation (2 %) (with the constraint ). In more general

classes the coupling between the two worlds can modify the usual link between and

, -



S ass ra t as a t cas b ra t

Let us consider the formal limit in the action (6) (and the field e uations
(14)). In this limit the metric  is (formally) frozen into some given background metric
, with solution of () , where lim( (2 %)) can be

zero, or can be arranged to take any fixed real value. This leaves us with an action for a

single dynamical metric of the form

S0 ) () ) (21)
If belongs to the Pauli- ierz universality class, is a solution of the e uations of
motion (if (2 %)), and the small excitations of ~ around describe a massive

graviton (propagating in an Einstein space). ut the behaviour of the large excitations of
are described by the non-linear action (21) instead of the usual uadratic Pauli- ierz
action.
The action (21) is (formally) generally covariant: when is transformed as (4), the
frozen metric  must also be transformed as . These uctuations

of  (which do not change the background curvature invariants) are playing the same role
as the oldstone degrees of freedom in the Higgs mechanism for gauge fields. In a recent
paper 14 these oldstone degrees of freedom were discussed for the single dS brane case,
using an holographic description of five-dimensional gravity in terms of a four-dimensional

T, and it was shown that there is indeed a vector field which provides extra components

to the graviton.

fter having discussed general possible structural features of bigravity effective Lagrangians,
we shall consider specific physical models in which such Lagrangians arise. We consider in
turn: (i) brane models, (ii) Kaluza-Klein models, and (iii) non-commutative-type models.
eforehand let us note that the work in the seventies that first considered bigravity models
did not have any underlying physical models from which they could derive some specific
potentials ( ). They made up some non-linear generalizations of the uadratic Pauli-

ierz mass term. or instance, they particularly considered the one-parameter family of

10



models with

Bra S

Let us start by brie y recalling why (multi-)brane models naturally give rise to multi-
gravity . or more details the reader is advised to look at the original papers, and/or
at reviews such as, 15, 5. efore explaining how several worlds can be gravitationally
weakly coupled | let us recall that the paradigmatic brane example of a separate (gravita-
tionally decoupled) brane world is a andall-Sundrum ( S) scenario, i.e. a at 3-brane in
dS(5), with ump conditions on the brane (coming from an assumed 5 symmetry) able
to localize the 5-dimensional graviton as a massless excitation propagating (as a surface
wave ) in the vicinity of the brane 16, 1 . Putting the brane at the point 0 (where
is the fifth , transversal coordinate, and where one re uires the 5 symmetry ),

the background 5-dimensional geometry is (see ig. 2a)
2 2 2 2 2 (23)

The warp factor behaves as () In(1 ). The uctuations near the background

metric are studied by writing:

S C ) ’ (24)

The field () is expanded in terms of the graviton and KK plane wave states :

() exp 3 () () where the exp 5  factor in the expansion is
necessary for the functions () to obey an ordinary Schrodinger e uation:

o0 0 0) (25)

Here the potential () ( ) 2 where 3 () 2. wualitatively it is made

up of an attractive -function potential plus a smoothing term (due to the dS geometry)
that gives the attractive potentials a volcano form. n interesting characteristic of this

potential is that it gives rise to a (massless) normalizable zero mode

() e () ew 5 () (26)
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igure 2:  Warped metric for single at brane ( ig. 2a) and bounce for a two-brane
configuration ( ig. 2b). 3 is the separation between branes and ; is the position of the
bounce. If 2 the metric is mostly concentrated on a right brane and if 1 1

then it is concentrated on the left brane.

One can show (see for details 1 and references therein) that the normalization factor

2 exp 3 () also relates the fundamental five-dimensional mass scale to

the four-dimensional Planck mass  , namely 2 exp 3 ().

One can consider now multibrane configurations where the warped metric is a bounce
as on 1ig.2b. y analysing the spectrum in this case one can easily see that in the case of
an infinitely large separation between the branes massless gravitons are localized on both
of them. ut then, according to basic properties of the Shrodinger e uation, when the
separation is finite, the degeneracy between the two massless modes is removed and one
ends up with one massless and one ultralight massive graviton. The prototype model of this
class was the bigravity model 1 with two positive tension at branes ( branes)
separated at the bounce position 1 by one intermediate negative tension at brane (
brane) in an bulk. The task of finding the KK spectrum reduces to a simple uantum
mechanical problem. It is simple to see that the model (as every compact model) has a
massless graviton that corresponds to the ground state of the system whose wave function
follows the warp factor. Then it is easy to see that (say, for simplicity, in the symmetric
case 3 2 1) there should be a state with wave function antisymmetric with respect to
the minimum of the warp factor, whose mass splitting from the massless graviton will
be very small compared to the masses of the higher levels. ecause the warp factor is

exponential the difference in mass behaviour of the first and the rest of the KK states is also

12



exponential. This allowed for the construction of a linear bigravity model in which the
remainder of the KK tower does not affect gravity beyond the millimetre bound. Soon after

this model, other models were discussed. Some of them, for example the uasi-localized

S model 2 and a more general multigravity model 3., 4 also used dynamical
negative tension branes. In other models, like the model with two branes 1 (or
the limiting case of one single brane when the second one is moved to infinity 20 )

or in a six-dimensional case 21 , there are no negative tension branes and so no problems
emerge with ghost-like radion states.  odels with moving branes in which one also can
get warped factors were discussed in 22 -23 . inally there is a whole zoo of different

models in which one can get modification of gravity at large scales.

To be specific, let us consider the model and let us now derive the fully non-linear
bigravity action it gives rise to in the weak-coupling limit where we keep only the dominant
terms in the exponentially small ( tunnelling ) coupling between the two positive tension
branes. We are going to ignore the fact that there is a ghost-like radion field due to the
existence of the negative tension brane in this model 24 . nyway we freeze all dilaton and

radion degrees of freedom.

