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ON THE DIVERIO-TRAPANI CONJECTURE

BY YA DENG

ABSTRACT. — In this paper we establish effective lower bounds on the degrees of the Debarre and
Kobayashi conjectures. Then we study a more general conjecture proposed by Diverio-Trapani on the
ampleness of jet bundles of general complete intersections in complex projective spaces.

REsuME. — Dans cet article, nous établissons des bornes inférieures effectives sur les degrés liés aux
conjectures de Debarre et Kobayashi. Ensuite, nous étudions une conjecture plus générale proposée par
Diverio-Trapani sur 'amplitude des fibrés de jets des intersections complétes générales dans les espaces
projectifs complexes.

0. Introduction

A compact complex manifold X is said to be Kobayashi (Brody) hyperbolic if there exists
no non-constant holomorphic map f : C — X. As is well-known, a sufficient criteria for
Kobayashi hyperbolicity is the ampleness of the cotangent bundle. Although the complex
manifolds with ample cotangent bundles are expected to be reasonably abundant, there
are few concrete constructions before the work of Debarre. In [8], Debarre proved that the
complete intersection of sufficiently ample general hypersurfaces in a complex abelian variety,
whose codimension is at least as large as its dimension, has ample cotangent bundle. He
further conjectured that this result should also hold for intersection varieties of general
hypersurfaces in complex projective spaces (the so-called Debarre conjecture). This conjecture
was recently proved by Brotbek-Darondeau [4] and independently by Xie [26, 25], based on
the ideas and explicit methods in [2].

THEOREM 0.1 (Brotbek-Darondeau, Xie). — Let X be an n-dimensional projective mani-
fold equipped with a very ample line bundle 7. Then there exists dpev,n € N depending only on
the dimension n, such that for all d > dpeb,n, the complete intersection of c-general hypersur-
faces Hy, ..., H. € |</?| has ample cotangent bundle, provided that 5<c<n
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788 Y. DENG

In [25], Xie was able to obtain an effective lower bound dpeb,n = n" by working with
(much more elaborated) explicit expressions of some symmetric differential forms. The result
in [4] is “almost” effective on dpeb,», because it depends on some constant involved in some
noetherianity argument, arising in their reduction to Nakamaye’s theorem [22] for families
of zero-dimensional subschemes.

One goal of the present paper is to provide an effective estimate for such a Nakamaye’s
theorem (see Theorem 2.10). In particular, as a complement of [4, Theorem 1.1], we can
improve Xie’s effective lower bound dpep,n -

THEOREM A. — In the same setting as Theorem 0.1, one can take
dpebn = (2n)" 3.

It is worth to mention that the techniques in [4] are more intrinsic and the ideas of their
proof brought new geometric insights in the understanding of the positivity of cotangent
bundles. Later, Brotbek [3] extended these techniques from the setting of symmetric differ-
entials to that of higher order jet differentials, so that he was able to prove a long-standing
conjecture of Kobayashi in [19].

THEOREM 0.2 (Brotbek). — Let X be a projective manifold of dimension n. For any very
ample line bundle o/ on X, there exists dxob,n € N depending only on the dimension n such that
Jor any d > dxov,n, a general smooth hypersurface H € | </ 4| is Kobayashi hyperbolic.

The proof of Theorem 0.2 in [3] is also “almost” effective on dkob,» because of two
noetherianity arguments: the first concerns the increasing sequences of Wronskians ideal
sheaves; the second concerns a constant arising in Nakamaye’s theorem as that of [4], which
can be made effective by Theorem 2.2. Our second goal of the present paper is to give an
intrinsic interpretation of Brotbek’s Wronskians (see § 1.2), and as a byproduct, we can
render the above-mentioned first noetherianity argument effective. This in turn provides
effective lower bounds for the Kobayashi conjecture in combination with the explicit formula
of dKob,n in [3]

THEOREM B. — In the same setting as Theorem 0.2, one can take

dKob,n = n2n+3(n + 1)

Let us mention that in [3] Brotbek obtained a much stronger result than Theorem 0.2.
Indeed, he proved that for the hypersurface H in Theorem 0.2, the tautological line bundle
Ou (ak. ..., a1) on the Demailly-Semple k-jet tower Hy of the direct manifold (H, Ty) is
“almost ample” for some (ay,...,ax) € NK whenk > n — 1 = dim H. In view of the
following vanishing theorem by Diverio in [13], the above-mentioned lower bound for & in
[3] is optimal.

THEOREM 0.3 (Diverio). — Let Z C P be a smooth complete intersection of hypersurfaces
of any degree in P"*. Then
GG px*
HYZ, EZnT7) =0
forallm > 1 and 1 < k < dim(Z)/codim(Z). Here E,?STZ* denotes the Green-Griffiths jet
bundle of order k and weighted degree m.
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ON THE DIVERIO-TRAPANI CONJECTURE 789

Motivated by the above vanishing theorem, in the same vein as the Debarre conjecture,
Diverio-Trapani proposed the following generalized conjecture in [16].

CONJECTURE 0.4 (Diverio-Trapani). — Let Z C P" be the complete intersection
of c-general hypersurfaces of sufficiently high degree. Then the invariant jet bundle Ey ,, T is
ample provided that k > 7 — 1 and m > 0.

The last aim of the present paper is to study Conjecture 0.4 using geometric methods in
[4, 3].

THEOREM C. — Let X be an n-dimensional projective manifold equipped with a very ample
line bundle o7, and let Z C X be the complete intersection of c-general hypersurfaces
Hy....H. € |a/?|. Then Z is almost k-jet ample (see Definition 1.2) if k > 2 —1, and
d > 2cnclel+t. [%10f%1+3. In particular, Z is Kobayashi hyperbolic.

Let us mention that we apply the results in the first part of the present paper to obtain the
effective lower degree bounds in Theorem C.

In view of the correspondence between tautological line bundles on the Demailly-Semple
jet towers and invariant jet bundles studied in [9, Proposition 6.16], the following result on
Conjecture 0.4 is a consequence of Theorem C.

COROLLARY D. — In the same setting as Theorem C, for any k > % — 1, there exists a
subbundle # C Ej ,, T, for some m > 0 such that

(1) & isample.
(i) For any regular germ of curve f :(C,0)— (Z,z), there is a global section
P e HYZ,F ® a7 ") sothat P([f]x)(0) # 0.

In other words, one can find a subbundle .% of the invariant jet bundle Ey ,, T, which
is ample, and the Demailly-Semple locus (see [15, §2.1] for the definition) induced by .% is
empty.

Lastly, let us mention that the techniques in [4, 3] were extended by Brotbek and the author
to prove a logarithmic analogue of the Debarre conjecture in [5], and to prove the logarithmic
(orbifold) Kobayashi conjecture in [6]. To achieve the effective lower degree bounds, both the
articles [5, 6] rely on the methods in the present paper.

This paper is organized as follows. In § 1.1 we recall the fundamental tools of jet differ-
entials by Demailly, Green-Griffiths and Siu, which can be seen as higher order analogues
of symmetric differential forms and provide obstructions to the existence of entire curves.
§ 1.2 is devoted to the study of new techniques of Wronskians introduced by Brotbek in his
proof of the Kobayashi conjecture [3]. We bring a new perspective of Brotbek’s Wronskians,
which we interpret as a certain morphism of 0-modules from the jet bundles of a line bundle
to the invariant jet bundles. In view of this result one can immediately make the first noethe-
rianity argument in [3] effective. In § 2, by means of an explicit construction of global sections
with a “negative twist”, we obtain a slightly weaker but effective Nakamaye’s theorem for the
universal families of zero-dimensional subschemes introduced in [4, 3]. This in turn renders
the second noectherianity argument in [3] as well as that in [4] effective, and in combination
with the formulas for lower degree bounds in [4, 3], we prove Theorems A and B. The aim
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790 Y. DENG

of § 3 is to study Conjecture 0.4. In § 3.1 we briefly recall the essential results in [3], and we
show in § 3.2 and § 3.3 how to deduce Theorem C from Brotbek’s techniques.

