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A. D A. W

G. G G. W

Rédaction / Editor

Annales Scientifiques de l’École Normale Supérieure,
45, rue d’Ulm, 75230 Paris Cedex 05, France.

Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80.
annales@ens.fr

Édition et abonnements / Publication and subscriptions

Société Mathématique de France
Case 916 - Luminy

13288 Marseille Cedex 09
Tél. : (33) 04 91 26 74 64
Fax : (33) 04 91 41 17 51

email : abonnements@smf.emath.fr

Tarifs

Abonnement électronique : 420 euros.
Abonnement avec supplément papier :

Europe : 551 e. Hors Europe : 620 e ($ 930). Vente au numéro : 77 e.

© 2020 Société Mathématique de France, Paris

En application de la loi du 1er juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l’autorisation
de l’éditeur ou du Centre français d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).
All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or
by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 (print) 1873-2151 (electronic) Directeur de la publication : Stéphane Seuret
Périodicité : 6 nos / an



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 53, 2020, p. 787 à 814

ON THE DIVERIO-TRAPANI CONJECTURE

 Y DENG

A. – In this paper we establish effective lower bounds on the degrees of the Debarre and
Kobayashi conjectures. Then we study a more general conjecture proposed by Diverio-Trapani on the
ampleness of jet bundles of general complete intersections in complex projective spaces.

R. – Dans cet article, nous établissons des bornes inférieures effectives sur les degrés liés aux
conjectures de Debarre et Kobayashi. Ensuite, nous étudions une conjecture plus générale proposée par
Diverio-Trapani sur l’amplitude des fibrés de jets des intersections complètes générales dans les espaces
projectifs complexes.

0. Introduction

A compact complex manifoldX is said to be Kobayashi (Brody) hyperbolic if there exists
no non-constant holomorphic map f W C ! X . As is well-known, a sufficient criteria for
Kobayashi hyperbolicity is the ampleness of the cotangent bundle. Although the complex
manifolds with ample cotangent bundles are expected to be reasonably abundant, there
are few concrete constructions before the work of Debarre. In [8], Debarre proved that the
complete intersection of sufficiently ample general hypersurfaces in a complex abelian variety,
whose codimension is at least as large as its dimension, has ample cotangent bundle. He
further conjectured that this result should also hold for intersection varieties of general
hypersurfaces in complex projective spaces (the so-called Debarre conjecture). This conjecture
was recently proved by Brotbek-Darondeau [4] and independently by Xie [26, 25], based on
the ideas and explicit methods in [2].

T 0.1 (Brotbek-Darondeau, Xie). – Let X be an n-dimensional projective mani-
fold equipped with a very ample line bundle A . Then there exists dDeb;n 2 N depending only on
the dimension n, such that for all d > dDeb;n, the complete intersection of c-general hypersur-
faces H1; : : : ;Hc 2 jA d j has ample cotangent bundle, provided that n

2
6 c 6 n.
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788 Y. DENG

In [25], Xie was able to obtain an effective lower bound dDeb;n D nn
2

by working with
(much more elaborated) explicit expressions of some symmetric differential forms. The result
in [4] is “almost” effective on dDeb;n, because it depends on some constant involved in some
noetherianity argument, arising in their reduction to Nakamaye’s theorem [22] for families
of zero-dimensional subschemes.

One goal of the present paper is to provide an effective estimate for such a Nakamaye’s
theorem (see Theorem 2.10). In particular, as a complement of [4, Theorem 1.1], we can
improve Xie’s effective lower bound dDeb;n.

T A. – In the same setting as Theorem 0.1, one can take

dDeb;n D .2n/
nC3:

It is worth to mention that the techniques in [4] are more intrinsic and the ideas of their
proof brought new geometric insights in the understanding of the positivity of cotangent
bundles. Later, Brotbek [3] extended these techniques from the setting of symmetric differ-
entials to that of higher order jet differentials, so that he was able to prove a long-standing
conjecture of Kobayashi in [19].

T 0.2 (Brotbek). – Let X be a projective manifold of dimension n. For any very
ample line bundle A onX , there exists dKob;n 2 N depending only on the dimension n such that
for any d > dKob;n, a general smooth hypersurface H 2 jA d j is Kobayashi hyperbolic.

The proof of Theorem 0.2 in [3] is also “almost” effective on dKob;n because of two
noetherianity arguments: the first concerns the increasing sequences of Wronskians ideal
sheaves; the second concerns a constant arising in Nakamaye’s theorem as that of [4], which
can be made effective by Theorem 2.2. Our second goal of the present paper is to give an
intrinsic interpretation of Brotbek’s Wronskians (see § 1.2), and as a byproduct, we can
render the above-mentioned first noetherianity argument effective. This in turn provides
effective lower bounds for the Kobayashi conjecture in combination with the explicit formula
of dKob;n in [3].

T B. – In the same setting as Theorem 0.2, one can take

dKob;n D n
2nC3.nC 1/:

Let us mention that in [3] Brotbek obtained a much stronger result than Theorem 0.2.
Indeed, he proved that for the hypersurface H in Theorem 0.2, the tautological line bundle
OHk .ak ; : : : ; a1/ on the Demailly-Semple k-jet tower Hk of the direct manifold .H; TH / is
“almost ample” for some .a1; : : : ; ak/ 2 Nk when k > n � 1 D dimH . In view of the
following vanishing theorem by Diverio in [13], the above-mentioned lower bound for k in
[3] is optimal.

T 0.3 (Diverio). – LetZ � Pn be a smooth complete intersection of hypersurfaces
of any degree in Pn. Then

H 0.Z;EGG
k;mT

�
Z/ D 0

for all m > 1 and 1 6 k < dim.Z/=codim.Z/. Here EGG
k;m
T �Z denotes the Green-Griffiths jet

bundle of order k and weighted degree m.
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ON THE DIVERIO-TRAPANI CONJECTURE 789

Motivated by the above vanishing theorem, in the same vein as the Debarre conjecture,
Diverio-Trapani proposed the following generalized conjecture in [16].

C 0.4 (Diverio-Trapani). – Let Z � Pn be the complete intersection
of c-general hypersurfaces of sufficiently high degree. Then the invariant jet bundle Ek;mT �Z is
ample provided that k > n

c
� 1 and m� 0.

The last aim of the present paper is to study Conjecture 0.4 using geometric methods in
[4, 3].

T C. – LetX be an n-dimensional projective manifold equipped with a very ample
line bundle A , and let Z � X be the complete intersection of c-general hypersurfaces
H1 : : : ;Hc 2 jA d j. Then Z is almost k-jet ample (see Definition 1.2) if k > n

c
� 1, and

d > 2cncd
n
c eC1 � d

n
c
ecd

n
c eC3. In particular, Z is Kobayashi hyperbolic.

Let us mention that we apply the results in the first part of the present paper to obtain the
effective lower degree bounds in Theorem C.

In view of the correspondence between tautological line bundles on the Demailly-Semple
jet towers and invariant jet bundles studied in [9, Proposition 6.16], the following result on
Conjecture 0.4 is a consequence of Theorem C.

C D. – In the same setting as Theorem C, for any k > n
c
� 1, there exists a

subbundle F � Ek;mT
�
Z for some m� 0 such that

(i) F is ample.
(ii) For any regular germ of curve f W .C; 0/! .Z; z/, there is a global section

P 2 H 0.Z;F ˝A �1/ so that P.Œf �k/.0/ ¤ 0.

In other words, one can find a subbundle F of the invariant jet bundle Ek;mT �Z , which
is ample, and the Demailly-Semple locus (see [15, §2.1] for the definition) induced by F is
empty.

Lastly, let us mention that the techniques in [4, 3] were extended by Brotbek and the author
to prove a logarithmic analogue of the Debarre conjecture in [5], and to prove the logarithmic
(orbifold) Kobayashi conjecture in [6]. To achieve the effective lower degree bounds, both the
articles [5, 6] rely on the methods in the present paper.

This paper is organized as follows. In § 1.1 we recall the fundamental tools of jet differ-
entials by Demailly, Green-Griffiths and Siu, which can be seen as higher order analogues
of symmetric differential forms and provide obstructions to the existence of entire curves.
§ 1.2 is devoted to the study of new techniques of Wronskians introduced by Brotbek in his
proof of the Kobayashi conjecture [3]. We bring a new perspective of Brotbek’s Wronskians,
which we interpret as a certain morphism of O-modules from the jet bundles of a line bundle
to the invariant jet bundles. In view of this result one can immediately make the first noethe-
rianity argument in [3] effective. In § 2, by means of an explicit construction of global sections
with a “negative twist”, we obtain a slightly weaker but effective Nakamaye’s theorem for the
universal families of zero-dimensional subschemes introduced in [4, 3]. This in turn renders
the second noetherianity argument in [3] as well as that in [4] effective, and in combination
with the formulas for lower degree bounds in [4, 3], we prove Theorems A and B. The aim

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



790 Y. DENG

of § 3 is to study Conjecture 0.4. In § 3.1 we briefly recall the essential results in [3], and we
show in § 3.2 and § 3.3 how to deduce Theorem C from Brotbek’s techniques.

Acknowledgements. – I would like to warmly thank my thesis supervisor Professor Jean-
Pierre Demailly for his constant encouragements and supports, and Damian Brotbek for
suggesting this problem and kindly sharing his ideas to me. I also thank Professors Steven Lu
and Erwan Rousseau for their interests and suggestions on the work. I am indebted to Lionel
Darondeau and Songyan Xie for their discussions. Lastly, I thank the anonymous referee for
very helpful suggestions to improve the presentation in this paper. This work is supported by
the ERC ALKAGE project.

1. Jet differentials and Brotbek’s Wronskians

By the work of Nadel [21] and Demailly-El Goul [12], the Wronskians induced by mero-
morphic connections provide an abundant supply of invariant jet differentials. In [3] Brotbek
introduced an alternative approach to construct Wronskian jet differentials associated to
sections of a given line bundle. In § 1.2 we give an intrinsic definition of Brotbek’s Wronskians
via the jet bundles of line bundles.