The action describing the full 5-dimensional configuration is (in units where the five-

dimensional Planck mass is set to one)

() s C ) (2)

Here, denotes the 5-dimensional metric, , the bulk cosmological constant, and  the
tensions of the branes (the index takes, in our case, three values corresponding to the three
branes: e.g. 0, 2 0and 0). We generalize the linear uctuation

ansatz (24) by writing the 5-dimensional metric as ( 0123)

) ) i (2)

where %( ) 2 is the background warp factor. We assume here that the degrees
of freedom associated to the uctuations of: (i) the warp factor ( dilaton ), and (ii) the
distance between the branes ( radions ) are all frozen. The detailed mechanism of how
to do that is not important for us now. or example, one can add extra terms in the
action (2 ) that give large enough mass terms to these uctuations (say with submillimeter

ompton wave length) following 25 (of course for those radion fields which are ghost-like

13



one has to add tachyonic mass terms). The uctuations of the mixed components can be
consistently set to zero, because of the 5 symmetry re uirement. Inserting the ansatz (2 )
into the action (2 ) yields, after integration by parts and use of the background e uations
of motion for the warp factor (which allow one to dispose of all terms containing -gradients

of ()) the following action for ()

)

Here, tr % (tr )? ()* where (! ) . ote that this exact
(after freezing the dilaton and the radions) action for the nonlinear dynamics of ()
is still 5-dimensional.  ote also that all explicit coupling to the branes have disappeared
(thanks to integration by parts). The crucial feature of (2 ) for our discussion of an effective
4-dimensional bigravity action is the presence of the warp-factor dependent coe cients
( Yand (). It is the fact that these factors are exponentially localized on the two
positive-tension branes (as shown in ig. 2b which plots ?( ) 2 ) which will allow
for the derivation of an approximate 4-dimensional action. Though E . (2 ) was derived
from an explicit 5-dimensional model, we expect that the general structure of E . (2 ),
namely to have a curvature term with a weight function (here ?( ) ) which localizes it
on some branes, and a transverse-gradient term which also comes with a similarly localized
weight function (here () ), will hold in more general situations, like, for instance, the
6-dimensional model of 21 (which is free from negative tension branes). Probably, in the
latter model, if we assume that the excitations related to gradients in the sixth angular
type direction are frozen (i.e. massive enough), we shall get an effective action of the
type (2 ) but, possibly, with weight factors which are somewhat modified (by the -varying
volume of the sixth circular dimension). To enhance the generality of our discussion, and
cover such cases, we shall henceforth work with an action of the form (2 ) but with the
replacements () o( ), () (), where 5( ) and () are two (unrelated)
weight functions which are strongly localized around two branes. The generalization to
the case of  branes is obvious. The essential features of 5( )and () that will be needed
in the following is that they are both positive and that: (i) 2( ) reaches maxima which
are sharply localized on two branes, while (ii) () reaches a sharp maximum somewhere
between the two branes. The crucial point is to realize that these generic conditions imply

the following specific -dependence of ~ (  ): as a function of , ( ) is nearly constant

14



everywhere, except in a transition layer , located around the minimum of (), where
() has a fast variation with . In other words ( ) is a smoothed version of a Heaviside
step function: () 1 ( ) e | ) where is the location of the minimum of
( ) and where ; and ; are two di erent asymptotic values (which depend on  when
putting back everywhere the -dependence). It is this transition-layer behaviour which

allows us to derive an approximate 4-dimensional action for {( ), 2 ).

To understand intuitively this transition-layer behaviour we can assume that we normal-

ize  '( ) so that it takes the value '( ) 1 at its maximum and then decreases to very

small values as  gets away from  (either way). Let us view the action (2 ) (with 2 2,

) as a mechanical Lagrangian for the motion of the particle , when thinking of

as being time . The kinetic terms are the last two terms wuadratic in -derivatives.
We then view () as the mass of the -particle. This mass is of order unity around
, and then increases to very large values on both sides. In other words, the -particle

is extremely heavy everywhere away from ., and becomes relatively light only around

, which makes it clear that ( ) will move very little away from and that all -

5
motion will take place only around . nother way of seeing that what is important is
to have separate maxima in o )and '( ) would be to consider the -Hamiltonian, (in
terms of the -momentum ()) which is of the symbolic form: vz
One can technically analyze the behaviour of ( ) in the transition-layer by zooming on the
exact solution of the only relevant part of the dynamics near , namely the Kkinetic

terms ( )? ' 2 ote that 5 takes very small values around so that we

?

1

can, in first approximation, neglect 5  with respect to 2. This can be done exactly

by changing the time variable . Indeed, in terms of the new time , defined by

() (30)

the kinetic part of the action (2 ) reads simply

(31)
where
1 -
1 det () to( ' )* (tr ') (32)
Here , and we leave implicit the -dependence of . ctually, (31) does not couple

anymore - and -derivatives. Therefore we can solve the e uations of motion derived from

15



(31) separately for each point | i.e. it is enough to solve (32) at each . The action (32)
is still a very non-linear action for the -dynamics of a 4 4 matrix (). However, it
is exactly integrable. This is seen by exploiting the symmetries of : (i) invariance under
rigid SL(4) transformations of  , and (ii) invariance under time translations. ote that
we only have an SL(4) symmetry, and not a L(4) one because of the presence of det . In
other words, the action is invariant under only when det 1. The
first symmetry leads to the traceless mixed tensor constant of motion (in any spacetime

dimension )
— (33)

Here where is the momentum con ugate to |, namely

— ( ) (34)

where with being the usual second fundamental form .

1
2

The second symmetry leads to the constancy of the energy :

1 —
1 (1)t (e ) ( Y (35)
ontrary to what happens in the well-known Kasner solutions, we are not restricted here to
the zero-energy shell (because of the in uence of the curvature term 5  which changes
the asymptotic behaviour of on both sides of the transition layer that we are currently
zooming into). This implies that the exact solution () is different from, and more

complicated than, a Kasner solution.