Acknowledgements. — 1 would like to warmly thank my thesis supervisor Professor Jean-
Pierre Demailly for his constant encouragements and supports, and Damian Brotbek for
suggesting this problem and kindly sharing his ideas to me. I also thank Professors Steven Lu
and Erwan Rousseau for their interests and suggestions on the work. I am indebted to Lionel
Darondeau and Songyan Xie for their discussions. Lastly, I thank the anonymous referee for
very helpful suggestions to improve the presentation in this paper. This work is supported by
the ERC ALKAGE project.

1. Jet differentials and Brotbek’s Wronskians

By the work of Nadel [21] and Demailly-El Goul [12], the Wronskians induced by mero-
morphic connections provide an abundant supply of invariant jet differentials. In [3] Brotbek
introduced an alternative approach to construct Wronskian jet differentials associated to
sections of a given line bundle. In § 1.2 we give an intrinsic definition of Brotbek’s Wronskians
via the jet bundles of line bundles.

1.1. Jet spaces and jet differentials

In this subsection, we collect the main techniques of jet differentials in [9]. A direct
manifold is a pair (X, V) where X is a complex manifold and V' C Ty is a holomorphic
subbundle of the tangent bundle. Denote by p; : JrV — X the bundle of k-jets of germs
of parametrized curves in (X, V'), that is, the set of equivalent classes of holomorphic maps
f :(C,0) — (X, x) which are tangent to V, with the equivalence relation f ~ g if and only
if all derivatives £)(0) = g()(0) coincide for 0 < j < k, when computed in some local
coordinate system of X near x. The class f in J; V is denoted by [ f]x. The projection map
pr Ji V. — X issimply [f]x — f(0). When V = Ty, we simply write J; X in place of J; V.
Note that Jt X — X is a local trivial fibration with fibers C**. Indeed, local coordinates

(z1,...,zp) for an open set U C X induce coordinates
E1reerzmnZynenn 2 20 20

on p; '(U), and any k-jet [f]x € p; ' (U) has coordinates

(f10),..., £, 0),.... ;200),.... £80)).

Let Gy be the group of germs of k-jets of biholomorphisms of (C, 0), that is, the group of
germs of biholomorphic maps

t@t) = ait +axt> + -+ axt*, a; eC*a; €C,Vj >2,
in which the composition law is taken modulo terms ¢/ of degree j > k. Then G admits a
natural fiberwise right action on Ji X defined by ¢ - [f]x := [f © ¢]x. Note that C* can be
seen as a subgroup of G defined by (a; = --- = a; = 0).
In [18], Green-Griffiths introduced the vector bundle EZCTy — X whose fibers are

complex valued polynomials Q([f]x) on the fibers of Jp X, of weighted degree m with
respect to the C*-action, that is, Q(A - [f]x) = A" O(flk), forall A € C* and [f]x €

4¢ SERIE — TOME 53 — 2020 — N° 3



ON THE DIVERIO-TRAPANI CONJECTURE 791

JirX.Let U C X be an open set with local coordinates (zy, ..., z,). Then any local section
0 e E,?g Ty (U) can be written as
0= 3 ca(2)(d'2)*1(d22)%2 - (d¥2)%,
laq [+2]|oz|++klag |=m
where ¢y (z) € O(U) for any « := (a1, . .., ox) € (N*)¥, such that for any holomorphic map
y : Q — U from an open set 2 C C, one has
Q(Vlk) (@) = > ca(Y@) (Y O) (") -+ (v P )™ € o),

ot [+2]ea|+++klog [=m
where [y]x(¢) : @ — Jr Xu is the lifted holomorphic curve on Ji X induced by y.

The bundle EZGTy := Dm0 E SGT is in a natural way a bundle of graded algebras
(the product is obtained simply by taking the product of polynomials). There are natural
inclusions EGSTy C EPC [Ty of algebras, hence ESGTy = Uy EQSTY is also an
algebra. It follows from [9, §6] that the sheaf of holomorphic sections &' (E SOG Ty) admits a

e
canonical derivation D given by a collection of C-linear maps

(1.1.1) D : ﬁ(E,SgT;) — ﬁ(E,?f’l,mHT;)

constructed as follows. For any germ of curve f : (C,0) — X, and any Q € ﬁ(E,?ST;),

(DO k) = - 0N

We can also inductively define D¥ := D o D*¥~!_ In particular, for any holomorphic function
s € O(U), D¥(s) € EZPT{(U).

In this present paper, we are interested in the more geometric context introduced by
Demailly in [9]: the subbundle Ey ,, Ty C E kGSlT; which consists of polynomial differential
operators Q which are invariant under arbitrary changes of parametrization, that is, for any
¢ € Gg and any [f]x € Jr X, one has

(e [f1e) = @' O™ Q[ f1e)-
The bundle Ey ,, Ty is called the invariant jet bundle of order k and weighted degree m. It is
noticeable that Wronskians provide a very natural construction for invariant jet differentials.

For any direct manifold (X, V) with rank V' = r, Demailly [9] introduced a fonctorial
construction of a sequence of direct manifolds

(1.12) - = PV, Vi) = Py, Viey) =5 . BB (P, V1) 25 (PoV, Vo) = (X, V)

so that P,V := P(Vj_;) is a P"~!-bundle over Py_;V for each k > 1, and we say PV
the Demailly-Semple k-jet tower of (X, V). In the absolute case (X, Ty), we simply write
Xy := Pi V. In the case of smooth family of compact complex manifolds 2~ — T, Ei”krel
denotes to be the Demailly-Semple k-jet tower of the direct manifold (£, T-/7), where
T4 7 denotes the relative tangent bundle. It follows from [9, §6] that the Demailly-Semple
jet tower has the following geometric properties.

1. Any germ of curve f : (C,0) — X tangent to V can be lifted to fjz} : (C,0) — P V.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



792 Y. DENG

2. Denote by J; ¥V := {[f1x | f'(0) # 0} the set of regular k-jets tangent to V. Then
there exists a morphism J,"*V — PV, which sends [f]i to fjx](0), whose image is a
Zariski open subset P V™8 C PV which can be identified with the quotient J,**V/Gy.
Moreover, the complement Py VS8 := P,V \ Py V'8 is a divisor in P V.

3. For any k,m > 0 one has
(1.1.3) (70,k)+Op v (m) = Egx V™,
where we write mjx = mj410---omg : PrV — P;V forany 0 < j < k, and Op, v (1)
denotes the tautological line bundle over P,V = P(Vi_y).

More generally, for a k-tuple (a;, ..., ax) € N¥, we write
Opv(ag,....a1) = Op,y(ak) @ mp_y 1 Op v (ak—1) ® -+ @ 7] 1 Op v (ar).

The fundamental vanishing theorem shows that the jet differentials vanishing along any ample
divisor give rise to obstructions to the existence of entire curves.

THEOREM 1.1 (Demailly, Green-Griffiths, Siu-Yeung). — Let (X, V) be any direct mani-
fold equipped with an ample line bundle <7. For any non-constant entire curve f : C — X
tangent to V, and any € H(PyV, Opyv (ak, ... a1) ® gy, ") with (ay, ..., ax) € Nk,
one has fix1(C) C (w = 0).

Observe that for any non-constant entire curve f : C — X tangent to V/, the image of its
lift fix1 : C — PV isnotentirely contained in Py Vsing Inview of Theorem 1.1, we introduce
the following definition.

DEFINITION 1.2. — Let X be a projective manifold. We say that X is almost k-jet ample
if there exists some (ay, . ..,ax) € N¥ so that Ox, (ak, ..., ay) is big and its augmented base
locus B4 (ﬁxk (ag, .- ,al)) C szg. In particular, X is Kobayashi hyperbolic.

Note that almost 1-jet ampleness is equivalent to the ampleness of cotangent bundle.