1.1. Jet spaces and jet differentials

In this subsection, we collect the main techniques of jet differentials in [9]. A direct
manifold is a pair .X; V / where X is a complex manifold and V � TX is a holomorphic
subbundle of the tangent bundle. Denote by pk W JkV ! X the bundle of k-jets of germs
of parametrized curves in .X; V /, that is, the set of equivalent classes of holomorphic maps
f W .C; 0/! .X; x/ which are tangent to V , with the equivalence relation f � g if and only
if all derivatives f .j /.0/ D g.j /.0/ coincide for 0 6 j 6 k, when computed in some local
coordinate system of X near x. The class f in JkV is denoted by Œf �k . The projection map
pk W JkV ! X is simply Œf �k 7! f .0/. When V D TX , we simply write JkX in place of JkV .
Note that JkX ! X is a local trivial fibration with fibers Cnk . Indeed, local coordinates
.z1; : : : ; zn/ for an open set U � X induce coordinates

.z1; : : : ; zn; z
0
1; : : : ; z

0
n; : : : ; z

.k/
1 ; : : : ; z.k/n /

on p�1
k
.U /, and any k-jet Œf �k 2 p�1k .U / has coordinates�

f1.0/; : : : ; fn.0/; : : : ; f
.k/
1 .0/; : : : ; f .k/n .0/

�
:

Let Gk be the group of germs of k-jets of biholomorphisms of .C; 0/, that is, the group of
germs of biholomorphic maps

t 7! '.t/ D a1t C a2t
2
C � � � C akt

k ; a1 2 C�; aj 2 C;8j > 2;

in which the composition law is taken modulo terms tj of degree j > k. Then Gk admits a
natural fiberwise right action on JkX defined by ' � Œf �k WD Œf ı '�k . Note that C� can be
seen as a subgroup of Gk defined by .a2 D � � � D ak D 0/.

In [18], Green-Griffiths introduced the vector bundle EGG
k;m
T �X ! X whose fibers are

complex valued polynomials Q.Œf �k/ on the fibers of JkX , of weighted degree m with
respect to the C�-action, that is, Q.� � Œf �k/ D �mQ.Œf �k/; for all � 2 C� and Œf �k 2

4 e SÉRIE – TOME 53 – 2020 – No 3



ON THE DIVERIO-TRAPANI CONJECTURE 791

JkX . Let U � X be an open set with local coordinates .z1; : : : ; zn/. Then any local section
Q 2 EGG

k;m
T �X .U / can be written as

Q D
X

j˛1jC2j˛2jC���Ckj˛k jDm

c˛.z/.d
1z/˛1.d2z/˛2 � � � .dkz/˛k ;

where c˛.z/ 2 O.U / for any ˛ WD .˛1; : : : ; ˛k/ 2 .Nn/k , such that for any holomorphic map
 W �! U from an open set � � C, one has

Q
�
Œ�k

�
.t/ D

X
j˛1jC2j˛2jC���Ckj˛k jDm

c˛
�
.t/

��
 0.t/

�˛1� 00.t/�˛2 � � � � .k/.t/�˛k 2 O.�/;

where Œ�k.t/ W �! JkX�U is the lifted holomorphic curve on JkX induced by  .

The bundle EGG
k;�
T �X WD

L
m>0E

GG
k;m
T �X is in a natural way a bundle of graded algebras

(the product is obtained simply by taking the product of polynomials). There are natural
inclusions EGG

k;�
T �X � EGG

kC1;�
T �X of algebras, hence EGG

1;�T
�
X WD

S
k>0E

GG
k;�
T �X is also an

algebra. It follows from [9, §6] that the sheaf of holomorphic sections O.EGG
1;�T

�
X / admits a

canonical derivation D given by a collection of C-linear maps

D W O.EGG
k;mT

�
X /! O.EGG

kC1;mC1T
�
X /(1.1.1)

constructed as follows. For any germ of curve f W .C; 0/! X , and any Q 2 O.EGG
k;m
T �X /,

.DQ/.Œf �kC1/.t/ WD
d

dt
Q.Œf �k/.t/:

We can also inductively defineDk WD D ıDk�1. In particular, for any holomorphic function
s 2 O.U /, Dk.s/ 2 EGG

k;k
T �X .U /.

In this present paper, we are interested in the more geometric context introduced by
Demailly in [9]: the subbundle Ek;mT �X � E

GG
k;m
T �X which consists of polynomial differential

operatorsQ which are invariant under arbitrary changes of parametrization, that is, for any
' 2 Gk and any Œf �k 2 JkX , one has

Q
�
' � Œf �k

�
D '0.0/mQ.Œf �k/:

The bundle Ek;mT �X is called the invariant jet bundle of order k and weighted degree m. It is
noticeable that Wronskians provide a very natural construction for invariant jet differentials.

For any direct manifold .X; V / with rankV D r , Demailly [9] introduced a fonctorial
construction of a sequence of direct manifolds

� � � ! .PkV; Vk/
�k
��! .Pk�1; Vk�1/

�k�1
���! � � �

�2
�! .P1V; V1/

�1
�! .P0V; V0/ D .X; V /(1.1.2)

so that PkV WD P.Vk�1/ is a Pr�1-bundle over Pk�1V for each k > 1, and we say PkV
the Demailly-Semple k-jet tower of .X; V /. In the absolute case .X; TX /, we simply write
Xk WD PkV . In the case of smooth family of compact complex manifolds X ! T , X rel

k

denotes to be the Demailly-Semple k-jet tower of the direct manifold .X ; TX =T /, where
TX =T denotes the relative tangent bundle. It follows from [9, §6] that the Demailly-Semple
jet tower has the following geometric properties.

1. Any germ of curve f W .C; 0/! X tangent to V can be lifted to fŒk� W .C; 0/! PkV .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



792 Y. DENG

2. Denote by J reg
k
V WD fŒf �k j f

0.0/ ¤ 0g the set of regular k-jets tangent to V . Then
there exists a morphism J

reg
k
V ! PkV , which sends Œf �k to fŒk�.0/, whose image is a

Zariski open subset PkV reg � PkV which can be identified with the quotient J reg
k
V=Gk .

Moreover, the complement PkV sing WD PkV n PkV reg is a divisor in PkV .

3. For any k;m > 0 one has

.�0;k/�OPkV .m/ D Ek;mV
�;(1.1.3)

where we write �j;k D �jC1 ı � � � ı �k W PkV ! PjV for any 0 6 j 6 k, and OPkV .1/

denotes the tautological line bundle over PkV D P.Vk�1/.

More generally, for a k-tuple .a1; : : : ; ak/ 2 Nk , we write

OPkV .ak ; : : : ; a1/ WD OPkV .ak/˝ �
�
k�1;kOPk�1V .ak�1/˝ � � � ˝ �

�
1;kOP1V .a1/:

The fundamental vanishing theorem shows that the jet differentials vanishing along any ample
divisor give rise to obstructions to the existence of entire curves.

T 1.1 (Demailly, Green-Griffiths, Siu-Yeung). – Let .X; V / be any direct mani-
fold equipped with an ample line bundle A . For any non-constant entire curve f W C ! X

tangent to V , and any ! 2 H 0
�
PkV;OPkV .ak ; : : : ; a1/˝ �

�
0;k

A �1
�

with .a1; : : : ; ak/ 2 Nk ,
one has fŒk�.C/ � .! D 0/.

Observe that for any non-constant entire curve f W C! X tangent to V , the image of its
lift fŒk� W C! PkV is not entirely contained in PkV sing. In view of Theorem 1.1, we introduce
the following definition.

D 1.2. – Let X be a projective manifold. We say that X is almost k-jet ample
if there exists some .a1; : : : ; ak/ 2 Nk so that OXk .ak ; : : : ; a1/ is big and its augmented base
locus BC

�
OXk .ak ; : : : ; a1/

�
� X

sing
k

: In particular, X is Kobayashi hyperbolic.

Note that almost 1-jet ampleness is equivalent to the ampleness of cotangent bundle.

1.2. Brotbek’s Wronskians

This subsection is devoted to the study of the Wronskians defined by Brotbek in [3,
§2.2]. Let X be an n-dimensional compact complex manifold. Recall that for any holo-
morphic line bundle L on X , one can define the bundle J kL of k-jet sections of L by
J kLx D O.L/x=

�
mkC1x � O.L/x

�
for every x 2 X , where mx is the maximal ideal of Ox .

Pick an open set U � X with coordinates .z1; : : : ; zn/ so that L�U can be trivialized by
a nowhere vanishing section eU 2 L.U /. The fiber J kLx can be identified with the set of
Taylor developments of order k X

j j6k

c .z � x/

� eU ;

and the coefficients fcg2Nn;j j6k define coordinates along the fibers of J kL. This in turn
gives rise to a natural local trivialization of J kL defined by

‰U W U � CIn;k
'
�! J kL�U ;

.x; c / 7!
X
2In;k

c .z � x/

� eU ;

4 e SÉRIE – TOME 53 – 2020 – No 3



ON THE DIVERIO-TRAPANI CONJECTURE 793

where In;k WD f D .1; : : : ; n/ 2 Nn j j j 6 kg: Observe that there exists a C-linear
morphism

j kL W L! J kL;

which is not a morphism of OX -modules, defined as follows. For any s 2 L.U /, define

j kL .s/.x/ WD
X
j j6k

1

Š

@j jsU

@z
.x/.z � x/ � eU ;(1.2.1)

where sU 2 O.U / so that s D sU � eU . When L D OX , we simply write j k WD j kOX .
The jet bundle J kL will be used to interpret the canonical derivative D W O.EGG

k;m
T �X / !

O.EGG
kC1;mC1

T �X / defined in (1.1.1) in an alternative way. Let us first give a more precise
expression of D.

L 1.3. – Take any open setU � X with coordinates .z1; : : : ; zn/. For any k > 1, and
any holomorphic function s 2 O.U /, one has

Dk.s/.z/ D
X

j˛1jC2j˛2jC���Ckj˛k jDk

ck;˛.z/.d
1z/˛1.d2z/˛2 � � � .dkz/˛k 2 EGG

k;k T
�
X .U /(1.2.2)

such that for each ˛ WD .˛1; : : : ; ˛k/ 2 .Nn/k , ck;˛.z/ 2 O.U / is a Z-linear combination
of @

jjs
@z

.z/ with j j D 1 C � � � C n 6 k.