The exact solution is obtained by decomposing in its determinant (or better

det ) and its unimodular part, say ( det )' . E .(33)simply says that !

is the constant matrix 2 . This is immediately integrated to the matrix e uation
() ()exp 2 — (36)
()
To complete the solution for () we need to know how its determinant  det %2 depends

on . This is obtained by combining (33) with (35). This yields a first order differential

e uation for ( ):

—_— tr 2 (3)

16



In terms of the new parameter

) 3)

where  is a constant of integration we get the solution

det — (1 %)

This allows one to express the matrix as an explicit function of

1 2 1
(0)exp 4 ——

(40)

where the matrix s 1, i.e. is normalized so that tr 2 1.

The above exact solution for ( ), i.e. (), using (3 ), does not seem to involve any
transition-layer behaviour. The transition-layer behaviour appears when we express in
terms of the original transverse variable (which is the proper distance orthogonally to the
branes). Indeed, when ( ualitatively) integrating E . (30) to express as a function of | the
sharp maximum of ~ '( ) around  means that ( ) behaves essentially as a (smoothed)
step function ( ) 1 ( ) o ( ). Inserting this sharp-transition behaviour
into the smooth solution ( ( ( )) (40) then leads to the announced (smoothed) step-like
behaviour of ( ), with the bonus that we now have in hand the (rather complicated)
precise manner in which () sharply (but smoothly) evolves in the transition region. It
is interesting to make the link between the nonlinear transition of ( ) between the two
positive-tension branes (which is a smoothed version of () () ( ) o2() (

)) and the result of linearized uctuations which, as recalled above, is expressed as

() (Wit () e s () ()

One indeed finds, when looking at the explicit results for the various mode functions

() that the first two modes ( 0 1 corresponding to the massless mode, and the



lightest mode) behave as () exp 3 and () ( Jexp 5 where

() sign( ). Keeping only the first two modes is then e uivalent to considering metric
uctuations of the form () () | ) ! (), which is fully consistent
with our result for the fully nonlinear metric () interpolating between a {( ) and a
2( ) through a transition layer. When going beyond the step-function approximation, one

can also check that the nontrivial transition behaviour (40) does also correspond (when lin-

earized in ) to a zoom on the (large ) limit of the first mode = () (considered
as a smoothed version of ( )). ote also that the characteristic width of the transition
layer is ! where is the usual bulk curvature parameter defined such that the
background solution has ()3 ? (outside the branes), so that ( ) | mnear
brane 1 (and ?( ) 2 2 ). There is a clean separation between the transition

layer (around  which is the location of the middle negative-tension brane) and the lo-
calization layers (around ; and o, i.e. the locations of the two positive-tension branes),
when 1, where denotes the smallest interbrane distance: min( 1 2 1) see
ig. 2b.  ecause of the exponential dependence of the warp factors (and therefore of 5 )
and () in the model), even a moderately large value of  su ces to ensure that
the above (nonlinear) transition-layer approximation is valid up to exponentially smaller
corrections.
The exact, nonlinear transition-layer solution (40) interpolates between a certain metric
() (1) on the first brane, and another one 5( ) ( 2) on the second brane.
Instead of viewing the exact solution (40) as the solution of a auchy problem (e.g. for given
1 and 1), we should reexpress it as the solution of a Lagrange- eynman problem, i.e. as
the uni ue extremizing solution of the action (31), (32), for given initial and final values
of (): ie. for given () ( 1)and 2 ) ( 2). We can also think of (32) as
defining a certain iemannian metric in the space of metrics . We are then considering
the geodesic connecting some given initial point ; to some given final point 5. Let
() denote this uni ue (parametrized) geodesic. The analysis above then leads us to
estimate that a good approximation (when 1) to the effective action describing the
dynamics of ;( ) and 3( ) is obtained by inserting the geodesic () (computed
for each point ) in the original full action (2 ), so that

1 2 1 2 (41)



where (suppressing the -dependence to focus on the -dependence)

12 2 2( ) ()20 (42)
where (), and where 1 2 is the value of the geodesic action (32)
evaluated for the extremizing solution () and integrated between ; and . The

factors 2 in (42) come from the fact that we are assuming periodicity over varying between
1 and 2 1. alculating | 5 from the exact solution (40) is somewhat complicated.

Let us only give the final result (which is simpler than the necessary intermediate steps):

12 (12 w1 2) (43)

where
1
s( 1 2) — (cosh cosh ) (44)
with
() (45)
1 21 —
- — — - — 46
4 12 4 12 (46)
1
- 4
s )
s above, « as 2 « 2 where , denote the logarithms of the eigenvalues of the

2

matrix ' g,ie. ;1 trln ;' gand 5, tr(In ;' 2)%. The combination ,is , 2

where a 1 denote the logarithms of the eigenvalues of the unimodular metric
L ogyie. o tr(In ' 9)%  or added generality, we have left the dependence upon the
brane (spacetime) dimension, though we have in mind here only 4. The weak-coupling

parameter appearing in front of the interaction term 1is the inverse of the total -time
needed to interpolate between | and 5. We recall that, in the model, we

have . n explicit computation then yields

- (4)



This exponentially large value (due to the exponentially small value of  near the inter-
mediate brane) corresponds to the expected exponentially small coupling between the two
metrics on the positive-tension branes.

To get an explicit bigravity action, one still needs to evaluate the first contribution in
the Lagrangian (42). eglecting exponentially small fractional contribution it is clear (in
view of the localized behaviour of 3( ) and of the near -constancy of () outside of
the transition-layer) that this contribution is well approximated by replacing () by
its (relevant) boundary value ; or 5. inally, the full brane-derived bigravity effective
Lagrangian density (in units where the coe cient of in the higher-dimensional theory is

set to one) is
(1 2) (1) 2 (2) 2(1 2)

where () (), where (see ig. 2b we assume that varies over a full period

1 2( ) 2 2( ) (4)

and where the potential term (1 2)is given by E s. (43), (44) above.