1.2. Brotbek’s Wronskians

This subsection is devoted to the study of the Wronskians defined by Brotbek in [3,
§2.2]. Let X be an n-dimensional compact complex manifold. Recall that for any holo-
morphic line bundle L on X, one can define the bundle JXL of k-jet sections of L by
JKLy = O(L)x/(mk+1 . O(L)y) for every x € X, where m, is the maximal ideal of Oy.
Pick an open set U C X with coordinates (zi,...,z,) so that L,y can be trivialized by
a nowhere vanishing section ey € L(U). The fiber J¥L, can be identified with the set of
Taylor developments of order k

Z cy(z —x)Y ey,

lyI<k
and the coefficients {c, },enn <k define coordinates along the fibers of J¥ L. This in turn
gives rise to a natural local trivialization of J* L defined by

Wy U xChk 5 gk Ly,
(x,¢cy) — Z cy(z —x)Y ey,

veln k
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ON THE DIVERIO-TRAPANI CONJECTURE 793

where I, == {y = (y1,....vx) € N* | |y| < k}. Observe that there exists a C-linear
morphism

jFL—JkL,

which is not a morphism of &x-modules, defined as follows. For any s € L(U), define

(1.2.1) JEE) =) — (xX)(z —x)" -ev,
y! 0dzv
lyI<k
where sy € O(U)sothats = sy - ey. When L = Ox, we simply write j* := j§ .

The jet bundle J¥ L will be used to interpret the canonical derivative D : ¢(E I?YC;T;) —

O(EZS ni1Tx) defined in (1.1.1) in an alternative way. Let us first give a more precise
expression of D.

LemMma 1.3. — Take any open set U C X with coordinates (21, . . ., zy). Forany k > 1, and
any holomorphic function s € O'(U), one has
(1.2.2) D*(s)(z) = > Cha(2)(d'2)*1 (d?2)*2 - (d*2)™ € EZST(U)

loq [+2]az |4tk |=k

such that for each @ = (a1,...,ax) € (NYk, cka(z) € OWU) is a Z-linear combination
gl .
of $55(z) with |y| = y1 + -+ + yn < k.

Proof. — We will prove the lemma by induction on k. For k = 1, we simply have

D(s)=ds=) %(z)dzi e Ty (U),

i=1
and thus (1.2.2) remains valid for k = 1.
Now we assume that D¥(s) has the form (1.2.2). By (1.1.1), one has

Dk+1(s) —

k—1
Z (Z Z Ck,a(Z)(dlZ)al ”_(diz)ot,'—ej (di+lz)ai+1+Ej ~~(de)0‘"’

leey |[+2|an |[+++klag |=k \i=1 j=1,.n
aj—e; eN”

" Z 36’1505-(2) (dlz)al+ej (dkz)ak + Z Ck’a(Z)(dIZ)al (dkz)ozk—ej (dk+lz)ej>7

z
j=1 J j=1,..n

ai—e; €N

where e; denotes the vector in N” with a 1 in the jth coordinate and 0’s elsewhere. By the

dck o (2)

assumption, for every j = 1,...,n and every o, —5=
J

€ 0(U) is a Z-linear combination

of "’a'?f (z) with |y| = y1 + -+ + y» < k + 1. From the above expression we conclude that
(1.2.2) also holds true for D¥+1(s). The lemma follows. O

It follows from (1.2.1) and Lemma 1.3 that there exists a morphism of Ox-modules,

denoted by j¥D : Jkoy — E,S,?T;, so that DX : 0y — E,S’]S’T; factors through j*¥D,
that is, DX = j*¥D o jk.
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794 Y. DENG

Following [3], given k + 1 holomorphic functions gy, ..., gx € €(U), one can associate
them to a jet differentials of order k and weighted degree k’ := @, say Wronskians, in
the following way

go &1 - 8k

D(go) D(g1) -+ D(gr)
(1.2.3) Wu(go, .-, 8k) == . . . .

€ EgeTy ().
D*(g0) D*(g1) - D*(gx)
It follows from [3, Proposition 2.2] that Wronskians are indeed invariant jet differentials.
From its alternating property, Wy induces a C-linear map, which we still denoted by
Wy : AK¥T10(U) — Ej Ty (U) abusively. By the factorization property of DX, Wy gives
rise to a morphism of &y -module
ijﬁU N Ak+1JkﬁU d Ek’k/TJ'

so that one has

Wu (8o, - 8) = Wyk gy, (7% (g0) A=+ A ¥ (g0))-
In other words, Brotbek’s Wronskians Wy can be factorized as follows.
(1.2.4)

k+1 AR b gk k+1 sk Wikoy N
Wy : N1 OU) ——— AT (I 0y (U)) - (AT I500)(U) — Exp TS (U).

Now we consider the Demailly-Semple k-jet tower X; of (X, Tx). For the open set
Ug :=my }C(U ) of X, the coordinate system (zi,...,z,) on U induces a trivialization
Ur ~ U xR, ., where R, ; is some smooth rational variety introduced in [9, Theorem 9.1].
Hence

(1.2.5) Ox, (D1vy = pr3(Ok,, ;. (1),

where pr, : U = U x R,x — R, is the composition of the isomorphism with
the projection map. By (1.1.3), we conclude that, under the above trivialization, the direct
image (7o,x )« induces a local trivialization of the vector bundle Ey 4T

(1.2.6) ou 2 U x HO Ry g, O,  (K)) = Exp Tg.
Write F,x := H°(R,k. O, ,(k')). Therefore, under the trivializations ¢y and Wy,
the morphism of Oy-module Wy, is indeed constant, i.e., there is a C-linear map
Vp g @ AKHICInk — F, 4 such that one has the following diagram.

1y xXvy, i
U x ARFICInk —— 25U x Fop

Yy ll ¢ ¢ Ile
Wyke
A TR Gy s By o T
Denote by J, x C O, , the base ideal of the linear system [Im(v, )| C |0k, , (k")|, and set
g to be the ideal sheaf pr5(J, &) on Uy.
By [3], Wronskians can also be associated to global sections of any line bundle L. Take an

open set U C X with coordinates (z,...,z,) so that Ly can be trivialized by a nowhere
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ON THE DIVERIO-TRAPANI CONJECTURE 795

vanishing section ey € L(U). Consider any sg,...,spy € H°(X,L). There exists unique
siv € O(U)sothats; = s;y-ey foreveryi =0,..., k. It was proved in [3, Proposition 2.3]
that the section

(1.2.7) Wy (So,u, .- k) - ebt € (Exw Ty @ LFTHY(U)

18 intrinsically defined, i.e., it does not depend on the choice of eyy. Hence they can be glued
together into a global section, denoted to be W(sy, ..., sx) € HO(X, Ex Ty ® L*¥*1). Set

(1.2.8) (50, - .5%) 1= ()5 W(so. ... 5) € HO(Xi, O, (k') ® mg LK1

to be the inverse image of the Wronskian W (sy, ..., sx) under (1.1.3).
Following [3, §2.3], define
W(Xg, L) : = Span{w(sg,...,Sn) | $0,-..,8 € HO(X,L)}
C H°(Xy. Ox, (k') ® 7 L)
and define the k-th Wronskian ideal sheaf of L, denoted by (X, L), to be the base ideal

of W(Xg, L). It was also shown in [3, §2.3] that if L is very ample, one has a chain of
inclusions

w(Xe, L) Cro(Xg, L?) C-- Cro(Xg, L™ C---.
By noetherianity, this increasing sequence stabilizes after some mqoo (X, L) € N, and the
obtained asymptotic ideal sheaf is denoted by (X, L). Let us mention that meo (X, L)
concerns the first noetherianity argument in [3], and in the rest of this subsection we will
apply our new interpretation of Brotbek’s Wronskians in (1.2.4) to render mqo (X, L) effec-

tive. The strategy is to compare the globally defined Wronskian ideal sheaves {ro (X, L™)}men
to the intrinsic ideal sheaf tog 7.

One direction is easy to see from the very definition of to(Xg, L). By (1.2.7), for any
S0, ...,8¢ € H°(X, L), the Wronskian can be localized by

W(sos- .- 8o = Wy (Sou.. .. skp) -5t € (Exw Ty @ LFTH(U).

We denote by wy(sou.....Sku) € Ox,(k')(Ux) the corresponding element of
Wy (so,u,-...Sk,u) under the isomorphism (1.1.3), where Uy := no_,,i(U). In view of
(1.2.5), one has Oy, (k')(Ux) ~ H°(U,U x F, x), or more precisely,

HOW. ALk ) — 570 o Ex i TE)
2|l%1 2%%—,'
HOU.U x AMHICI) 2 o, U x Fy ).
By (1.2.4), Wy (so.u. - .- sk,u) = Wk g, (i ¥s0u A+ A j¥si,u). Hence

(1.2.9) oy ($0,Us -+ sk,v) = (lu X vur) o WG (FFsou A A jFsew).