Proof. – We will prove the lemma by induction on k. For k D 1, we simply have

D.s/ D ds D

nX
iD1

@s

@zi
.z/dzi 2 T

�
X .U /;

and thus (1.2.2) remains valid for k D 1.

Now we assume that Dk.s/ has the form (1.2.2). By (1.1.1), one has

DkC1.s/ DX
j˛1jC2j˛2jC���Ckj˛k jDk

 
k�1X
iD1

X
jD1;:::n
˛i�ej2Nn

ck;˛.z/.d
1z/˛1 � � � .d iz/˛i�ej .d iC1z/˛iC1Cej � � � .dkz/˛k

C

nX
jD1

@ck;˛.z/

@zj
.d1z/˛1Cej � � � .dkz/˛k C

X
jD1;:::n
˛k�ej2Nn

ck;˛.z/.d
1z/˛1 � � � .dkz/˛k�ej .dkC1z/ej

!
;

where ej denotes the vector in Nn with a 1 in the j th coordinate and 0’s elsewhere. By the
assumption, for every j D 1; : : : ; n and every ˛, @ck;˛.z/

@zj
2 O.U / is a Z-linear combination

of @
jjs
@z

.z/ with j j D 1 C � � � C n 6 k C 1. From the above expression we conclude that
(1.2.2) also holds true for DkC1.s/. The lemma follows.

It follows from (1.2.1) and Lemma 1.3 that there exists a morphism of OX -modules,
denoted by j kD W J kOX ! EGG

k;k
T �X , so that Dk W OX ! EGG

k;k
T �X factors through j kD,

that is, Dk D j kD ı j k .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



794 Y. DENG

Following [3], given k C 1 holomorphic functions g0; : : : ; gk 2 O.U /, one can associate
them to a jet differentials of order k and weighted degree k0 WD k.kC1/

2
, say Wronskians, in

the following way

WU .g0; : : : ; gk/ WD

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
g0 g1 : : : gk

D.g0/ D.g1/ � � � D.gk/

:::
:::

: : :
:::

Dk.g0/ D
k.g1/ � � � D

k.gk/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌ 2 EGG

k;k0T
�
X .U /:(1.2.3)

It follows from [3, Proposition 2.2] that Wronskians are indeed invariant jet differentials.
From its alternating property, WU induces a C-linear map, which we still denoted by
WU W ƒ

kC1O.U /! Ek;k0T
�
X .U / abusively. By the factorization property of Dk , WU gives

rise to a morphism of OU -module

WJkOU
W ƒkC1J kOU ! Ek;k0T

�
U

so that one has
WU .g0; : : : ; gk/ D WJkOU

�
j k.g0/ ^ � � � ^ j

k.gk/
�
:

In other words, Brotbek’s Wronskians WU can be factorized as follows.

WU W ƒ
kC1O.U /

ƒkC1jk

������! ƒkC1
�
J kOU .U /

�
!
�
ƒkC1J kOU

�
.U /

W
JkOU
�����! Ek;k0T

�
U .U /:

(1.2.4)

Now we consider the Demailly-Semple k-jet tower Xk of .X; TX /. For the open set
Uk WD �

�1
0;k
.U / of Xk , the coordinate system .z1; : : : ; zn/ on U induces a trivialization

Uk ' U �Rn;k ; where Rn;k is some smooth rational variety introduced in [9, Theorem 9.1].
Hence

OXk .1/�Uk ' pr�2.ORn;k .1//;(1.2.5)

where pr2 W Uk
'
�! U � Rn;k ! Rn;k is the composition of the isomorphism with

the projection map. By (1.1.3), we conclude that, under the above trivialization, the direct
image .�0;k/� induces a local trivialization of the vector bundle Ek;k0T �U

'U W U �H
0
�
Rn;k ;ORn;k .k

0/
� '
�! Ek;k0T

�
U :(1.2.6)

Write Fn;k WD H 0
�
Rn;k ;ORn;k .k

0/
�
. Therefore, under the trivializations 'U and ‰U ,

the morphism of OU -module WJkOU
is indeed constant, i.e., there is a C-linear map

�n;k W ƒ
kC1CIn;k ! Fn;k such that one has the following diagram.

U �ƒkC1CIn;k

‰U

'

��

1U��n;k
// U � Fn;k

'U'

��

ƒkC1J kOU
W
JkOU // Ek;k0T

�
U :

Denote by In;k � ORn;k the base ideal of the linear system jIm.�n;k/j � jORn;k .k
0/j, and set

wk;U to be the ideal sheaf pr�2.In;k/ on Uk .
By [3], Wronskians can also be associated to global sections of any line bundleL. Take an

open set U � X with coordinates .z1; : : : ; zn/ so that L�U can be trivialized by a nowhere
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vanishing section eU 2 L.U /. Consider any s0; : : : ; sk 2 H 0.X;L/. There exists unique
si;U 2 O.U / so that si D si;U �eU for every i D 0; : : : ; k. It was proved in [3, Proposition 2.3]
that the section

WU .s0;U ; : : : ; sk;U / � e
kC1
U 2 .Ek;k0T

�
X ˝ L

kC1/.U /(1.2.7)

is intrinsically defined, i.e., it does not depend on the choice of eU . Hence they can be glued
together into a global section, denoted to be W.s0; : : : ; sk/ 2 H 0.X;Ek;k0T

�
X ˝ L

kC1/. Set

!.s0; : : : ; sk/ WD .�0;k/
�1
� W.s0; : : : ; sk/ 2 H

0
�
Xk ;OXk .k

0/˝ ��0;kL
kC1

�
(1.2.8)

to be the inverse image of the Wronskian W.s0; : : : ; sk/ under (1.1.3).

Following [3, §2.3], define

W.Xk ; L/ W D Spanf!.s0; : : : ; sn/ j s0; : : : ; sn 2 H 0.X;L/g

� H 0
�
Xk ;OXk .k

0/˝ ��0;kL
kC1

�
and define the k-th Wronskian ideal sheaf of L, denoted by w.Xk ; L/, to be the base ideal
of W.Xk ; L/. It was also shown in [3, §2.3] that if L is very ample, one has a chain of
inclusions

w.Xk ; L/ � w.Xk ; L
2/ � � � � � w.Xk ; L

m/ � � � � :

By noetherianity, this increasing sequence stabilizes after some m1.Xk ; L/ 2 N, and the
obtained asymptotic ideal sheaf is denoted by w1.Xk ; L/: Let us mention that m1.Xk ; L/
concerns the first noetherianity argument in [3], and in the rest of this subsection we will
apply our new interpretation of Brotbek’s Wronskians in (1.2.4) to render m1.Xk ; L/ effec-
tive. The strategy is to compare the globally defined Wronskian ideal sheaves fw.Xk ; Lm/gm2N
to the intrinsic ideal sheaf wk;U .

One direction is easy to see from the very definition of w.Xk ; L/. By (1.2.7), for any
s0; : : : ; sk 2 H

0.X;L/, the Wronskian can be localized by

W.s0; : : : ; sk/�U D WU .s0;U ; : : : ; sk;U / � e
kC1
U 2 .Ek;k0T

�
X ˝ L

kC1/.U /:

We denote by !U .s0;U ; : : : ; sk;U / 2 OXk .k
0/.Uk/ the corresponding element of

WU .s0;U ; : : : ; sk;U / under the isomorphism (1.1.3), where Uk WD ��1
0;k
.U /. In view of

(1.2.5), one has OXk .k
0/.Uk/ ' H

0.U; U � Fn;k/, or more precisely,

H 0.U;ƒkC1J kOU /

‰�1
U'

��

W
JkOU // H 0.U;Ek;k0T

�
U /

'�1
U'

��

H 0.U; U �ƒkC1CIn;k /
1U��n;k

// H 0.U; U � Fn;k/:

By (1.2.4), WU .s0;U ; : : : ; sk;U / D WJkOU
.j ks0;U ^ � � � ^ j

ksk;U /. Hence

!U .s0;U ; : : : ; sk;U / ' .1U � �n;k/ ı‰
�1
U .j ks0;U ^ � � � ^ j

ksk;U /:(1.2.9)

Recall that In;k � ORn;k is the base ideal of the linear system jIm.�n;k/j, and wk;U is
defined to be the ideal sheaf pr�2.In;k/ on Uk ' U � Rn;k . By (1.2.9), the base ideal
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of!U .s0;U ; : : : ; sk;U / is contained inwk;U . As s0; : : : ; sk 2 H 0.X;L/ are arbitrary, this leads
to

w.Xk ; L/�Uk � wk;U :(1.2.10)

Now we further assume that the line bundle L separates k-jets everywhere, i.e., the
C-linear map

H 0.X;L/
jk
L
�! H 0.X; J kL/! J kLx

is surjective for any x 2 X . Then

ƒkC1H 0.X;L/! ƒkC1O.U /
jk

�! ƒkC1J kOU .U /! ƒkC1J kOx ' ƒ
kC1CIn;k

is also surjective for any x 2 U . By (1.2.9) again,

Im.�n;k/ D Spanf!U .s0;U ; : : : ; sk;U /�fxg�Rn;k j s0; : : : ; sk 2 H
0.X;L/g;

where we identify fxg � Rn;k with the fiber ��1
0;k
.x/. Write �x to be the composition

Rn;k ! fxg � Rn;k ,! U � Rn;k
'
�! Uk ,! Xk . This in turn implies that

��xw.Xk ; L/ WD �
�1
x w.Xk ; L/˝��1x OXk

ORn;k D In;k :

It follows fromwk;U WD pr�2In;k thatw.Xk ; L/�Uk D wk;U . By the inclusive relation (1.2.10),
one has

wk;U D w.Xk ; L/�Uk D w.Xk ; L
2/�Uk D � � � D w.Xk ; L

k/�Uk D � � � :(1.2.11)

As is well-known, Ak separates k-jets everywhere once A is very ample. By (1.2.11), we
conclude the following result.

T 1.4. – LetX be a projective manifold, and letA be a very ample line bundle onX .
Then w.Xk ; Ak/ D w1.Xk ; A/ and m1.Xk ; A/ D k.