It is easily checked that the potential (44) has the Pauli- ierz limiting behaviour (13) in
the limit , 0. One can then compute the corresponding Pauli- ierz mass. One finds (in
the symmetric case o 2 ; 2, for simplicity) ? 4 1 ' The explicit value,
in the model, of 11s 1 1 | so that we get 2 2 % in agreement
with the direct analysis of linearized uctuations 1. In the ppendix we further compare

the nonlinear bigravity action to the linearized bigravity results already derived in the

literature. In particular we check that they are fully consistent, even in the asymetric case
2 .
2 1

full ustification of the effective action (42) can, in principle, be obtained by explicitly

considering the effect of corrections to our approximation () . (). orinstance,
we can write () . () () where the correction ( ) vanishes, by definition, when
1 and 2. We can then expand () sin 2 () where varies

(by definition) in the interval (0 1). The condensed notation  denotes some ().
n analysis of the full action (expanded wuadratically in the s), containing not only the

light fields 1( ), 2( ), but the tower of heavy fields (), shows that the mass of
the heavy fields scale like , which is exponentially heavier (by a factor )
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than the Pauli- ierz mass scale. This confirms that the nonlinear bigravity action (42) is a
good effective description when one considers configurations 1( ), 3( ) where the relevant

gradients are small compared to

a a S

s said in the Introduction, and sketched in ig. 1, one expects generic Kaluza-Klein models
to give rise to regular spectra containing no gap allowing one to separate a finite number
of light gravitons from an infinite tower of heavy ones. We wish, however, to emphasize the

existence of a class of KK models where such a gap can exist.

y KK model, we mean a higher-dimensional background geometry which decomposes

2 2 2 where 2 () (with, e.g.,

as a direct (unwarped) product,
() )and 2 () % P’ When decomposing the uctuations of the higher-

dimensional metric () ( « ab) Into representations of the symmetry group

of (say ) one generally expects the s uared mass spectrum of tensor (spin
2) uctuations to be given by the spectrum of the scalar Laplacian on the (compact)
internal manifold, say , with metric 2 () @ P Let 0, with 012
denote the latter spectrum, i.e. L2 (2 0y () ( ). There is always
a zero-mode, ()  const , corresponding to 0, i.e. to a massless graviton. The
uestion of the existence of a hierarchy allowing one to consider, for instance, an effective
theory containing only the massless graviton and a superlight one, is then e uivalent to
re uiring that the first eigenvalue ; (or group of eigenvalues) be parametrically smaller than
higher eigenvalues. It is interesting to note that there are general mathematical theorems
which guarantee that such a hierarchy cannot occur if the compact metric is icci- at (or
icci-positive). Indeed, if we consider, for simplicity, the icci- at case, there are theorems
(see 26, 2 )saying that there exist universal positive constants (), () (which depend
only on the dimension of the compact manifold ) such that () 2 () *?
for all 1, where denotes the (metric) diameter of . However, we wish to emphasize
that, if one does not constraint the sign of the icci tensor, nothing prevents the occurrence
of a spectral hierarchy. We con ecture that the generic situation where such a spectral
hierarchy (between a finite group of abnormally small eigenvalues and the rest) occurs is
a mear pinching situation, i.e. the case where the manifold is on the verge of getting

split into two (or more) separate manifolds (of the same dimension as ), as is illustrated
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igure 3: anifold ( ig. 3a) is on the verge of splitting into two classically disconnected
manifolds 1 and 5 ( ig. 3b). These two manifolds may be connected at the uantum
level.

in ig.3a.

We have confirmed by some toy-model calculations that the near-pinching case (if the
connecting tube between, say, two manifolds is not too long) does indeed lead to a
spectral hierarchy. Let us also mention that a general theorem of heeger (see 2 ) can

be viewed as a (moral) confirmation of our con ecture. Indeed, this theorem says that a

lo er bound of the first eigenvalue is 2 4 where heeger s constant is defined as
the lower bound of the ratio inf( 4 2 ) when  runs over all closed submanifolds
of  (of dimension 1) which partition  into two open manifolds ; 2, with common
boundary 9 . We use the notation to denote the (riemannian) volume of

ote that  has the dimension of an inverse length, and that pinching does indeed

correspond to the case where 0.
Physically, we can view the very light mode arising in a nearly pinched configuration
1 tube 2 as coming from the effect of a weak coupling between two resonators

or uantum mechanical systems) having regular spectra 2 efore coupling, the
y g reg p ) phng,

? 0. Weak coupling is generally expected to split

ground state is degenerate,
this degeneracy into a doublet. s 0 is always an exact eigenvalue of the combined
system (corresponding to () 1), this mechanism always leads to a small ; (going to
zero with the coupling).  ote that the eigenmode corresponding to ; is approximately

e ual to () () where ( )is 1over 1,and 1 over s.