Recall that 3, C Ok, , is the base ideal of the linear system [Im(v, )|, and gy is
defined to be the ideal sheaf pr5(J,x) on Uy =~ U x R, . By (1.2.9), the base ideal
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of wy (so,u. ..., Sku)iscontained inwy . As s, ...,k € HO(X, L) are arbitrary, this leads
to
(1.2.10) w0 (Xg, L) U C WU

Now we further assume that the line bundle L separates k-jets everywhere, i.e., the
C-linear map

H°(X,L) i HO(X,J*L) - JkL,
is surjective for any x € X. Then
ATTHO (X, L) > A o) L A IR Gy (U) — AR IR G ~ ATk
is also surjective for any x € U. By (1.2.9) again,
Im(vy ) = Span{wy (S0,u. - - -, Sk,U) H{x}xRy 4 | S04+ 5k € HO(X, L)},

where we identify {x} x R, with the fiber . }c(x). Write ¢, to be the composition
Rogx = {x} xRy —> U xRy = Uy — X. This in turn implies that

Gro(Xg, L) == ;' (X, L) B0y, Orns = Tnik-

It follows from wy iy := pr3J, i that to(Xg, L)y, = tog . By the inclusive relation (1.2.10),
one has

(1.2.11) mk,U = l‘O(Xk, L)[Uk = l‘O(Xk, Lz)yUk == m(Xk,Lk)[Uk = ...,
As is well-known, A¥ separates k-jets everywhere once A is very ample. By (1.2.11), we

conclude the following result.

THEOREM 1.4. — Let X be a projective manifold, and let A be a very ample line bundle on X .
Then vo(Xg, A¥) = w000 (Xg, A) and moo(X, A) = k.

Moreover, it follows from the relation (1.2.11) that the asymptotic Wronskian ideal sheaf
isintrinsically defined, i.e., tooo (X%, L) does not depend on the very ample line bundle L. This
reproves [3, Lemma 2.8]. It also allows us to denote by tv (X ) the asymptotic Wronskian
ideal sheaf.

REMARK 1.5. — Inajoint work with Brotbek [6], we generalize the alternative interpretation
of Wronskians by jets of sections of line bundles in this subsection to the logarithmic settings.

1.3. Blow-up of the Wronskian ideal sheaf

This subsection is mainly borrowed from [3]. We will state some important results without
proof, and the readers who are interested in further details are encouraged to refer to [3, §2.4].
Let us first recall the following crucial property of the Wronskian ideal sheaf in [3].

LEMMA 1.6 [3, Lemma 2.4]). — Let X be a projective manifold equipped with a very ample
line bundle L. Then
Supp(&x, /vo(Xk, LF)) C X,

where X Zing is the set of singular k-jets of Xy.
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Based on the above lemma, as was shown in [3], Brotbek introduced a fonctorial birational
morphism of the Demailly-Semple k-jet tower vg : Xx — Xx by blowing-up the asymptotic
Wronskian ideal sheaf (X% ), so that he was able to establish a strong Zariski open property
for hyperbolicity. Indeed, Brotbek even built the strong Zariski open property for almost
k-jet ampleness. We require the following results in [3] to proceed further.

THEOREM 1.7 ([3, Propositions 2.10, 2.11 and 2.13]). — Let X be a projective manifold.

(1)  For any smooth closed submanifold Y C X, the inclusion Y, C Xy induces an inclusion
Y C Xk. Moreover, Yy is the strict transform of Yy in X.

() If

(%) Jag,....ar €N s.t. v Ox,(ak,....a1) ® Oy (—aoF) is ample,

then X is almost k-jet ample. Here F is an effective divisor on Xk defined by
ﬁik (=F) = v (Xg).

(i) Let & 2 T be a smooth and projective morphism between non-singular varieties.
We denote by %krel the Demailly-Semple k-jet tower of the relative directed variety
(X, ToyT). Take vg ,%irel — %krd to be the blow-up of the asymptotic Wron-
skian ideal sheaf moo(%krel). Then for any to € T writing X, = p~'(to), we have
VI X k) = Xeg e

(iv) Property (x) is a Zariski open property. Precisely speaking, in the same setting as above,
if there existst € T such that X, satisfies (x), then there exists a non-empty Zariski open
subset Ty C T such that for any s € Ty, X satisfies (x) as well. In particular, X is almost
k-jet ample for all s € Ty.

2. An effective Nakamaye’s theorem

As mentioned in § 0, both [4] and [3] apply Nakamaye’s Theorem on the augmented base
locus [22] for families of zero-dimensional subschemes to provide a geometric control on base
locus. In this section we render their noetherianity arguments effective.

We start by setting notations as in [3, §3]. Consider V := H°(PY, Gpn (8)), which can be
identified with the space of homogeneous polynomials of degree § in C|[zy, ..., zx]. For any
J CH{0,..., N} we set

Py :={[z0,....2xy] €PN | z; = 0if j € J}.
Given any A € Gri41(V) and [z] € PV, we denote by A([z]) = 0 once P([z]) = 0 for any
P € A C V. Define the universal family of complete intersections to be

(2.1) Y = {(A,[z]) € G (V) x PV | A([z]) = 0}.
Forany J C {0,..., N}, set
2.2) Yy =% N (Gre1 (V) x Py).

Letusdenote by p : # — Gry41(V)and g : % — PV the projection maps. The next lemma
is our starting point.
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LEmMA 2.1. — Forany J C{0,...,N}, %5 — Py isalocally trivial holomorphic fibration
with fibers isomorphic to the Grassmannian Gr(k +1,dim(V)—1 ) In particular, %y is a smooth
projective manifold.

Proof. — Any linear transformation g € GLxy 41 (C) induces a natural action g € GL(V),
hence also induces a biholomorphism g of Gry; (V). Observe that for any [z] € PV, g
maps the fiber ¢~1([z]) to ¢~ ([g - z]) bijectively. Since GLy+;(C) acts transitively on PV,
the fibration ¢ : # — P¥ can thus be trivialized locally.

Take a special point [eg] := [1,0,...,0] € PV. For any P = Z\I|=8 arz! e v,
P([eg]) = 0 if and only if the coefficient of Zg in P is zero. If we denote by Vj the subspace
of V spanned by {z! | |I| = §,z! # 2§}, then g~ ([eo]) = Grx41(Vo) =~ Gr(k + 1, dim(V) — 1).
The lemma is thus proved. O

Observe that whenk +1 > N, p : & — Gri41(V) is a generically finite to one morphism.
Let us denote by . the very ample line bundle on Gr 4 (V) which is the pull back of &(1)
on P(A¥*1V) under the Pliicker embedding Gry4; (V) < P(AK*1V). Then p*.Zy, is a
big and nef line bundle on % for any J C {0,...,N}. Write py : %5 — Grg41(V) and
qs : %5 — Py for the natural projections, and define

Ey:={y € % | dimy(p;' (ps(»))) > 0}
Gy = pj(Ey) C Gripq (V).

When J = @ we simply write E := Eg and G*™ := G°. By the definition of null locus [20,
Definition 10.3.4], E; = Null(p}.2). It then follows from Nakamaye’s theorem [22] that

B (pjZ) =Null(p; %) =Ey;.

Observe that the line bundle £ X @pn (1) on Gry41 (V) xPV is ample, and so is its restriction
to %;. Hence by the definition of augmented base locus and noetherianity, there exists
my € N such that

(2.3) Bs(L™ X Op, (—1)1a,) =B4(p}L) = E; C p;(G™), VYm >my.

We emphasize that the value M := max{my; | J C {0,...,N}} concerns the second
noetherianity argument in [3] resulting in the loss of effective lower degree bounds dkob,n
in Theorem 0.2.

Instead of requiring (2.3), we will provide a slightly weaker base control but with an
effective estimate on M, which still remains valid in Brotbek’s proof (see [3, Remark 3.13]).