Moreover, it follows from the relation (1.2.11) that the asymptotic Wronskian ideal sheaf
is intrinsically defined, i.e.,w1.Xk ; L/ does not depend on the very ample line bundleL. This
reproves [3, Lemma 2.8]. It also allows us to denote by w1.Xk/ the asymptotic Wronskian
ideal sheaf.

R 1.5. – In a joint work with Brotbek [6], we generalize the alternative interpretation
of Wronskians by jets of sections of line bundles in this subsection to the logarithmic settings.

1.3. Blow-up of the Wronskian ideal sheaf

This subsection is mainly borrowed from [3]. We will state some important results without
proof, and the readers who are interested in further details are encouraged to refer to [3, §2.4].
Let us first recall the following crucial property of the Wronskian ideal sheaf in [3].

L 1.6 ([3, Lemma 2.4]). – LetX be a projective manifold equipped with a very ample
line bundle L. Then

Supp
�
OXk=w.Xk ; L

k/
�
� X

sing
k

;

where X sing
k

is the set of singular k-jets of Xk .
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Based on the above lemma, as was shown in [3], Brotbek introduced a fonctorial birational
morphism of the Demailly-Semple k-jet tower �k W OXk ! Xk by blowing-up the asymptotic
Wronskian ideal sheafw1.Xk/, so that he was able to establish a strong Zariski open property
for hyperbolicity. Indeed, Brotbek even built the strong Zariski open property for almost
k-jet ampleness. We require the following results in [3] to proceed further.

T 1.7 ([3, Propositions 2.10, 2.11 and 2.13]). – Let X be a projective manifold.

(i) For any smooth closed submanifold Y � X , the inclusion Yk � Xk induces an inclusion
OYk � OXk . Moreover, OYk is the strict transform of Yk in OXk .

(ii) If

(�) 9a0; : : : ; ak 2 N s:t: ��kOXk .ak ; : : : ; a1/˝ O OXk .�a0F / is ample;

then X is almost k-jet ample. Here F is an effective divisor on OXk defined by
O OXk .�F / D �

�
k
w1.Xk/.

(iii) Let X
�
�! T be a smooth and projective morphism between non-singular varieties.

We denote by X rel
k

the Demailly-Semple k-jet tower of the relative directed variety
.X ; TX =T /. Take �k W OX rel

k
! X rel

k
to be the blow-up of the asymptotic Wron-

skian ideal sheaf w1.X rel
k
/. Then for any t0 2 T writing Xt0 WD ��1.t0/, we have

��1
k
.Xt0;k/ D

OXt0;k .
(iv) Property (�) is a Zariski open property. Precisely speaking, in the same setting as above,

if there exists t 2 T such that Xt satisfies (�), then there exists a non-empty Zariski open
subset T0 � T such that for any s 2 T0,Xs satisfies (�) as well. In particular,Xs is almost
k-jet ample for all s 2 T0.

2. An effective Nakamaye’s theorem

As mentioned in § 0, both [4] and [3] apply Nakamaye’s Theorem on the augmented base
locus [22] for families of zero-dimensional subschemes to provide a geometric control on base
locus. In this section we render their noetherianity arguments effective.

We start by setting notations as in [3, §3]. Consider V WD H 0
�
PN ;OPN .ı/

�
, which can be

identified with the space of homogeneous polynomials of degree ı in CŒz0; : : : ; zN �. For any
J � f0; : : : ; N g we set

PJ WD fŒz0; : : : ; zN � 2 PN j zj D 0 if j 2 J g:

Given any � 2 GrkC1.V / and Œz� 2 PN , we denote by �.Œz�/ D 0 once P.Œz�/ D 0 for any
P 2 � � V . Define the universal family of complete intersections to be

Y WD f.�; Œz�/ 2 GrkC1.V / � PN j �.Œz�/ D 0g:(2.1)

For any J � f0; : : : ; N g, set

YJ WD Y \ .GrkC1.V / � PJ /:(2.2)

Let us denote by p W Y ! GrkC1.V / and q W Y ! PN the projection maps. The next lemma
is our starting point.
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L 2.1. – For any J � f0; : : : ; N g, YJ ! PJ is a locally trivial holomorphic fibration
with fibers isomorphic to the Grassmannian Gr

�
kC1; dim.V /�1

�
. In particular, YJ is a smooth

projective manifold.

Proof. – Any linear transformation g 2 GLNC1.C/ induces a natural action Qg 2 GL.V /,
hence also induces a biholomorphism Og of GrkC1.V /. Observe that for any Œz� 2 PN , Og
maps the fiber q�1.Œz�/ to q�1.Œg � z�/ bijectively. Since GLNC1.C/ acts transitively on PN ,
the fibration q W Y ! PN can thus be trivialized locally.

Take a special point Œe0� WD Œ1; 0; : : : ; 0� 2 PN . For any P D
P
jI jDı aI z

I 2 V ,
P.Œe0�/ D 0 if and only if the coefficient of zı0 in P is zero. If we denote by V0 the subspace
of V spanned by fzI j jI j D ı; zI ¤ zı0g, then q�1.Œe0�/ D GrkC1.V0/ ' Gr

�
k C 1; dim.V / � 1

�
.

The lemma is thus proved.

Observe that when kC1 > N , p W Y ! GrkC1.V / is a generically finite to one morphism.
Let us denote by L the very ample line bundle on GrkC1.V / which is the pull back of O.1/

on P.ƒkC1V / under the Plücker embedding GrkC1.V / ,! P.ƒkC1V /. Then p�L�YJ is a
big and nef line bundle on YJ for any J � f0; : : : ; N g. Write pJ W YJ ! GrkC1.V / and
qJ W YJ ! PJ for the natural projections, and define

EJ WD fy 2 Y j dimy

�
p�1J .pJ .y//

�
> 0g

G1J WD pJ .EJ / � GrkC1.V /:

When J D ; we simply write E WD E; and G1 WD G1
;

. By the definition of null locus [20,
Definition 10.3.4], EJ D Null.p�JL /. It then follows from Nakamaye’s theorem [22] that

BC.p�JL / D Null.p�JL / D EJ :

Observe that the line bundle L �OPN .1/ on GrkC1.V /�PN is ample, and so is its restriction
to YJ . Hence by the definition of augmented base locus and noetherianity, there exists
mJ 2 N such that

Bs
�
L m � OPJ .�1/�YJ

�
D BC.p�JL / D EJ � p

�1
J .G1/; 8m > mJ :(2.3)

We emphasize that the value M WD maxfmJ j J � f0; : : : ; N gg concerns the second
noetherianity argument in [3] resulting in the loss of effective lower degree bounds dKob;n

in Theorem 0.2.

Instead of requiring (2.3), we will provide a slightly weaker base control but with an
effective estimate on M , which still remains valid in Brotbek’s proof (see [3, Remark 3.13]).

T 2.2. – When m > ık , for any J � f0; : : : ; N g, one has

Bs
�
L m � OPJ .�1/�YJ

�
� p�1J .G1J /:(2.4)

To prove Theorem 2.2, we construct sufficiently many global sections of L m�OPJ .�1/�YJ
in an explicit manner to control their base locus. Precisely speaking, for any � … G1J , by
definition p�1J .�/ is a finite set. We will show that for each m > ık there exists an effective
divisor D� 2 jL m � OPJ .�1/�YJ j so that D� \ p�1J .�/ D ;.

Let us first recall a version of projection formula in intersection theory, which is indeed a
direct consequence of [17, Example 8.1.7].
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T 2.3 (Projection formula). – Let f W X ! Y be a generically finite to one and
surjective morphism between non-singular irreducible varieties, and x (resp. y) be cycle on X
(resp. Y ) of dimension k (resp. dim.X/ � k). Then

deg
�
f�
�
f �.y/ � x

��
D deg

�
y � f�.x/

�
;

where f � and f� are defined in the Chow group. When the scheme-theoretic inverse image f �1.y/
is of pure dimension dim.X/ � k, one has f �.y/ D Œf �1.y/�.

Proof of Theorem 2.2. – We first deal with the case k C 1 D N , and then reduce the
general setting k C 1 > N to this case.

C 2.4. – When k C 1 D N , H 0
�
Y ;L m � OPN .�1/�Y

�
¤ ; for all m > ıN�1.

Proof. – Let us pick a smooth curve C in GrN .V / of degree 1 with respect to L , given
by

�.Œt0; t1�/ WD Span.zı1 ; z
ı
2 ; : : : z

ı
N�1; t0z

ı
N C t1z

ı
0/;

where Œt0; t1� 2 P1. Indeed, the curve C is the line in the Plücker embedding P.ƒNV / defined
by two vectors zı1 ^ � � � ^ z

ı
N�1 ^ z

ı
0 and zı1 ^ � � � ^ z

ı
N in ƒNV . Hence L � C D 1.

Consider a hyperplane D in PN given by fŒz0; : : : ; zN � j z0 C zN D 0g. Since p W Y ! GrN .V /
is a generically finite to one and surjective morphism, p�q�D is an effective divisor
in GrN .V /.

Since p�1.C / has pure dimension 1, then p�C is a 1-cycle in Y . An easy computation
shows that p�C and q�D intersect only at the point

Span.zı1 ; z
ı
2 ; : : : z

ı
N�1; z

ı
N C .�1/

ıC1zı0/ � Œ1; 0; : : : ; 0;�1� 2 Y

with multiplicity ıN�1. Hence p�C � q�D D ıN�1. By Theorem 2.3, one has

C � p�.q
�D/ D p�.p

�C � q�D/ D ıN�1:

Note that the Picard group Pic
�
GrN .V /

�
' Z is generated by L , which in turn implies

p�q
�D 2 jL ıN�1

j(2.5)

by the fact that L � C D 1. It follows from Lemma 2.1 that q�D is a smooth hypersurface
in Y . Since Supp.q�D/ � Supp.p�p�q�D/, p�p�q�D � q�D is thus an effective divisor
of Y , and by (2.5)

p�p�q
�D � q�D 2 jL ıN�1 � OPN .�1/�Y j:(2.6)

The claim follows from the fact that L is very ample.

The base locus of jL ıN�1 � OPN .�1/�Y j can be well understood.