We are aware of the fact that weakly coupled string theory suggests compactification
on icci- at manifolds (which exclude a spectral hierarchy). However, we think that string

theory might still, in certain circumstances, allow for a spectral hierarchy: either because of
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-corrections to Einstein e uations (which lead one away from the icci- at case), or (more
speculatively) because of conceivable uantum tunnelling effect between two (separate, but
near ) icci- at manifolds 1, . Pictorially, such a tunnelling situation is the limit of
ig. 3b where the link between ; and 5 is classically broken. The exponentially small
coupling associated to such a tunnelling situation would naturally induce an exponentially

small 1, and thereby a bigravity coupling scale exponentially smaller than the string

scale.
B rat a C S c tat tr

Within his general non-commutative geometry programme 2 | onnes introduced the
model of a two-sheeted space , made from the product of a continuous space by
a discrete two-point space (or o) : 9. Though the algebra  of
functions on (defined as the algebra of pairs of functions viewed as diagonal matrices
diag( .( ) »( )) with ) is commutative, the bimodule of 1-forms on such a space
is not commutative 2 . eneralizations of this model (also based on the product of a

continuum by a discrete space) were used in 30 to give a geometrical explanation of the
structure of the Standard odel. In particular, it was found that the E of the Higgs
field is related to the (non-commutative) distance between the two sheets. The metric
aspect of such a two-sheeted space was developed along different lines by several authors
31, 32, 33, 34. orinstance, ef. 31 introduced (non-commutative) analogues of the

iemannian metric, curvature tensor and scalar curvature, which enabled them to introduce
a generalized Einstein-Hilbert action. This generalized Finstein-Hilbert action was found
to contain (besides the standard integral of the scalar curvature of ) a minimally coupled
massless scalar field related to the distance between the two sheets by

n alternative approach to studying gravitational effects within general non-commutative
spaces has been proposed in 34 . We shall follow this approach which is based on a general
spectral action principle . In its simplest form, this principle is proposing to take as bare

bosonic (Euclidean) action for any non-commutative model  the trace of the heat kernel

associated with the s uare of the (non-commutative) irac operator of
Tr exp ( ) (50)
Here ? introduces a cut-off, roughly e uivalent to keeping only fre uencies smaller

than . The cut-off-dependent Euclidean action (50) is viewed (a la Wilson) as the bare
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action at the mass scale

It seems that all previous works interested in the metric aspect of a two-sheeted space

2 have restricted themselves (either for simplicity, or because of some constraints

33 ) to the case where the metric is the same on the two sheets. y contrast, we focus
here on the case where the two metrics are different, say and , and the aim of this
subsection is to compute the potential — ( ) implied by the spectral action (50).
ollowing onnes (see p. 56 of the English edition of his book 2 ) we define a irac

operator on a bi- iemannian space 2 as

(51)

This operator acts on bi-spinors living on 2. Our conventions are that the

(Euclidean) gamma matrices are hermitian, as well as  (which satisfies ? 1 and which
anticommutes with the gamma matrices and therefore with the separate irac operators

and ). The explicit form of the (hermitian) irac operators on each sheet is

( C ) 2 (52)

)

The explicit form of the spin connections will not be important for our calculations.

On the other hand, the explicit form of the gamma matrices will be crucial. They read

“ L @ where ¢ ° 2 % is a standard set of (space-independent)
gamma matrices and where _ (), _ () (where ) are vierbeins corresponding
to the two positive definite metrics given on the abstract manifold ()

ab -, , etc. ote that the structure (51) assumes that we are given not only an

identification map between corresponding points of the two sheets (here gauge-fixed by the
identification of the two underlying abstract manifolds and the use of only one coordinate
system  to describe the metrics on the two sheets), but also a one-to-one map between
the spin structures, and in particular between any choice of vierbein. In other words to
any , must correspond a uni ue , so that an arbitrary, local SO(4) rotation of

corresponds to the same rotation of , . It is most natural to use as map , the
canonical map defined in 35 . This map can be defined by re uiring that it reduces to simple

2

rescalings when considering bi-orthogonal frames (as in E . () above).
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or simplicity, the uantity in E . (51) (which connects the two sheets) will be taken
to be a constant real scalar.  ore generally, it could also be a matrix when considering
multiplets of fermions and could be space-dependent. We shall see that  is connected

with the coupling scale in E . (6). It might be interesting to consider generalized models

where  (and therefore ) islinked to a uctuating scalar () as in 31 .

The s uare of the irac operator (51) is easily obtained as

’ (53)

The heat kernel expansion of (50) is a series in increasing powers of ? which

2

starts at order t this leading order the action leads to two bare cosmological

constant terms (4 %) ( = 7). tthenexttoleading order, ( ) ( 2,
one gets two separate Einstein actions ? (4 ?) ( ) (with negative
signs, as is appropriate for an Euclidean action ~ which is essentially with
a positive signature metric) as well as a potential term ( ) proportional to
2 2 Inviewof its ? % scaling, the potential  contains no derivatives of or . It
can therefore be evaluated by considering the case of constant metrics , . We can then
neglect the spin connections in (52) and go to the momentum representation ( )
to set
2 2 ( )
’ (54)
( ) 2 2
Here , . Using the explicit vierbein expressions of  and we can
rewrite these as LN ¢, where
a a a a (55)

In terms of these two different vectors (that live in a local Euclidean space common to the

tangent spaces of the two sheets), one easily finds that the eigenvalues of ? are

2 2 ) ( 2 2)2 ) )
— \/f ( ) (56)
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a

Here, all s uares are evaluated with the at Euclidean metric ** appropriate to the local

2

Euclidean space where both and , live. In the limit 0 (appropriate to the heat

a

kernel expansion) the eigenvalues (56) read (we henceforth suppress the boldfacing of the

Kuclidean vectors and )

The heat kernel action reads

Tr exp ( ) 4 — (5)
(2)
where the 4 comes from the trace in spinor space and where is the fourfold integral over
the covariant components . Expanding (5 ) in powers of 2 leads to the mixing term
4 % 2 (1 2) where

1 (2) 2 2 ( ) (5)

S ) (60)

2

fter our factorization of Yin front of ; and ,, the expressions (5 ), (60) are

easily seen to be -independent. We can then evaluate them by setting, say, 1 in them.
oting that 2 abo , etc., o 1s easily evaluated:

2 ((det ) = (det ) 7) C ) (61)

where (16 %) ' and where det (det ) . The potential ; is much more

tricky. However, it can be nicely expressed by introducing a Schwinger-type parameter