THEOREM 2.2. — Whenm > Sk,for any J C {0,..., N}, one has
(2.4) Bs(L™ K Op, (—1)14,) C p;' (GP).

To prove Theorem 2.2, we construct sufficiently many global sections of Z"X0p, (—1) 2,
in an explicit manner to control their base locus. Precisely speaking, for any A ¢ G, by
definition p;l (A) is a finite set. We will show that for each m > §F there exists an effective
divisor Dp € |.£™ X Op, (—1)2, | so that Da N p;'(A) = 0.

Let us first recall a version of projection formula in intersection theory, which is indeed a
direct consequence of [17, Example 8.1.7].
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THEOREM 2.3 (Projection formula). — Let f : X — Y be a generically finite to one and
surjective morphism between non-singular irreducible varieties, and x (resp. y) be cycle on X
(resp. Y ) of dimension k (resp. dim(X) — k). Then

deg(fe(f*() %)) = deg(y - (),

where f* and f are defined in the Chow group. When the scheme-theoretic inverse image f~1(y)
is of pure dimension dim(X) — k, one has f*(y) = [f~1(y)].

Proof of Theorem 2.2. — We first deal with the case k + 1 = N, and then reduce the
general setting kK + 1 > N to this case.

CLAam 2.4. — Whenk +1=N, HO(Q’/,X’" X ﬁPN(—l)[Q/) £ O for allm > §N—1.

Proof. — Let us pick a smooth curve C in Gry (V) of degree 1 with respect to .Z, given
by

A([to, 1)) := Span(z8, 25, ... 28, t0z% + 112),

where [fo, ;] € P'. Indeed, the curve C is the line in the Pliicker embedding P(AY V) defined
by two vectors z8 A+ Az8_ Az§andz§ A+ AzZS in ANV. Hence Z-C = 1.

Consider a hyperplane D in PV given by {[zo....,zn] | Zo + zy = 0}. Since p : % — Gry (V)
is a generically finite to one and surjective morphism, p.g*D is an effective divisor
in Gry (V).

Since p~!(C) has pure dimension 1, then p*C is a 1-cycle in . An easy computation
shows that p*C and ¢* D intersect only at the point

Span(z8,28, ... 2%, 2% + (1)) x[1,0,...,0,-1] e &
with multiplicity ¥ 1. Hence p*C - ¢* D = §V~'. By Theorem 2.3, one has
C - pu(q*D) = pu(p*C-q*D) = V1.
Note that the Picard group Pic(Gry (V) =~ Z is generated by .#, which in turn implies
.5) peq*D e |27

by the fact that . - C = 1. It follows from Lemma 2.1 that ¢* D is a smooth hypersurface
in %. Since Supp(¢*D) C Supp(p*p«q*D), p*p«q*D — q* D is thus an effective divisor
of %, and by (2.5)

SN—1

(2.6) P*pxq*D —q*D €L KON (-1)19].

The claim follows from the fact that £ is very ample. O
The base locus of |$8N_] X Opn (—1) 2| can be well understood.

CLAIM 2.5. — Foranym > SN the base locus

(2.7) Bs(£™ K Opn (—1)12) C p~(G™).
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Proof. — For given any Ay ¢ G*°, p~1(Ay) is a finite set by the definition of G*. Then
one can take a general hyperplane D € |Opn~ (1) such that D N q(p_1 (Ao)) = 0. By (2.6),
D gives rise to an effective divisor

P*peq*D —q"D €L R Opn (=1) 10|,
For any A € Gry (V), if we denote by
Int(A) := {[z] € P | A([z]) = 0},

then ¢(p~'(A)) = Int(A). Hence the condition D N g(p~'(A¢)) = @ is equivalent
to that Int(Ag) N D = @. On the other hand, for any A € Supp(p«g*D), one has
Int(A) N D # @, and thus we conclude that Ag ¢ Supp(p«g* D). In particular,

P~ (A0) N Supp(p* pq* D — q* D) = 0.
As Ay is an arbitrary point outside G*°, we conclude that

Bs(L*" T R Opn (—1)12) C pH(G™).
Since .Z is very ample, we have

Bs(L" K Opn (—1)19/) C Bs(L?" ™ R Opn (—1)19) € p~1(G™)

for any m > §V~1. The claim is thus proved. O

Let us deal with the general case J 2 . Without loss of generality we can assume
that J = {n +1,...,N}. Forany Ag € ps(%7) \ GP°, the set p;l(AO) = Int(Ag) NPy is
finite. We can also take a general hyperplane D € |Opn~ (1)] such that Int(Ag) N D NPy = 4.
One can further choose a proper coordinate for PV such that D = (z,, = 0).

By Lemma 2.1, ¢%(D N Py) is a smooth hypersurface in . Set F := py(q;"(D NPy))
set-theoretically. Then for any effective divisor H € |.2"| on Gry (V) such that F C Supp(H)

and py (%) ¢ Supp(H),
(2.8) Pi(H)—q5(DNPy) € |L™" R Opn (1)1, |

is an effective divisor of %7 . However, it may happen that for any hyperplane D € |Gpn (1)],
all constructed divisors of the form p.g* (D) will always contain Ag.

Choose a decomposition of V. = V; @ V, such that V; is spanned by the vectors
{z¥ €V | oy = --- = any = 0} and V; is spanned by other z%’s. Let us denote G to be the
subgroup of the general linear group GL (V') which is the lower triangle matrix with respect
to the decomposition of V = V; @ V, as follows:

(2.9) G = {g cGL(V)| g = [i g] B e GL(V2), A € Hom(V, Vz)}.

The subgroup G also induces a natural group action on the Grassmannian Gry (V), and we
have the following

CrLaiM 2.6. — Set H := p«(q*D). Then for any g € G, F C g(H) and there exists a
go € G such that Ay ¢ go(H).
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Proof. — Forany A € Gry(V),choose {s1,...,sy} C V whichspans A. Lets; = u; + v;
be the unique decomposition of s; under V = V; @ V,. Recall that F := py (q;l(D N ]P’J)).
Then

N

(2.10) AeF < (i =0)nP"" 0,

i=1
where P"~1 := {[zq,...,zy] € PN | z; = Ofor j > n} = D NP;, and we can identify V;
with HO (P!, Opn—1(8)).

Forany g € GL(V), g(A) is spanned by {g(s1),...,g(sy)}. By the definition of G, for
any g € G, we have the decomposition g(s;) = u; + v; with respect to V = V| @ V, which
keeps the V; factors invariant. Then g(F) = F for any g € G by (2.10). The first statement
follows from the fact F C H.

Now we take {t1,...,txy} C V which spans Ay. Denote t;, = u; + v; to be the
decomposition of #; under V = V; @ V,. By our choice of D, Int(Ag) N P"~! = @, which
is equivalent to ﬂfvzl(u,- = 0) NP""! = @ by (2.10). We can then choose the proper basis
{t1,...,tn} spanning Ay, so that

i) Nz, =0)NP~! =g

(i) forsomem > n, {uy,...,un} is a set of vectors in V; which is linearly independent;
(lll) Up+1 = =UN = 0.

Then (/_,(u; = 0) N {z, = 0} = PN :={[zg,...,zy] € PV | z; = O for j < n}, and
{Um+1,...,Vvn} 1s a set of linearly independent vectors in V5.

Take a point A’ € Gry (V) spanned by

1 = uq

Iy = Up

g - )
In41 = Unt1 + Z, 44

fm = U + 28

z . §
Im+1 = Um+t1 + Z,Sn.H =Zma

in=uny+28 =25

Then one can easily observe that Int(A’) N (z, = 0) = @, which is equivalent to that
A ¢ H = p.qg*(D). We will find a g¢g € G such that go(A") = Ao.