C 2.5. – For any m > ıN�1, the base locus

Bs
�
L m � OPN .�1/�Y

�
� p�1.G1/:(2.7)
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Proof. – For given any �0 … G1, p�1.�0/ is a finite set by the definition of G1. Then
one can take a general hyperplane D 2 jOPN .1/j such that D \ q

�
p�1.�0/

�
D ;. By (2.6),

D gives rise to an effective divisor

p�p�q
�D � q�D 2 jL ıN�1 � OPN .�1/�Y j:

For any � 2 GrN .V /, if we denote by

Int.�/ WD fŒz� 2 PN j �.Œz�/ D 0g;

then q
�
p�1.�/

�
D Int.�/. Hence the condition D \ q

�
p�1.�0/

�
D ; is equivalent

to that Int.�0/ \ D D ;. On the other hand, for any � 2 Supp.p�q�D/, one has
Int.�/ \D ¤ ;, and thus we conclude that �0 … Supp.p�q�D/. In particular,

p�1.�0/ \ Supp.p�p�q�D � q�D/ D ;:

As �0 is an arbitrary point outside G1, we conclude that

Bs
�
L ıN�1 � OPN .�1/�Y

�
� p�1.G1/:

Since L is very ample, we have

Bs
�
L m � OPN .�1/�Y

�
� Bs

�
L ıN�1 � OPN .�1/�Y

�
� p�1.G1/

for any m > ıN�1. The claim is thus proved.

Let us deal with the general case J ) ;. Without loss of generality we can assume
that J D fnC 1; : : : ; N g. For any �0 2 pJ .YJ / n G1J , the set p�1J .�0/ D Int.�0/ \ PJ is
finite. We can also take a general hyperplaneD 2 jOPN .1/j such that Int.�0/\D\PJ D ;.
One can further choose a proper coordinate for PN such that D D .zn D 0/.

By Lemma 2.1, q�J .D \ PJ / is a smooth hypersurface in YJ . Set F WD pJ
�
q�1J .D \ PJ /

�
set-theoretically. Then for any effective divisor QH 2 jL mj on GrN .V / such thatF � Supp. QH/
and pJ .YJ / 6� Supp. QH/,

p�J .
QH/ � q�J .D \ PJ / 2 jL m � OPN .�1/�YJ j(2.8)

is an effective divisor of YJ . However, it may happen that for any hyperplane QD 2 jOPN .1/j,
all constructed divisors of the form p�q

�. QD/ will always contain �0.

Choose a decomposition of V D V1 ˚ V2 such that V1 is spanned by the vectors
fz˛ 2 V j ˛n D � � � D ˛N D 0g and V2 is spanned by other z˛’s. Let us denote G to be the
subgroup of the general linear group GL.V / which is the lower triangle matrix with respect
to the decomposition of V D V1 ˚ V2 as follows:

G WD
n
g 2 GL.V / j g D

"
I 0

A B

#
; B 2 GL.V2/; A 2 Hom.V1; V2/

o
:(2.9)

The subgroupG also induces a natural group action on the Grassmannian GrN .V /, and we
have the following

C 2.6. – Set H WD p�.q
�D/. Then for any g 2 G, F � g.H/ and there exists a

g0 2 G such that �0 … g0.H/.

4 e SÉRIE – TOME 53 – 2020 – No 3



ON THE DIVERIO-TRAPANI CONJECTURE 801

Proof. – For any� 2 GrN .V /, choose fs1; : : : ; sN g � V which spans�. Let si D ui C vi
be the unique decomposition of si under V D V1˚ V2. Recall that F WD pJ

�
q�1J .D \ PJ /

�
.

Then

� 2 F ”

N\
iD1

.ui D 0/ \ Pn�1 ¤ ;;(2.10)

where Pn�1 WD fŒz0; : : : ; zN � 2 PN j zj D 0 for j > ng D D \ PJ , and we can identify V1
with H 0

�
Pn�1;OPn�1.ı/

�
.

For any g 2 GL.V /, g.�/ is spanned by fg.s1/; : : : ; g.sN /g. By the definition of G, for
any g 2 G, we have the decomposition g.si / D ui C v0i with respect to V D V1 ˚ V2 which
keeps the V1 factors invariant. Then g.F / D F for any g 2 G by (2.10). The first statement
follows from the fact F � H .

Now we take ft1; : : : ; tN g � V which spans �0. Denote ti D ui C vi to be the
decomposition of ti under V D V1 ˚ V2. By our choice of D, Int.�0/ \ Pn�1 D ;, which
is equivalent to

TN
iD1.ui D 0/ \ Pn�1 D ; by (2.10). We can then choose the proper basis

ft1; : : : ; tN g spanning �0, so that

(i)
Tn
iD1.ui D 0/ \ Pn�1 D ;;

(ii) for some m > n, fu1; : : : ; umg is a set of vectors in V1 which is linearly independent;
(iii) umC1 D � � � D uN D 0.

Then
Tn
iD1.ui D 0/ \ fzn D 0g D PN�n�1 WD fŒz0; : : : ; zN � 2 PN j zj D 0 for j 6 ng, and

fvmC1; : : : ; vN g is a set of linearly independent vectors in V2.

Take a point �0 2 GrN .V / spanned by8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

Qt1 WD u1
:::

Qtn WD un

QtnC1 WD unC1 C z
ı
nC1

:::

Qtm WD um C z
ı
m

QtmC1 WD umC1 C z
ı
mC1 D z

ı
mC1

:::

QtN WD uN C z
ı
N D z

ı
N

:

Then one can easily observe that Int.�0/ \ .zn D 0/ D ;, which is equivalent to that
�0 … H D p�q

�.D/. We will find a g0 2 G such that g0.�0/ D �0.

Indeed, since fvmC1; : : : ; vN g � V2 and fu1; : : : ; umg � V1 are both linearly independent,
we can find a B 2 GL.V2/ such that B.zıi / D vi for all i > m C 1, and A 2 Hom.V1; V2/
satisfying that (

A.ui / D vi for 1 6 i 6 n;

A.uj / D vj � B.z
ı
j / for nC 1 6 j 6 m:
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Set g0 WD

"
I 0

A B

#
which is of the type (2.9). We have

g0.�
0/ D Spanfg0.Qt1/; : : : ; g0.QtN /g D Spanft1; : : : ; tN g D �0:

Recall that �0 … H . Then �0 … g0.H/ and we finish the proof of the claim.

Since H 2 jL ıN�1 j by (2.5), we claim that g0.H/ 2 jL ıN�1 j. Indeed, since the
complex general linear groupGL.V / is connected, the biholomorphism of GrN .V / induced
by g0 2 GL.V / is homotopic to the identity map, and thus H and g0.H/ lie on the same
linear system. By Claim 2.6, F � g0.H/ and �0 … g0.H/. By (2.8), the divisor

p�J
�
g0.H/

�
� q�J .D \ PJ / 2 jL ıN�1 � OPN .�1/�YJ j

is effective and avoids the finite set p�1J .�0/.

Note that �0 2 GrN .V / is an arbitrary point in pJ .YJ / n G1J . This in turn proves
Theorem 2.2 for the case k C 1 D N .

Let us show how to deal with the general cases k C 1 > N .

For any J � f0; : : : ; N g, one can see PJ � PN as subspaces of PkC1 defined by

PN WD fŒz0; : : : ; zkC1� 2 PkC1 j zNC1 D � � � D zkC1 D 0g;

PJ WD
˚
Œz0; : : : ; zkC1� 2 PkC1 j zj D 0 if j 2 J [ fN C 1; : : : ; k C 1g

	
:

Set Vk WD H 0
�
PkC1;OPkC1.ı/

�
, and

QYJ WD f.�; Œz�/ 2 GrkC1.Vk/ � PJ j �.Œz�/ D 0g:

There is a natural inclusion GrkC1.V / � GrkC1.Vk/. Define QpJ W QYJ ! GrkC1.Vk/ and
QqJ W QYJ ! PJ to be the natural projections. Set

QG1J WD f� 2 GrkC1.Vk/ j Qp
�1
J .�/ is not finite setg:

Hence by the above arguments, for m > ık , we have

Bs.L m
k � OPkC1.�1/� QYJ / � Qp

�1
J . QG1J /;(2.11)

where Lk is the tautological line bundle on GrkC1.Vk/.

Recall that Y � GrkC1.V / � PN and YJ � GrkC1.V / � PJ are the universal families of
complete intersections defined in (2.1) and (2.2). The inclusion �k W GrkC1.V / ,! GrkC1.Vk/
induces the following inclusions

YJ GrkC1.V / � PJ

QYJ GrkC1.Vk/ � PJ :

�k�1
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Observe that G1J D QG
1
J \GrkC1.V /. Note that ��

k
Lk WD L , which is still the tautological

line bundle on GrkC1.V /. Hence by the above arguments, for m > ık , we have

Bs.L m � OPN .�1/�YJ / D Bs.L m
k � OPkC1.�1/�YJ /

� Bs.L m
k � OPkC1.�1/� QYJ / \ YJ

� Qp�1J . QG1J / \ YJ
�
by (2.11)

�
D p�1J

�
G1J

�
;

where pJ W YJ ! GrkC1.V / and qJ W YJ ! PJ are the projection maps. This in turn proves
Theorem 2.2 for the general cases k C 1 > N .

R 2.7. – Let us mention that the proof of Theorem 2.2 is indeed constructive, and
we do not rely on the general results by Nakamaye.

Now we are able to apply Theorems 1.4 and 2.2 to prove Theorem B using the explicit
formula of dKob;n in [3].

Proof of Theorem B. – In [3, p. 18], Brotbek obtained the following formula

dKob;n D m1.Xk ;A /C ı C .RC k/ı;

where R WDM.k C 1/
�
m1.Xk ;A /C ı � 1C kı

�
C 1 with M 2 N the lower bound of m so

that (2.4) remains valid, and one can take k D n�1, ı D n2 by [3]. By Theorems 1.4 and 2.2,
we can take m1.Xk ;A / D k D n � 1, and M D ık D ın�1. Hence

dKob;n 6 m1.Xk ;A /C ı C .RC k/ı

D k C ı C ı
�
ık.k C 1/

�
k C ı � 1C kı

�
C 1C k

�
D n2nC1.n3 C n � 2/C n3 C n2 C n � 1

6 n2nC3.nC 1/;

and the theorem follows.