(varying between 0 and 1) and by using the identity ( * 5) ( ) " exp ((1
) ). This naturally leads to the introduction of a one-parameter family of metrics
() interpolating between — and  (reached, respectively, when 0 and 1). ore

precisely we define

() @ ) (62)
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ote that the line connecting to is straight when expressed in terms of con-
travariant metrics (which naturally appear in the s uared irac operator 2
), but will become curved when expressed in terms of the covariant compo-

nents (). In terms of the definition (62) (and the associated () () )
() det () (det ()) ') wefind that ; can be written as

1 ! —

CoL L O O (63)
where . . , - inally, the ( ?) piece of the Euclidean action (i.e. the po-
tential . remembering that ) predicted by the non-commutative approach
to two-sheeted spaces reads with

2 2 1 _ o o
T O (64)

The explicit evaluation of the -integral in (64) can be reduced to (incomplete) elliptic

integrals. In fact, it can be reduced to the evaluation of the single integral

1 1

() O = ) (65)

by using the identity

— — ) O () (66)

. diag( %)

When considering a bi-orthogonal frame, say with diag( 2,

(so that diag( ) diag( yand ! diag( ) with , . . ) the
integral (65) is a rather simple elliptic integral of the first kind which, in principle, can be
explicitly expressed in terms of the eigenvalues - . Of more direct interest for us
is the discussion of the weak-excitation limit of | i.e. the limit . . 0, le.
(') with 0. In this limit we find that  behaves as (with s
9 2 as above)

2 2 2

el

2 2

— (2t () ()



esides a negative 2-dependent, contribution to the cosmological constant (which has
anyway bare contributions ()), we see that we do not get a Pauli- ierz-type mass term

for weak excitations away from . We get instead (remembering that the (bare)

Planck mass is 2 2 2 (4 %)) a mass term proportional to 2 T0)*.

Such a mass term contains a scalar ghost, but has the virtue (contrary to the Pauli- ierz one
2 ()*) of exhibiting excellent continuity properties of the limit 2 0 for all

processes linked to the generation of gravitational fields by sources (see, e.g., ppendix

of 3 where it is easily seen that 1 2 leads to an Einstein-like propagator

( 97 2 )-

B rat a bc s r's s ass ra t

There is uite a sizable (and somewhat confusing) literature about the problems raised
by having either massive gravity (i.e. a kind of finite-range version of Einstein s theory),
or a massive graviton in addition to Einstein s massless one. We leave to a future publi-
cation a detailed discussion of such issues, but wish to emphasize the fact that the change
of paradigm, brought by focusing on a fully nonlinear bigravity theory, drastically modifies,
in our opinion, the way one should view the traditional problems of massive gravity (in
both senses recalled in the sentence above). One of the basic points is that many of the
problematic issues (such as, unboundedness of the energy, singularity of the infinite-range
limit) simply loose their meaning in a general bigravity setting. Indeed, these problematic
issues make sense only for states (in some theories) which are, at least asymptotically,
close to some trivial, Poincaré invariant background. We think that, even when consider-
ing formally small excitations above a trivial background state () () ,
the exact bigravity configurations will generically develop into full-blown bi-cosmological
configurations with fields that grow so much (in time and/or in space) so as to be outside
the usually considered domain of bi-asymptotically at configurations containing localized
excitations. ote that most of the results concerning the discontinuity of the 2 0
limit 3 , 3 , 3 implicitly (or explicitly) assumed such a framework of asymptotically
decaying perturbations of a (minimum energy) Poincare invariant background. We think

that, if one relaxes this asymptotic restriction, there exists a sector of bigravity theories



2 at the cost of cosmological behaviour

which exhibits physical continuity for small
on large scales. ote that such a claim, while being consistent with the works 40, 41, 42
which found continuity of massive graviton interactions in maximally symmetric (( )dS)
cosmological backgrounds, is somewhat different from the claim of 43,44 . Indeed, the
latter claim seems to insist on a framework (and a language, like that of propagators, cou-
pling and scattering states) which preassumes the restriction to localized excitations of a
Poincare-invariant vacuum, i.e. that the metrics under consideration are asymptotically

at. Leaving to a future publication a detailed discussion of the discontinuity issue, we

shall content ourselves here to sketch the general dynamical structure a la  rnowitt- eser-

isner ( ) 36 of bigravity theories.

AD a a ss b rat ¢t r s

We consider a general bigravity action (6). Let us decompose the two spacetime metrics
, into the two lapses ( ( ) 7), the two shift vectors

( ) and the two spatial metrics |, ). We have

’ S ) )
’ P ) ) (6)

fter integration by parts, each separate Left or  ight pieces of the action (6) reads
(say for the Left piece)

( ) (6)

where  is the Left gravitational momentum density, is a (generic) matter momentum

density and where the left super-Hamiltonian, and super-momentum densities have the

structure
L ST (0)
2 (1)
Let us now consider the interaction term  ( )™ (' ). Using the fact that the

local scalar  must be (in particular) invariant under transformations of the type ,



( ) one finds that it can only depend on the lapses and shifts through

the combinations and ( ) . Let us then replace the variables |

, , by the combinations

With these definitions it is found that the total action reads

where the total Hamiltonian density reads (here and below

, det )

, are the spatial metrics

and det

( ) ( 6)

The crucial point for the present discussion is the separation of the lapse and shift

variables into two sets: (i) the four average lapse and shifts , , which are true

?
Lagrange multipliers appearing only linearly in the action, and (ii) the four relative lapse

and shifts

manner. The four average lapse and shifts give rise to four constraints, which are linked to

,  which enter algebraically in the action (no kinetic terms) but in a non linear

the symmetry of the action under common diffeomorphisms:

) are gauge variables which can be gauged away (e.g. to 1,  0). The four

(first-class) constraints () can be used, together with the field e uations (which involve

and ) to eliminate four degrees of freedom (i.e. eight functions of positions and momenta).

y contrast, the four relative lapse and shifts |,  are not (undeterminable) gauge variables
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but are dynamical variables which are instantaneously determinable in terms of the other

variables ( ) by their (algebraic) e uations of motion:

— 0 — 0 ()

This result generalizes the findings of 3 which studied the case of massive gravity , i.e.
(21). We must assume here that the potential  has a good dependence on  and

which allow for an (essential) uni ue solution of E s. () for a generic (or at least an

open) domain of free dynamical data . We think that the only (covariant) sit-
uation where and  combine with |, to generate more (gauge-related) Lagrange
multipliers is the case where  is linear in and , which must then correspond
(by covariance) to — — ( det )?*2 ( det )?* 2.

or instance, we can think that ( ) contains terms uadratic in (as already fol-

lows from a Pauli- ierz mass term), and behaves, for both large (respectively, small)

as ? (respectively ). ote also that if we define the new scalar poten-
tial by factoring ( det 2 det ) ? instead of ( ' from
ie. (( det 2 det "2 , the last term in E . ( 5) will become
(' ) ( ). It is then enough to re uire that () grows in
any manner (even logarithmically) towards , as or 0. Such conditions

ensure the existence of (possibly non uni ue) solutions of the e uations of motion of and
JE ().

We can then use () to eliminate and  (by replacing them by their expression in

terms of the other dynamical data). It is then easily seen that the reduced Hamiltonian

( ) obtained by inserting these expressions into ( 5) defines (together with
( 6)) a dynamical system for the variables , ., | (submitted
to the four first-class constraints () coming from the Lagrange multipliers , ). or

instance, if we consider the matter-free system, we end up with the 6 6 degrees of freedom
linked to and ., from which must be subtracted 4 degrees of freedom killed by the
first-class constraints (). This leaves us with  degrees of freedom. s in the analysis of
(nonlinear) massive gravity in 3 , which concluded to the presence of 6 degrees of freedom
(instead of the expected 5 of a Pauli- ierz linear graviton), we have here 2 6 (where

the 2 can be formally thought of as corresponding to an Einstein (massless) graviton, and
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the 6 to a massive graviton ).

Two of the potential defects of the supplementary tensor degree of freedom (1 6 5)
are, according to 3 : (i) the unboundedness of the total energy , and (ii) experimental
di culties (e.g. with light scattering by the Sun), even if a suitable mass term can be
found for which the 2 0 limit exists. Our point of view concerning (i) is to argue
that the notion of energy is not defined when considering (as we argue must be done) non-
asymptotically at metrics, with cosmological-type behaviour at infinity. lternatively, we
can dismiss the problem of spatial boundary conditions by considering spatially compact
manifolds (e.g. with toroidal topology). or such a situation, the dynamics associated to
( 3) () should entail a well-defined (classical) evolution system for The
ill-defined issue of unbounded energy is then transformed in a well-posed dynamical ues-
tion: do Hamilton s e uations of motion uickly lead to a catastrophic evolution towards
some singular state , or do they admit many solutions which evolve rather uietly on times
scales comparable to the age of the universe (which is the only stability property which
is really re uired by experimental data). This uestion will be discussed in detail in 12 .
Let us only mention here the result that there does exist, for suitable potentials , many

solutions which can uietly evolve on Hubble time scales or more.

a a r ar r

Using the dynamical, and cosmological like, viewpoint expressed in the previous subsection,
let us now brie y discuss why we think that bigravity is not only compatible with existing
gravitational data, but might also furnish a natural explanation of the recently observed
cosmic acceleration. Let us first argue that there exist large classes of bigravity data
which can ade uately represent the universe as we see it at the present

moment. or definiteness, we assume that we live on the right brane (when viewed in
brane language), i.e. that the matter around as is made of ~ -type matter only. Let us start
by considering an instantaneous Einstein model of our universe, i.e. an exact solution
of the constraints 0 . Let us complete this configuration by

a random Einstein model of the (shadow) left universe, i.e. a solution of
0 . Taken together, these two configurations mnearly satisfy the bigravity
constraints () and ().  ore precisely, () is satisfied modulo a term proportional

to , while () is satisfied modulo terms proportional to and . Let us

1

assume that all dimensionless variables ( and ) are of order unity, and that
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is at most comparable to the average cosmological energy density 10 2 cm

(i.e. 10 e ) (in right units, say). Instead of viewing E s. () as e uations for
determining and | we can pick rather arbitrary (initial) values of and  (or order
unity) and slightly deform the Einstein data to compensate for the
small violation of the usual Einstein constraints brought by the terms proportional to |,

and . It is intuitively clear that there are many ways of doing so, i.e. of
constructing exact bigravity initial data which exactly satisfy ()
and () for arbitrarily given and . Locally, say around our alaxy, the new, deformed
data can be constructed so as to be experimentally indistinguishable from a pure

Einstein model (after all, we are simply modifying the stress-energy tensor in the alaxy
by less than 10 ? cm , which is many orders of magnitude smaller than the average
density in the alaxy). If the dependence of on and is ade uate the e uations ()
will continue to admit a solution ( ) during the future evolution of the other dynamical
variables. In fact, as (under a general assumption made in Section 2 above) we know
one exact (but physically trivial) solution of the full bigravity evolution e uations, namely
() (), e , , with 1, 0, we
expect (by mathematical continuity) that there will be classes of bigravity solutions where,
during a long time, , with 1, 0. The crucial uestion is
whether one can solve E s. () for a long time (without catastrophe) for more general
data where ! (1) and (1) . This uestion will be addressed in 12 for
cosmological-type solutions and in 13 for solar-system-type solutions.  ote that this is
here that the potential discontinuity problems linked to the 2 0 (or 0) limit
show up because the potential ( ) is proportional to , so that, when solving for
and E s.( ), willtend to appear in a denominator and might cause the solution
to take parametrically large values, proportional to some negative power of  (depending

on the behaviour of, say, ( ) as or 0).