Indeed, since {vy+1,...,vn} C Vo and {uq,...,u,} C Vi are both linearly independent,
we can find a B € GL(V3) such that B(zf) =v; foralli > m+ 1,and A € Hom(Vy, V»)
satisfying that

A(u;) = v; for 1<i <n,
A(uj) =v;j— B(z}) for n+1<j<m.
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10
Set g := [A B:| which is of the type (2.9). We have

go(A") = Span{go(71).....go(fn)} = Span{ry,....tx} = Ao.
Recall that A’ ¢ H. Then Ag ¢ go(H) and we finish the proof of the claim. O
Since H € |.#3" 7| by (2.5), we claim that go(H) € [.#3"7'|. Indeed, since the
complex general linear group GL (V) is connected, the biholomorphism of Gry (V') induced

by go € GL(V) is homotopic to the identity map, and thus H and go(H) lie on the same
linear system. By Claim 2.6, F C go(H) and A¢ ¢ go(H). By (2.8), the divisor

* * N—1
P3(go(H)) —q3(DNPy) €L K Opn(—1)19, |

is effective and avoids the finite set p;l (Ap).

Note that A9 € Gry(V) is an arbitrary point in p;(#7) \ G$°. This in turn proves
Theorem 2.2 for the case k + 1 = N.

Let us show how to deal with the general casesk +1 > N.

Forany J C {0,..., N}, one can see P; C PV as subspaces of Pk*1 defined by

PN = {lzo,....zks1] € PKT | zygr = -+ = zgqy = O},

Py = {[z0,....zkt1] € PFT! |z, = 0if j e JUAN +1,....k + 1}}.
Set Vi = HO(IP"H, ﬁpk+](8)), and
Py = {(A.[2]) € Grip1 (Vi) x Py | A([z]) = 0}

There is a natural inclusion Grgy1(V) C Grgy1(Vy). Define py : Yy —> Grg4+1(Vg) and
qs : %5 — Py to be the natural projections. Set

G5 :={A € Gry1 (Vi) | p7'(A) is not finite set}.
Hence by the above arguments, for m > 8§, we have
(2.11) Bs(L" ) Opir1 (—1),7,) C 57 (GP),
where ., is the tautological line bundle on Grg 4 (V).

Recall that Z C Gry (V) x PN and %5 C Griy1(V) x Py are the universal families of
complete intersections defined in (2.1) and (2.2). The inclusion ¢ : Gri4+1(V) < Grgyq (Vi)
induces the following inclusions

Wy —— Gr (V) x Py

[ e

Yy —— Gryp1 (Vi) x Py
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Observe that G§° = Gg" N Grg41(V). Note that (.7 := £, which is still the tautological
line bundle on Gry 1 (V). Hence by the above arguments, for m > §%, we have
Bs(Z™" X Opn (1) 12,) = Bs(ZY" W Opr+1(—1) 1)
C Bs(Z" W Opr+1 (=Dyz,) N

C 7GRN (by (2.11))

= 7' (GP).
where py : %5 — Gri1(V)and gy : %5 — P are the projection maps. This in turn proves
Theorem 2.2 for the general casesk + 1 > N. O

REMARK 2.7. — Let us mention that the proof of Theorem 2.2 is indeed constructive, and
we do not rely on the general results by Nakamaye.

Now we are able to apply Theorems 1.4 and 2.2 to prove Theorem B using the explicit
formula of dkob,» in [3].

Proof of Theorem B. — In [3, p. 18], Brotbek obtained the following formula
dKob,n = moo(X]m d) + 8+ (R + k)(g,

where R := M(k + 1)(moo(Xk, &) + 8 — 1 4+ k§) + 1 with M € N the lower bound of m so
that (2.4) remains valid, and one can take k = n—1, § = n? by [3]. By Theorems 1.4 and 2.2,
we can take moo (Xg, /) =k =n —1,and M = §¥ = §"~1. Hence

dkobn < Moo(Xg, &) + 8+ (R +k)S
=+ 6+ 8(850 + Dk + 8~ 1+ k8) + 1 +k)
=" w3 4n-2)+nd+n*4+n-1
<n¥ 34 1),

and the theorem follows. O

REMARK 2.8. — Along Siu’s line of slanted vector fields on higher jet spaces outlined in
[24], Diverio-Merker-Rousseau [14] first proved the weak hyperbolicity (say that a projective
variety X is weakly hyperbolic if all entire curves lie in a proper subvariety Y C X ) of general
hypersurfaces in P" of degree d > 20=0° This lower bound was improved by Demailly [10]
tod > L% (n log (n log(24n)))nJ, and the latest best known bound d > (5n)*n" was obtained
by Darondeau [7]. Very recently, Demailly [11] gave a simple proof of the Kobayashi conjecture
as well as an effective lower bound dgob,n = é(e(n - 1))2n for the degrees.

Now we will generalize Theorem 2.2 to the cases of products of Grassmannians. Let us
fix c,k,n € Nwith c¢(k + 1) > n. Write Vs, := H°(P", Opn(§;)) and G := []i_; Gri41(Vs,)

for any (81,...,8.) € N°. Set # to be the universal family of complete intersections defined
by
(2.12) D ={(A1,...,A:[2]) eGP | Ai([z]) =0, Vi =1,...,c}.
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Denote by p :  — G and ¢q : % — P" the projection maps. Then p is a generically finite
to one morphism. Define a group homeomorphism

(2.13) & . 7° — Pic(G)
a=(ay,...,a;) — ﬁGrk+l(V81)(a1) X...-X ﬁGrkH(Vsc)(ac)v
which is indeed an isomorphism.
Let us introduce c—smooth curves Cq,...,C. on G, deﬁned by
Ai([to, 1)) := Span(zl ; c+1"' kc-H) xSpan(22 ’ C+2"' kc+2) x
x Span(toz’ + 1,280z f+,,---72k’;+i) x -+ x Span(zf »ch’---’ (812+1)c)
for [tg, t;] € P!. It is easy to verify that .#(a) - C; = a; for each i. Consider the hyperplane

D; € |Opn(1)| given by {[zo,...,2zn] | zi + zo = 0}. Then we have the similar result as
Claim 2.4.

LeEmMA 2.9. — Suppose that n = k(c + 1). For any hyperplane D € |Opn(1)],

* c HJ 15k+1
p«q* D € | Z(b)|, whereb := (b1,...,b.) € N withb; : T.

Proof. — 1t is easy to show that p*C; and ¢* D; intersect only at one point with multi-
plicity b; foreachi = 1,...,c. By the projection formula in Theorem 2.3, one has

(2.14) (p«q™Di) - Ci = p«(q"Di - p*Ci) = b;.

Recall that Z(a) - C; = a; for any a € Z¢. Then p.q*D € |-Z(b)| by (2.14). O
By similar arguments as Claim 2.5, £ (b) X 0pn (—1) 4 is effective, and its base locus

(2.15) Bs(Z(b) K Opn(—1)12) C p~'(G*),

where G*° is the set of points in G at which the fiber in % is positive dimensional. We can

apply the same methods in proving Theorem 2.2 to obtain a more general result.

THEOREM 2.10. — Let % be the universal complete intersection defined by

Y= {(Ar..... Acz]) € [ [ Griga (V) x P" | A([z) =0.¥i =1,....c}.
i=1

where Vs, = HO°(P", Opn(8;)), and (k + )¢ > n. For any J C {0,...,n}, define
¢_ gkl
Yy =% N[li—; Grks1(Vs,) x Py. Then foranya = (ay, ... ,ac) € N¢ witha; > %

fori =1,...,c, the base locus
Bs(.£(a) ® Opn (—1)12,) C p7'(GP),
where G§° is the set of points in [Ti—1 Gr41(Vs,) at which the fiber in % is positive dimen-

sional.

REMARK 2.11. — Very recently, Brotbek and the author [5, 6] extended the techniques in
[4, 3] to the logarithmic settings using meromorphic connections, and we proved

(1) the logarithmic analogue of the Debarre conjecture: for general hypersurfaces
Hy,...,Hy € |Opn(d)| withd > (4n)" and D := Y !_, H; simple normal crossing, the
logarlthmzc cotangent bundle Qpn (log D) is almost ample;
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(1) a result towards the orbifold Kobayashi conjecture by Rousseau [23]: for general hyper-
surfaces H € |Opn(d)| withd > (n + 1)"*3 . (n 4+ 2)"*3, the Campana orbifold
(P", (1 — %)H) is orbifold hyperbolic.

Let us mention that we have to apply Theorem 2.10 to obtain the effective lower bounds of degrees
in[5, 6].