R 2.8. – Along Siu’s line of slanted vector fields on higher jet spaces outlined in
[24], Diverio-Merker-Rousseau [14] first proved the weak hyperbolicity (say that a projective
variety X is weakly hyperbolic if all entire curves lie in a proper subvariety Y ( X) of general
hypersurfaces in Pn of degree d > 2.n�1/

5
. This lower bound was improved by Demailly [10]

to d >
j
n4

3

�
n log

�
n log.24n/

��nk
, and the latest best known bound d > .5n/2nn was obtained

by Darondeau [7]. Very recently, Demailly [11] gave a simple proof of the Kobayashi conjecture
as well as an effective lower bound dKob;n D

1
5

�
e.n � 1/

�2n for the degrees.

Now we will generalize Theorem 2.2 to the cases of products of Grassmannians. Let us
fix c; k; n 2 N with c.kC 1/ > n. Write Vıi WD H

0
�
Pn;OPn.ıi /

�
and G WD

Qc
iD1 GrkC1.Vıi /

for any .ı1; : : : ; ıc/ 2 Nc . Set Y to be the universal family of complete intersections defined
by

Y WD f.�1; : : : ; �c ; Œz�/ 2 G � Pn j �i .Œz�/ D 0;8 i D 1; : : : ; cg:(2.12)
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Denote by p W Y ! G and q W Y ! Pn the projection maps. Then p is a generically finite
to one morphism. Define a group homeomorphism

L W Zc ! Pic.G/(2.13)

a D .a1; : : : ; ac/ 7! OGrkC1.Vı1 /
.a1/� � � �� OGrkC1.Vıc /.ac/;

which is indeed an isomorphism.
Let us introduce c-smooth curves C1; : : : ; Cc on G, defined by

�i .Œt0; t1�/ WD Span.zı11 ; z
ı1
cC1; : : : ; z

ı1
kcC1

/ � Span.zı22 ; z
ı2
cC2; : : : ; z

ı2
kcC2

/ � � � �

� Span.t0z
ıi
i C t1z

ıi
0 ; z

ıi
cCi ; : : : ; z

ıi
kcCi

/ � � � � � Span.zıcc ; z
ıc
2c ; : : : ; z

ıc
.kC1/c

/;

for Œt0; t1� 2 P1. It is easy to verify that L .a/ � Ci D ai for each i . Consider the hyperplane
Di 2 jOPn.1/j given by fŒz0; : : : ; zn� j zi C z0 D 0g. Then we have the similar result as
Claim 2.4.

L 2.9. – Suppose that n D k.c C 1/. For any hyperplane D 2 jOPn.1/j,

p�q
�D 2 jL .b/j, where b WD .b1; : : : ; bc/ 2 Nc with bi WD

Qc
jD1 ı

kC1
j

ıi
.

Proof. – It is easy to show that p�Ci and q�Di intersect only at one point with multi-
plicity bi for each i D 1; : : : ; c. By the projection formula in Theorem 2.3, one has

.p�q
�Di / � Ci D p�.q

�Di � p
�Ci / D bi :(2.14)

Recall that L .a/ � Ci D ai for any a 2 Zc . Then p�q�D 2 jL .b/j by (2.14).

By similar arguments as Claim 2.5, L .b/� OPn.�1/�Y is effective, and its base locus

Bs
�
L .b/� OPn.�1/�Y

�
� p�1.G1/;(2.15)

where G1 is the set of points in G at which the fiber in Y is positive dimensional. We can
apply the same methods in proving Theorem 2.2 to obtain a more general result.

T 2.10. – Let Y be the universal complete intersection defined by

Y WD
˚
.�1; : : : ; �c ; Œz�/ 2

cY
iD1

GrkC1.Vıi / � Pn j �i .Œz�/ D 0;8 i D 1; : : : ; c
	
;

where Vıi WD H 0
�
Pn;OPn.ıi /

�
, and .k C 1/c > n. For any J � f0; : : : ; ng, define

YJ WD Y \
Qc
iD1 GrkC1.Vıi / � PJ . Then for any a D .a1; : : : ; ac/ 2 Nc with ai >

Qc
jD1 ı

kC1
j

ıi
for i D 1; : : : ; c, the base locus

Bs
�
L .a/� OPn.�1/�YJ

�
� p�1J .G1J /;

where G1J is the set of points in
Qc
iD1 GrkC1.Vıi / at which the fiber in YJ is positive dimen-

sional.

R 2.11. – Very recently, Brotbek and the author [5, 6] extended the techniques in
[4, 3] to the logarithmic settings using meromorphic connections, and we proved

(i) the logarithmic analogue of the Debarre conjecture: for general hypersurfaces
H1; : : : ;Hn 2 jOPn.d/j with d > .4n/n and D WD

Pn
iD1Hi simple normal crossing, the

logarithmic cotangent bundle �Pn.logD/ is almost ample;
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(ii) a result towards the orbifold Kobayashi conjecture by Rousseau [23]: for general hyper-
surfaces H 2 jOPn.d/j with d > .n C 1/nC3 � .n C 2/nC3, the Campana orbifold�
Pn; .1 � 1

d
/H
�

is orbifold hyperbolic.

Let us mention that we have to apply Theorem 2.10 to obtain the effective lower bounds of degrees
in [5, 6].

3. On the Diverio-Trapani Conjecture

In this section, we apply the techniques in [4, 3] to prove Theorem C. Let us mention that
§ 3.1 is not self-contained, and we strongly recommend the readers who are interested in
further details to refer to the paper [3].

3.1. Families of Fermat-type Hypersurfaces

In [3], Brotbek introduced the families of Fermat-type Hypersurfaces as a candidate for
the examples satisfying a strong Zariski open property for hyperbolicity. In this subsection,
we briefly recall his constructions and the essential techniques in [3] which will be used in the
proof of Theorem C.

LetX be an n-dimensional projective manifold endowed with a very ample line bundleA.
We fix nC1 sections in general position �0; : : : ; �n 2 H 0.X;A/. Let us fix a positive integer r
and k. For any "; ı 2 N, set Vı WD H 0

�
Pn;OPn.ı/

�
, and A";ı WD H 0.X;A"/˝ Vı . Consider

for any a WD
�
aI 2 H

0.X;A"/
�
jI jDı

2 A";ı , the hypersurface Ha in X defined by the zero
locus of the section

�.a/ WD
X
jI jDı

aI �
.rCk/I

2 H 0.X;Am/;(3.1.1)

where m D " C .r C k/ı and � .rCk/I WD .�
i0
0 � � � �

in
n /

rCk for I D .i0; : : : ; in/. Consider the
universal family

H";ı WD f.a; x/ 2 A";ı �X j �.a/.x/ D 0g:
There exists a Zariski open set of Asm

";ı
� A";ı so that over Asm

";ı
, H";ı is a smooth family. Let

us also denote by H";ı ! Asm
";ı

the restrict family, H rel
";ı;k

the (relative) Demailly-Semple k-jet

tower of .H";ı ; TH";ı=Asm
";ı
/, and OH rel

";ı;k
the blow-up of H rel

";ı;k
defined in Theorem 1.7.

Let us define a finite set † WD
S
fj1;:::;jng�f0;:::;ng

.�j1 D � � � D �jn D 0/ of X , and write

Xı WD X n†. Denote by OXı
k
WD .�0;k ı �k/

�1.Xı/. We can shrink Asm
";ı

to a Zariski open set

so that H";ı � Asm
";ı
�Xı and, a fortiori, OH rel

";ı;k
� Asm

";ı
� OXı

k
.

We need to cover X by a natural stratification induced by the vanishing of the �j ’s. For
any J � f0; : : : ; ng, define

XJ WD fx 2 X j �j .x/ D 0, j 2 J g;

PJ WD fŒz� 2 Pn j zj D 0 if j 2 J g;

Vı;J WD H
0
�
PJ ;OPJ .ı/

�
;

OXk;J WD .�0;k ı �k/
�1.XJ / and OXı

k;J
WD OXk;J \ OX

ı
k

.
We are now in position to recall the main results in [3], which will be applied in § 3.2.
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T 3.1 (Brotbek). – Fix any r 2 N. For each "; ı 2 N, there exists a rational map

ˆ";ı W A";ı � OXk 99K GrkC1.Vı/(3.1.2)

induced by Brotbek’s Wronskians. Suppose that " > m1.Xk ; A/ and ı > n.k C 1/.

(i) There exists a non-empty Zariski open subset Aı
";ı
� Asm

";ı
so that the restriction of ˆ";ı

to Aı
";ı
� OXı

k
is a regular morphism.

(ii) Set L to be the tautological line bundle on GrkC1.Vı/, and F to be the effective divisor
in OXk defined by O OXk .�F / WD �

�
k
w1.Xk/. One has

ˆ�";ıL D �
�
k

�
OXk .k

0/˝ ��0;kA
.kC1/."Ckı/

�
˝ O OXk .�F /:(3.1.3)

(iii) Define a rational map

‰";ı W A";ı � OXk 99K GrkC1.Vı/ � Pn

.a; w/ 7!
�
ˆ";ı.a; w/; Œ�

r .w/�
�
;

where Œ� r .w/� WD
�
� r0
�
�0;k ı �k.w/

�
; : : : ; � rn

�
�0;k ı �k.w/

��
. The restriction of ‰";ı

to OH rel
";ı;k

factors through Y , where Y � GrkC1.Vı/ � Pn is the universal family of

complete intersections defined in (2.1). In other words, for any a 2 Aı
";ı

, OHa;k � OX
ı
k

and

‰";ı. OHa;k/ � Y .
(iv) For any w 2 OXı

k
, there exists a C-linear map

'";ı;w W A";ı ! V kC1
ı

(3.1.4)

such thatˆ";ı is defined at .a; w/ 2 A";ı � OXık if and only if dim Œ'";ı;w.a/� D kC 1. Here
Œ'";ı;w.a/� denotes to be the subspace in Vı spanned by .kC1/-vectors '";ı;w.a/. Moreover,
for any a 2 Aı

";ı
, ˆ";ı.a; w/ D Œ'";ı;w.a/� 2 GrkC1.Vı/.