ssuming, for the time being, the continuous existence of regular bigravity solutions,

evolved from some data we can finish by mentioning some of the
pleasing phenomenological aspects of bigravity. irst, bigravity exactly satisfies the e uiva-

lence principle, because each type of matter (say whithin our universe ) is universally
coupled to the corresponding metric, say . Second, (as ust discussed) there are classes

of bigravity solutions which differ from standard Einstein ones only by the presence on
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the right-hand side of Einstein s e uations of numerically very small additional terms (say

10 2 cm in the covariant form (14)), which locally modify and (and
) only in a numerically very small way (though they might [lobally forbid the stable

5
existence of asymptotically at models). These solutions will be fully compatible with all
local (or wuasi-local) experimental tests of relativistic gravity: such as solar-system tests
and binary-pulsar tests. Third, if indeed happens to be of the order of 10 e , and
if ' is of order unity, bigravity will only lead to experimentally significant deviations
from Einstein s gravity on cosmological scales.  oreover, if, seen from our universe ,
we view as an external field , or, more precisely, if we (approximately) view the dif-

ference between the two metrics '  as a given (time varying) tensor condensate of

order unity, the potential term —( ' )" (' ) can be approximately viewed

as a time-varying vacuum energy term (of order ), i.e. as a kind of dark energy . It
is tempting to assume that this new form of dark energy (which might be called tensor

uintessence ) can explain the observed cosmic acceleration. It might also be used in pri-
mordial cosmological scenarios, possibly when using the idea mentioned above that  could
be an evolving field. See 12 for a study of this new form of dark energy, and its phe-
nomenological differences with uintessence models based on evolving scalar (rather than

tensor) condensates.

In this paper we suggested a new paradigm concerning massive gravity and large scale
modification of gravity . onsidering the fully nonlinear bigravity action suggests to change
viewpoint: instead of the theory with massless and massive graviton(s) we had in linearized
approximation, we are dealing with several interacting metrics. We introduced the concept
of universality class which we formulated using bigravity (two interacting metrics) as an
example. ifferent approaches (brane, KK, non-commutative geometry) naturally lead to
different universality classes for the fully nonlinear bigravity action. nother important
new suggestion is that almost all solutions must now be of the non-asymptotically at
(cosmological) type.

2

This new formulation can change the standard problematic of the 0 discontinuity.

We showed the existence of classes of solutions that are compatible with our universe .
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However, we do not claim to have proven that general solutions of bigravity are phenomeno-
logically acceptable. The two main problems of massive gravity (ghost, potential blow up

2 0) must still be examined in detail. The important

of some field variables when
problem is to find the matching to the local sources of the field so that the full metric is
free of singularities. We do not worry about matching at infinity because we abandon the
re uirement of asymptotic atness. It is possible that in some models of bigravity such
local matching does not exist because of the explicit or implicit presence of ghost modes in
the theory. Such models would be physically unacceptable. We note in this respect that
the 6-dimensional model discussed in 21 which does not contain negative tension branes,
contains instead either branes with e uations of state violating the weak energy condition

0 ( with light-like ) or has a conifold singularity in the bulk. The physical

consistency of this model must be further investigated. We have also uoted mathematical
theorems linking the existence of a hierarchical spectrum (necessary for the derivation of
an effective bigravity Lagrangian) to the necessary negativity of the icci curvature of the
compactified manifold. This sign condition might hide the presence of ghost-like fields in

the theory. These uestions are pressing and deserve detailed investigation.

ssuming a positive resolution of these issues or simply taking the phenomenological
viewpoint that nonlinear bigravity Lagrangians open an interesting new arena for non
standard gravitational effects, we shall explore in future publications 12, 13 the nonlinear
physics of bigravity actions, with a particular view on its cosmological aspects, as it may

provide a natural candidate for some new type of dark energy .
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In this ppendix we check the consistency of the linearized limit of the nonlinear action
(6) with a direct linearized analysis of the coupling strengths of massless and light graviton
modes in brane models. Omitting the tensor structure (and considering only the relative co-

e cients between the various terms) the Lagrangian describing the coupling of the massless
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LeL,-L, L, 0 L, L,

igure 4: Here 4 is the position of the bounce. The left configuration is ust the mirror

image of the right one and the positions of the bounces are related by 2 1. Under
this transformation left and right branes are exchange their roles and, at the same time,
exp(2 1 2) exp(2 2 1) h
graviton mode , and of the lightest one !, reads
1 1
2 12 N 1 L 1 ()
where the coe cients  describe the relative strengths of the massive graviton coupling

to the matter on left and right branes. It seems that there are four parameters here:
1 and . ut actually ! which is extremely important as we shall

see next. This relation follows from the expression for which was obtained in 1 (see

E .(20) and E .(22) there)

exp (2 4 2) (0)

eing derived originally for the model this expression holds for other models with

bigravity, for example the model. In igure 3 it is shown that one can interchange left

and right branes by changing the position of the bounce from 1 to 2 1. One
gets the new coupling strength

exp 2 4 2 exp( 2 21) — (1)

t the same time it is easy to see that a new right brane is ust an old left one, so that we

have the result

— (2)
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This relation is crucial to the consistency of the nonlinear bigravity approach because only
in this case can one relate and ; to ( 1) and ( 1) by
orthogonal rotation. If it were not the case one would get mixing between  and even

in the limit ;0 and we could not have two non-interacting worlds. Introducing

cos sin ! sin cos ! tan ( 3)

we can rewrite () as

where 1 2 1 2

Let us note that in the limit both and are divergent and 0. In
this limit is finite and . The massless graviton becomes essentially a free
sterile particle and decouples from the spectrum, while the massive graviton interacts

with matter on the left brane only. Long range gravity completely decouples from the right

brane.

Here we discussed the linearized bigravity lagrangian for at branes, but one can get
the same picture for ()  branes. The limiting case » with corresponds to a single

brane was considered in 20 (see also 14, 45, 46, 4 ).
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