3. On the Diverio-Trapani Conjecture

In this section, we apply the techniques in [4, 3] to prove Theorem C. Let us mention that
§ 3.1 is not self-contained, and we strongly recommend the readers who are interested in
further details to refer to the paper [3].

3.1. Families of Fermat-type Hypersurfaces

In [3], Brotbek introduced the families of Fermat-type Hypersurfaces as a candidate for
the examples satisfying a strong Zariski open property for hyperbolicity. In this subsection,
we briefly recall his constructions and the essential techniques in [3] which will be used in the
proof of Theorem C.

Let X be an n-dimensional projective manifold endowed with a very ample line bundle A.
We fix n + 1 sections in general position 1o, . .., 7, € H%(X, A). Let us fix a positive integer r
and k. For any &,8 € N, set V5 := H?(P", Opn(8)), and A, 5 := H(X, A*) ® V. Consider
forany a := (a; € H°(X, A%)) € A, s, the hypersurface H, in X defined by the zero
locus of the section

|I]=6

(3.1.1) o(@:= Y a1 e HO(X, A™),
|[I|=48
where m = & + (r + k)8 and t"+R1 = (r(i,o et for I = (ig, ..., in). Consider the

universal family

Hes =1{a.x) € Agg x X | o(a)(x) = 0}
There exists a Zariski open set of AJ% C A, 5 so that over AY%, J7; s is a smooth family. Let
us also denote by J7; 5 — A% the restrict family, /7, rgl ¢ the (relative) Demailly-Semple k-jet
tower of (s, T, 5/ Asm ), and jiirgl « the blow-up of %”;gl « defined in Theorem 1.7.

Let us define a finite set 2= Ugyincto..m(@ = -+ = 15, = 0) of X, and write
X°:= X \ . Denote by X} := (o o vr) ' (X°). We can shrink A to a Zariski open set
so that 7 s C A¥ x X° and, a fortiori, J%rgl g CAMS X Xp.

We need to cover X by a natural stratification induced by the vanishing of the t;’s. For
any J C {0, ...,n}, define

Xy={xeX|(x)=0&jeJ},
Py :={z]eP"|z; =0if j € J},
Vg = HO(By. O, ).
X,y := (o 0 vi) " (Xy) and X7 ; := Xp s N X,
We are now in position to recall the main results in [3], which will be applied in § 3.2.
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THEOREM 3.1 (Brotbek). — Fix any r € N. For each ¢, € N, there exists a rational map
(3.1.2) Bgs: Ay x Xp —-> Grpy1(Vs)
induced by Brotbek’s Wronskians. Suppose that € > moo(Xi, A) and § > n(k + 1).

(1) There exisfs a non-empty Zariski open subset A7 ¢ C Al so that the restriction of g5
to A7 ¢ x X} is a regular morphism.

(i) Set .Z to be the tautological line bundle on Gry1(Vs), and F to be the effective divisor
in Xy, defined by ﬁXk (=F) := v (Xg). One has

(3.1.3) OF 5L = vi(Ox, (k) ® my, AKFTVERD) @ g5 (—F).

(ii1) Define a rational map

Wes : Ags x Xi —-» Grgq (Vs) x P
(a, w) = (e 5(a, w), [t (w)]),

where [t"(w)] = [rg (No,k o vk(w)), U 4 (Jt(),k o Vg (w))] The restriction of W, g
to %%;glk factors through %, where % C Gry1(Vs) x P"* is the universal family of
complete intersections defined in (2.1). In other words, for any a € A g, I:Ia,k C )2]? and
W s(Hak) C .

(iv) For any w € X}, there exists a C-linear map

(3.1.4) Pesw Mg — VET

such that O, s is defined at (a, w) € Ag g x )2;(’ if and only if dim [¢, 5 .y (@)] = k + 1. Here
[¢.5.w(@)] denotes to be the subspace in Vs spanned by (k + 1)-vectors ¢ 5 ,, (a). Moreover,
for anya € A2 5, ®,5(a,w) = [¢e5.0 )] € Gris (V).
(v) Same setting as above. For the (unique) J C {0, ...,n} so thatw € )2;] the composition
of C-linear maps
esw - Des M V5k+1 P_w) V,g]fj_l

is surjective. Here py, : Vi — VI is the projection map.

3.2. Families of complete intersections of Fermat-type hypersurfaces

Let us construct families of complete intersection varieties in X cut out by Fermat-type
hypersurfaces defined in § 3.1. As we will see in Theorem 3.4, these examples satisfy the strong
Zariski open property (x) for almost k-jet ampleness defined in Definition 1.2.

Wefixl < ¢c <n—-1,r € Nk > % — 1, and two c-tuples of positive integers
e =(1,....8¢),06 = (61,...,6.) € N°. Consider the family 2 C Ay 5, X+ X Ay 5. X X
of complete intersection varieties in X defined by

(3.2.1)

Z ={@,....ac,x) € Ay 5, X xAg 5. xX |o(a)(x) = =o0(as)(x) =0},
where o (a;) is the section defined in (3.1.1). Let us denote by p : 2 — A, 5, X -+ X Ay 5,
the natural projection, and for any a := (aj,...,a.), set Z, := p~!(a). One can show that
there is a non-empty Zariski open set Agy, C A := A, 5, X--- x A, 5. so that Z, is smooth
for any a € Agy. In other words, for any a € Agy, the c-hypersurfaces H,,, ..., H,, are
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smooth and intersect transversely so that Z, := H,, N --- N H,, is a smooth subvariety
in X of codimension c. Let us also denote by & — Ay, the restricted (smooth) family.
Denote by Q’}gel the relative Demailly-Semple k-jet tower of (2, T4, ), and Qirel its blow-
up defined in Theorem 1.7. Observe that Z, = Hy, x N---N Hy,_  for any a € Ay, and by
Theorem 1.7, one has

(3.2.2) Zak © Hyp g N0 Hy i

Consider a rational map & : A x Xk --% Grg41(Vs,) x -+ x Grg41(Vs,) by taking the
products of (3.1.2). Precisely speaking, ® is defined by

d:Ax )fk --+ Grg41(Vs,) x -+ x Grg41(Vs,)
@r.....a.,w) > (g 5, (@1, W), ..., Pp 5, (ac, w))

Write G := Gryg4q(Vs,)x:--xGrg 11 (Vs, ) for short. As a direct consequence of Theorems 1.4
and 3.1, we have the following result.

THEOREM 3.2. — Assume that e; > k,8; > n(k + 1) foreveryi = 1,...,c. Then

(i) the restriction of ® to A:l 5 XX AZC,SC X X,? is regular.

(i) Set A° := Ag 5y XX A: 5.0 Agm. We also denote by .,%Qk’el — A° the restricted family.
Then szel C A° x X]:

(iii) For any (by,...,b.) € N¢, one has

(3.2.3)

®*L(by,... b)) = ﬁXk Zbk)@n AZ: 1 bi (k+1)(e; +k8;) ®ﬁ Zb)F
i=1

where £ (b, ..., b.) is the tautological line bundle defined in (2.13).
(iv) Define a rational map

Wi A x Xy --> Grq1 (V) x - x Gryeq 1 (Vs ) x P
(@ w) > (P, w). [t"(w)]).

where [t (w)] 1= [rg (No,k o Vg (w)), N 4 (No,k o Vg (w))] The restriction of ¥V to Efk“’l
factors through %', where % C Gr4q(Vs,) %. .. X Grgq1(Vs.) xP" is the universal family
of complete intersections defined in (2.12). In other words, for any a € A°, Za,k cX © and
W(Zax) C .

Proof. — We apply Theorem 1.4 to take moo(Xg, A) = k. (i), (ii) and (iii)) can be
easﬂy derived from Theorem 3.1. To prove (iv), it is enough to show that for any a € A°,
\IJ(Zak) C %.By (3.2.2), for any w € Zak,z =1,...,cand P € ®,, 5, (a;, w), one has

P([r"(w)]) =
This proves (iv) by the definition of % O

Set %y .= %N (G X IP’J) C G xP", and denote by G3° the set of points in G at which the
fiber in % is positive dimensional.
Now we are ready to prove the following lemma, which is a variant of [3, Lemma 3.11].