(v) Same setting as above. For the (unique) J � f0; : : : ; ng so thatw 2 OXı
k;J

, the composition
of C-linear maps

�";ı;w W A";ı
'";ı;w
����! V kC1

ı

�w
��! V kC1

ı;J

is surjective. Here �w W V kC1ı
! V kC1

ı;J
is the projection map.

3.2. Families of complete intersections of Fermat-type hypersurfaces

Let us construct families of complete intersection varieties in X cut out by Fermat-type
hypersurfaces defined in § 3.1. As we will see in Theorem 3.4, these examples satisfy the strong
Zariski open property (�) for almost k-jet ampleness defined in Definition 1.2.

We fix 1 6 c 6 n � 1, r 2 N, k > n
c
� 1, and two c-tuples of positive integers

" D ."1; : : : ; "c/; ı D .ı1; : : : ; ıc/ 2 Nc . Consider the family Z � A"1;ı1 � � � � � A"c ;ıc � X
of complete intersection varieties in X defined by

Z WD f.a1; : : : ; ac ; x/ 2 A"1;ı1 � � � � � A"c ;ıc �X j �.a1/.x/ D � � � D �.ac/.x/ D 0g;
(3.2.1)

where �.ai / is the section defined in (3.1.1). Let us denote by � W Z ! A"1;ı1 � � � � � A"c ;ıc
the natural projection, and for any a WD .a1; : : : ; ac/, set Za WD ��1.a/. One can show that
there is a non-empty Zariski open set Asm � A WD A"1;ı1 � � � � �A"c ;ıc so that Za is smooth
for any a 2 Asm. In other words, for any a 2 Asm, the c-hypersurfaces Ha1 ; : : : ;Hac are
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smooth and intersect transversely so that Za WD Ha1 \ � � � \ Hac is a smooth subvariety
in X of codimension c. Let us also denote by Z ! Asm the restricted (smooth) family.
Denote by Z rel

k
the relative Demailly-Semple k-jet tower of .Z ; TZ =Asm/, and OZ rel

k
its blow-

up defined in Theorem 1.7. Observe that Za;k D Ha1;k \ � � � \Hac ;k for any a 2 Asm, and by
Theorem 1.7, one has

OZa;k � OHa1;k \ � � � \
OHac ;k :(3.2.2)

Consider a rational map ˆ W A � OXk 99K GrkC1.Vı1/ � � � � � GrkC1.Vıc / by taking the
products of (3.1.2). Precisely speaking, ˆ is defined by

ˆ W A � OXk 99K GrkC1.Vı1/ � � � � �GrkC1.Vıc /

.a1; : : : ; ac ; w/ 7!
�
ˆ"1;ı1.a1; w/; : : : ; ˆ"c ;ıc .ac ; w/

�
Write G WD GrkC1.Vı1/�� � ��GrkC1.Vıc / for short. As a direct consequence of Theorems 1.4
and 3.1, we have the following result.

T 3.2. – Assume that "i > k; ıi > n.k C 1/ for every i D 1; : : : ; c. Then

(i) the restriction of ˆ to Aı
"1;ı1
� � � � � Aı

"c ;ıc
� OXı

k
is regular.

(ii) Set Aı WD Aı
"1;ı1
� � � ��Aı

"c ;ıc
\Asm. We also denote by OZ rel

k
! Aı the restricted family.

Then OZ rel
k
� Aı � OXı

k
.

(iii) For any .b1; : : : ; bc/ 2 Nc , one has

ˆ�L .b1; : : : ; bc/ D �
�
k

�
OXk .

cX
iD1

bik
0/˝ ��0;kA

Pc
iD1 bi .kC1/."iCkıi /

�
˝ O OXk

�
� .

cX
iD1

bi /F
�
;

(3.2.3)

where L .b1; : : : ; bc/ is the tautological line bundle defined in (2.13).
(iv) Define a rational map

‰ W A � OXk 99K GrkC1.Vı1/ � � � � �GrkC1.Vıc / � Pn

.a; w/ 7!
�
ˆ.a; w/; Œ� r .w/�

�
;

where Œ� r .w/� WD
�
� r0
�
�0;k ı �k.w/

�
; : : : ; � rn

�
�0;k ı �k.w/

��
. The restriction of ‰ to OZ rel

k

factors through Y , where Y � GrkC1.Vı1/� : : :�GrkC1.Vıc /�Pn is the universal family
of complete intersections defined in (2.12). In other words, for any a 2 Aı, OZa;k � OX

ı
k

and
‰. OZa;k/ � Y .

Proof. – We apply Theorem 1.4 to take m1.Xk ; A/ D k. (i), (ii) and (iii) can be
easily derived from Theorem 3.1. To prove (iv), it is enough to show that for any a 2 Aı,
‰. OZa;k/ � Y . By (3.2.2), for any w 2 OZa;k , i D 1; : : : ; c and P 2 ˆ"i ;ıi .ai ; w/, one has

P
�
Œ� r .w/�

�
D 0:

This proves (iv) by the definition of Y .

Set YJ WD Y \
�
G�PJ

�
� G�Pn, and denote byG1J the set of points in G at which the

fiber in YJ is positive dimensional.
Now we are ready to prove the following lemma, which is a variant of [3, Lemma 3.11].
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L 3.3 (Avoiding positive dimensional fibers). – Assume that "i > k, ıi >
dim OXk D .n � 1/.k C 1/ C 1 for i D 1; : : : ; c. Then for any J � f0; : : : ; ng, there
exists a non-empty Zariski open subset AJ � Aı such that

ˆ�1.G1J / \ .AJ � OX
ı
k;J / D ;:

Proof. – We introduce the following analogues of YJ parametrized by affine spaces

eY1;J WD ˚�˛10; : : : ; ˛ck ; Œz�� 2 cY
iD1

V kC1
ıi
� PJ j 81 6 i 6 c; 0 6 p 6 k; ˛ip.Œz�/ D 0

	
;

eY2;J WD f�˛10; : : : ; ˛ck ; Œz�� 2 cY
iD1

V kC1
ıi ;J
� PJ j 81 6 i 6 c; 0 6 p 6 k; ˛ip.Œz�/ D 0g:

By analogy with G1J , we denote by V11;J (resp. V12;J ) the set of points in
Qc
iD1 V

kC1
ıi

(resp.Qc
iD1 V

kC1
ıi ;J

) at which the fiber in gY1;J (resp. eY2;J ) is positive dimensional.

Fix any w 2 OXı
k;J

. By Theorem 3.1.(iv), for any a D .a1; : : : ; ac/ 2 Aı we have

ˆ.a; w/ D
�
Œ'"1;ı1;w.a1/�; : : : ; Œ'"c ;ıc ;w.ac/�

�
;

where '"i ;ıi ;w W A"i ;ıi ! V kC1
ıi

is the linear map defined in Theorem 3.1.(iv). Let us define a
C-linear map

'w W A!
cY
iD1

V kC1
ıi

a 7!
�
'"1;ı1;w.a1/; : : : ; '"c ;ıc ;w.ac/

�
:

Then we have

ˆ�1.G1J / \ .A
ı
� fwg/ D '�1w .V11;J / \ Aı D .�w ı 'w/�1.V12;J / \ Aı;

where

�w W

cY
iD1

V kC1
ıi
!

cY
iD1

V kC1
ıi ;J

is the projection map. Since the linear map �w ı'w is diagonal by blocks, by Theorem 3.1.(v)
we have

rank�w ı 'w D
cX
iD1

.k C 1/ dimVıi ;J :

Therefore

dim
�
ˆ�1.G1J / \ .A

ı
� fwg/

�
6 dim

�
.�w ı 'w/

�1.V12;J /
�

6 dim.V12;J /C dim ker.�w ı 'w/

6 dim.V12;J /C dimA � rank.�w ı 'w/

D dim.V12;J /C dimA �
cX
iD1

.k C 1/ dimVıi ;J

D dimA � codim.V12;J ;
cY
iD1

V kC1
ıi ;J

/;
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which in turn implies that

dim
�
ˆ�1.G1J / \ Aı � OXık;J

�
6 dimA � codim.V12;J ;

cY
iD1

V kC1
ıi ;J

/C dim OXk :

By a result due to Benoist [1] and Brotbek-Darondeau (see [4, Corollary 3.2]), we have

codim.V12;J ;
cY
iD1

V kC1
ıi ;J

/ > min
iD1;:::;c

ıi C 1:

Therefore, if

(3.2.4) dim OXk < min
iD1;:::;c

ıi C 1;

ˆ�1.G1J / doesn’t dominate Aı via the projection Aı � OXı
k;J
! Aı, and we can thus find a

non-empty Zariski open subset AJ � Aı such that

ˆ�1.G1J / \ .AJ � OX
ı
k;J / D ;:

3.3. Proof of Theorem C

We are now in position to prove Theorem C. Indeed, we establish the following more
refined result than Theorem C.

T 3.4. – LetX be ann-dimensional projective manifold equipped with a very ample
line bundle A. Let c be any integer satisfying 1 6 c 6 n � 1, and set k WD dn

c
e � 1. Assume

that the multi-degrees .d1; : : : ; dc/ 2 .N/c satisfy the following condition:

9ı WD .ı1; : : : ; ıc/ 2 Nc with ıi > ı0 WD n.k C 1/ for i D 1; : : : ; c:

9" WD ."1; : : : ; "c/ 2 Nc with "i > k for i D 1; : : : ; c:

9r >

cX
iD1

bi .k C 1/."i C kıi /; where bi WD

Qc
jD1 ı

kC1
j

ıi

s:t: di D "i C .r C k/ıi for i D 1; : : : ; c:

Then for general hypersurfaces H1 2 jAd1 j; : : : ;Hc 2 jAdc j, their complete intersection
(smooth) variety Z WD H1 \ � � � \Hc is almost Qk-jet ample for any Qk > k.

Proof. – Observe that, the choice for ."; ı/ and k in the theorem fits all the requirements
in Theorem 3.2 and Lemma 3.3. In the same vein as [4, 3], let us first prove the nefness.

C 3.5. – Set Anef WD
T
J AJ . For any a 2 Anef, the line bundle

��k
�
OXk .

cX
iD1

bik
0/˝ ��0;kA

�q.";ı;r/
�
˝ O OXk .�

cX
iD1

biF /� OZa;k

on OZa;k is nef. Here we write q."; ı; r/ WD r �
Pc
iD1 bi .k C 1/."i C kıi / > 0.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. – To prove that a line bundle on a projective variety is nef, it suffices to show that
for any irreducible curve, its intersection with this line bundle is non-negative. For any fixed
a 2 Anef, and any irreducible curve C � OZa;k , there is a unique J � f0; : : : ; ng such
that C ı WD OXı

k;J
\ C is a non-empty Zariski open subset of C , and thus C ı � OZk;J . It

follows from Theorem 3.2.(iv) that ‰ factors through YJ when restricted to OZk;J . Hence
‰�Cı also factors through YJ , and by the properness of YJ , ‰.C/ � YJ . By Lemma 3.3
and the definition of Anef, we have

ˆ.C ı/ \G1J D ;;

and thus
‰.C/ 6� p�1J .G1J /:

By Theorem 2.10, one has

Bs
�
L .b1; : : : ; bc/� OPn.�1/�YJ

�
� p�1J .G1J /;

which yields

‰.C/ �
�
L .b1; : : : ; bc/� OPn.�1/�Y

�
D ‰.C/ �

�
L .b1; : : : ; bc/� OPn.�1/�YJ

�
> 0:

Write ‰a W OZa;k ! Y the restriction of ‰ to OZa;k . By (3.2.3), we have

‰�a
�
L .b1; : : : ; bc/� OPn.�1/�Y

�
D ��k

�
OXk .

cX
iD1

bik
0/˝ ��0;kA

�q.";ı;r/
�
˝ O OXk .�

cX
iD1

biF /� OZa;k
;

and thus

C �
�
��k
�
OXk .

cX
iD1

bik
0/˝ ��0;kA

�q.";ı;r/
�
˝ O OXk .�

cX
iD1

biF /� OZa;k

�
> 0;

which proves the claim.

By [9, Proposition 6.16], we can find an ample line bundle

��k
�
OXk .ak ; : : : ; a1/˝ �

�
0;kA

a0
�
˝ O OXk .�F /

on OXk for some a0; : : : ; ak 2 N. Denote by �a;k W OZa;k ! Za;k the blow-up of the asymptotic
Wronskian ideal sheaf w1.Za;k/ of Za;k . Write Aa WD A�Za and Fa WD F \ OZa;k . Therefore,
for any ` > a0, by Claim 3.5 the line bundle

��a;k
�
OZa;k .ak C

cX
iD1

`bik
0; ak�1; : : : ; a1/˝ �

�
0;kA

a0�`q.";ı;r/
a

�
˝ O OZa;k

�
� .

cX
iD1

`bi C 1/Fa
�

D ��k
�
OXk .ak C

cX
iD1

`bik
0; ak�1; : : : ; a1/˝ �

�
0;kA

a0�`q.";ı;r/
�
˝ O OXk

�
� .

cX
iD1

`bi C 1/F
�
� OZa;k

is ample for a 2 Anef, which verifies the condition (�). By the Zariski open property
(�) in Theorem 1.7.(ii), we conclude that there exists a non-empty Zariski open subset
Sample �

Qc
iD1 jA

di j such that for any .H1; : : : ;Hc/ 2 Sample, their complete intersection
Z WD H1 \ � � � \ Hc is a reduced smooth variety of codimension c in X , and Z is almost
k-jet ample. By [9, Lemma 7.6], if a complex manifold Y is almost k-jet ample, then it is also
almost Qk-jet ample for any Qk > k. This finishes the proof of the theorem.
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Let us deduce Theorem C from Theorem 3.4.

Proof of Theorem C. – Let us keep the same notations in Theorem 3.4. We will fix
"1 D � � � D "c > k WD dn

c
e � 1 and ı WD .ı0; : : : ; ı0/ with ı0 D n.k C 1/. Then

b1 D � � � D bc D ı
c.kC1/�1
0 . If we take

d0 WD ı0
�
c.k C 1/.k C ı0 C kı0 � 1/ı

c.kC1/�1
0 C 1C k

�
C k;

then any d > d0 has a decomposition

d D ı0.r C k/C "

with k 6 " < k C ı0, and

r > cıc.kC1/�10 .k C 1/.k C ı0 � 1C kı0/C 1 >

cX
iD1

bi .k C 1/."C kı0/;

satisfying the conditions in Theorem 3.4. Observe that

d0 D ı0
�
c.k C 1/.k C ı0 C kı0 � 1/ı

c.kC1/�1
0 C 1C k

�
C k(3.3.1)

6 ıc.kC1/0 c.k C 1/2.ı0 C 1/

6 2cncd
n
c eC1 � d

n

c
e
cdnc eC3:

In conclusion, the complete intersection H1 \ � � � \ Hc of c-general hypersurfaces
H1; : : : ;Hc 2 jA d j with d > 2cncd

n
c eC1 � d

n
c
ecd

n
c eC3 is almost Qk-jet ample for any

Qk > n
c
� 1.

Let us mention that when n
2
6 c 6 n� 1, by [4, Corollary 2.9], one can take ı0 WD 2n� 1,

which is slightly better than that in Theorem 3.4. Now we apply the estimate in [4] to provide
a slight better bound in the case n

2
6 c 6 n � 1.

Proof of Theorem A. – Note that if X is a smooth projective variety whose cotangent
bundle�X is ample, then for any smooth closed subvariety Y � X ,�Y is also ample. Hence
it suffices to prove the theorem for c D dn

2
e, k D 1. By (3.3.1) and ı0 D 2n� 1, one can take

dDeb;n D ı0
�
c.k C 1/.k C ı0 C kı0 � 1/ı

c.kC1/�1
0 C 1C k

�
C k

D 4.2n � 1/2d
n
2 eC1 � d

n

2
e C 2.2n � 1/C 1

6 2.2n � 1/nC2 � .nC 1/C 4n � 1

6 .2n/nC3:
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3.4. Proof of Corollary D

This subsection is devoted to prove Corollary D.

Proof of Corollary D. – Recall that the Demailly-Semple k-jet tower Zk of .Z; TZ/
is a locally trivial product as well as its blow-up �k W OZk ! Zk along the Wron-
skian ideal sheaf w1.Zk/. Indeed, by § 1.2 for any z 2 Z there exists an open set U
containing z so that Uk WD ��10;k.U / ' U � Rn�c;k and w1.Zk/�Uk ' pr�2In�c;k , where

pr2 W U � Rn�c;k ! Rn�c;k is the projection map. Let us denote by �k W ORn�c;k ! Rn�c;k
the blow-up of Rn�c;k along In�c;k . Write OUk WD ��1k .Uk/. Then

OUk
' //

�k

��

U � ORn�c;k

1��k

��

Uk
' //// U � Rn�c;k :

(3.4.1)

It follows from the proof of Theorem 3.4 that there exists a1; : : : ; ak ; q 2 N such that
��
k
OZk .ak ; : : : ; a1/ ˝ O OZk .�qF / is ample. Write �k D �0;k ı �k W OZk ! Z. One thus can

take a1; : : : ; ak ; q � 0 so that all higher direct images

Ri .�k/�
�
��kOZk .ak ; : : : ; a1/˝ O OZk .�qF /

�
D 0 8 i > 0;(3.4.2)

and L WD ��
k
OZk .ak ; : : : ; a1/ ˝ O OZk .�qF / ˝ �

�
k
A �1 is ample for some very ample line

bundle A on Z.

C 3.6. – .�k/�
�
��
k
OZk .mak ; : : : ; ma1/˝O OZk .�mqF /

�
is an ample vector bundle for

each m� 0.

Proof of Claim 3.6. – Denote by Em WD .�k/�.L
m/. From the local trivial product

structure of OZk as in (3.4.1), Em is locally free for each m > 0.

By (3.4.2) and the degeneration of Leray spectral sequences, one has

H i .Z;Em ˝ F / D H i . OZk ;L
m
˝ ��k F / 8 i > 0; m > 0

for any coherent sheaf F onZ. Fix any point y 2 Z, with the maximal ideal of OZ;y denoted
by my . As L is ample, there is a positive integer my � 0 such that

H 1.Z;Em ˝my/ D H
1. OZk ;L

m
˝ ��kmy/ D 0 8 m > my ;

which in turn implies that Em is globally generated at y for allm > my . AsZ is compact, we
can find an integer m0 � 0 such that Em is globally generated when m > m0. Observe that

Em D .�k/�
�
��kOZk .mak ; : : : ; ma1/˝ O OZk .�mqF /

�
˝A �m;

where A is a very ample line bundle on Z. Hence .�k/�
�
��
k
OZk .mak ; : : : ; ma1/˝ O OZk .�mqF /

�
is a quotient of a direct sum of copies of the very ample line bundle OZ.A m/. By the cohomo-
logical characterization of ample vector bundles in [20, Theorem 6.1.10],
.�k/�

�
��
k
OZk .mak ; : : : ; ma1/˝ O OZk .�mqF /

�
is ample for m > m0.
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By the projection formula

F WD .�k/�
�
��kOZk .ak ; : : : ; a1/˝ O OZk .�qF /

�
D .�0;k/�

�
OZk .ak ; : : : ; a1/˝ Jq

�
;(3.4.3)

where Jq WD .�k/�O OZk .�qF / is the ideal sheaf ofZk with the subscheme OZk=Jq supported

on Zsing
k

. By Claim 3.6, for proper a1; : : : ; ak ; q � 0, ��
k
OZk .ak ; : : : ; a1/ ˝ O OZk .�qF / ˝

��
k
A �1 is very ample. For any regular germ of curve f W .C; 0/ ! .Z; z/, its k-th lift

fŒk� 2 Z
reg
k

. Hence there exists a global section � 2 H 0
�
Zk ;OZk .ak ; : : : ; a1/˝ �

�
0;k

A �1 ˝ Jq
�

so that �.fŒk�/ ¤ 0. Let P� 2 H 0.Z;F ˝ A �1/ be the corresponding element of � under
the isomorphism (3.4.3). Hence P� .Œf �k/ ¤ 0. It follows from [9, Proposition 6.16.i]
that F � Ek;mT

�
Z for m WD a1 C � � � C ak . The corollary is thus proved.
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