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



808 Y. DENG

LemMma 3.3 (Avoiding positive dimensional fibers). — Assume that ¢ > k, § >
dmX; = n — Dk +1) +1fori = 1,...,c. Then for any J C {0,...,n}, there
exists a non-empty Zariski open subset Ay C A° such that

>N (GP) N (A x X¢ ;) = 0.

Proof. — We introduce the following analogues of % parametrized by affine spaces

c

D= {0, er. [2]) € [T VEH x Py | V1 <i <e,0 < p < koaip([2]) = 0},
i=1
c

D,y =110, ek, [21) € [[VEG x By | V1 <i <¢,0< p <k,a,([z]) = 0}.
i=1

By analogy with G3°, we denote by V{°; (resp. V ;) the set of points in | V(;;H (resp.
]_[ Vk +1) at which the fiber in @1 J (resp % j) is positive dimensional.
F1x any w € Xk ;- By Theorem 3.1.(iv), for any a = (aj,...,a.) € A° we have

(@, w) = ([¢e,.5,.0 @] . [Pec 50w (@c)]).

where @, 5;.w : Ag; 5, — Vsllf *1 is the linear map defined in Theorem 3.1.(iv). Let us define a

C-linear map

c
Oy A — l_[ VSI’fH
i=1
ar— (‘pal,&,w(al)’ <o Pec bew (ac))-
Then we have
O7H(GP) N (A° x {w}) = ¢, (V) NA° = (pw 0 0u) ™ (V52)) N A®,
where

l_[ Vk+1 s 1_[ Vk+1

i=1
is the projection map. Since the linear map py, o ¢y, is diagonal by blocks, by Theorem 3.1.(v)
we have

rankpy o g = » _(k + 1)dim Vy, ;.
i=1
Therefore
dim(@~1(GF) N (A° x {w})) < dim((pw © gu) ' (VSS)))
< dim(V3?;) + dim ker(py © ¢u)
< dlm(V2 1)+ dim A — rank(py © ¢y)
= dim(V3%)) + dim A — Z(k + 1)dim Vj, ;

i=1

c
= dim A — codim(V5’;, 1_[ V(g]f}l),
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which in turn implies that

c
dim(®71(GF) N A° x X ;) < dim A — codim(VES,, [ [ Vi) + dim X

i=1
By a result due to Benoist [1] and Brotbek-Darondeau (see [4, Corollary 3.2]), we have
c
codim(Vs,, [ V{5 = _min & + 1.

i=1

Therefore, if

(3.2.4) dim X; < min & +1,
1= c

.....

ot (G§°) doesn’t dominate A° via the projection A° x X t.y —> A°, and we can thus find a
non-empty Zariski open subset Ay C A° such that

>N (GP) N (A x X¢ ;) = 0. O

3.3. Proof of Theorem C

We are now in position to prove Theorem C. Indeed, we establish the following more
refined result than Theorem C.

THEOREM 3.4. — Let X be an n-dimensional projective manifold equipped with a very ample
line bundle A. Let ¢ be any integer satisfying 1 < ¢ < n —1, and setk := [2] — 1. Assume
that the multi-degrees (d, .. .,d.) € (N)¢ satisfy the following condition:

35 := (81,...,6.) e N°with§; > g :=n(k +1)fori =1,...,c.
e :=(e1,...,&.) € N withg; > kfori =1,...,c.

c 1—[9_1 8k+1
Ir > Zbi(k + 1)(e; + k&;), where b; := =7
i=1 8i
st. di =¢;i +(r+k);fori =1,...,c.
Then for general hypersurfaces Hy € |A%|,...,H. € |A%]|, their complete intersection

(smooth) variety Z := Hy N ---N H. is almost lg-jet ample for any k > k.

Proof. — Observe that, the choice for (¢, §) and k in the theorem fits all the requirements
in Theorem 3.2 and Lemma 3.3. In the same vein as [4, 3], let us first prove the nefness.

CramM 3.5, — Set Aner := () Ay. For any a € Ay, the line bundle

c c
Vi (Ox Qo bik) @ 75, A1) @ O (=D biF)
i=1 i=1

on Za,k is nef. Here we write q(e,8,r) :==r — Y ;_; bi(k + 1)(&; +k&;) > 0.
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Proof. — To prove that a line bundle on a projective variety is nef; it suffices to show that
for any irreducible curve, its intersection with this line bundle is non-negative. For any fixed
a € Aper, and any irreducible curve C C Za,k, there is a unique J C {0,...,n} such
that C° := )?,j’] N C is a non-empty Zariski open subset of C, and thus C° C .fé;}cJ. It

follows from Theorem 3.2.(iv) that W factors through #; when restricted to .5’,%( J. Hence
W,co also factors through %7, and by the properness of %5, W(C) C #;. By Lemma 3.3
and the definition of A, we have

d(CHNGY =40,
and thus

W(C) ¢ p7'(GP).
By Theorem 2.10, one has

Bs(ZL(b1,....,be) ® Opn (—1)19,) C p7 (GT),
which yields
W(C) - (L(b1,....be) K Opn(—1)120) = W(C) - (L (br,....be) B Opn(—1)19,) = 0.

Write W, : Za,k — % the restriction of ¥ to Za,k. By (3.2.3), we have

c c
Uy (L (b be) B Opn (<)1) = vii (O3, (Y bik') @ 75, A7) @ O (=Y biF) 5, .

i=1 i=1

and thus

c c
C (vi(Ox (Y bik) & m3 A1) @ O (=Y biF) 5, ) 20,

i=1 i=1

which proves the claim. O

By [9, Proposition 6.16], we can find an ample line bundle
vi (Ox, @, ....a1) ® 75, A%) ® O3 (=F)

on fk for some ay, ...,ax € N. Denote by v, ¢ : Za,k — Z, x the blow-up of the asymptotic
Wronskian ideal sheaf w0 (Z, 1) of Z, k. Write A, := Az, and F, := F N Z, k. Therefore,
for any £ > ag, by Claim 3.5 the line bundle

c c
Vi (Oz, ax + ) thik cag—y, . 1) ® mg AP © 0, (= (D thi + 1))
i=1

i=1

c C
= i (Ox, ax + )ik ag—y. ... ar) ® mg AT © Gy (= (D thi + DF), 5
i=1 i=1
is ample for a € Ay, which verifies the condition (x). By the Zariski open property
(%) in Theorem 1.7.(i1), we conclude that there exists a non-empty Zariski open subset
Sample C I—[f=l |Adi| such that for any (Hy,..., H:) € Sample, their complete intersection
Z = HyN---N H, is a reduced smooth variety of codimension ¢ in X, and Z is almost
k-jet ample. By [9, Lemma 7.6], if a complex manifold Y is almost k-jet ample, then it is also
almost lg-jet ample for any k > k. This finishes the proof of the theorem. O
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Let us deduce Theorem C from Theorem 3.4.

Proof of Theorem C. — Let us keep the same notations in Theorem 3.4. We will fix
gg = -+ =& > k = [Z]—1land § := (d,...,0) with §o = n(k + 1). Then
by == b = 8§D I we take

do := So(c(k + 1)(k + 8 + kdo — DSEED™ 11 4+ k) +k,
then any d > dy has a decomposition
d=3080+k)+e

with k < ¢ <k + 89, and

C
r > e8gC DTNk + 1) (k + 80 — 1+ kSo) + 1> > bi(k + 1)(e + kbo).

i=1
satisfying the conditions in Theorem 3.4. Observe that
(3.3.1) do = o(c(k + 1)k + 80 + ko — DSSED™ 14 k) + &

<SS Ve (k + 1)2(80 + 1)

< 2encTEH. [E]c[g]ﬂ.
c

In conclusion, the complete intersection H; N --- N H, of c-general hypersurfaces
Hy,...,H, € |9 withd > 2cncle1+1 . [27¢I¢1+3 js almost k-jet ample for any
k>1—1. O

Let us mention that when 5 < ¢ < n—1, by [4, Corollary 2.9], one can take o := 2n —1,
which is slightly better than that in Theorem 3.4. Now we apply the estimate in [4] to provide
a slight better bound in the case 5§ < ¢ <n— 1.

Proof of Theorem A. — Note that if X is a smooth projective variety whose cotangent
bundle Qy is ample, then for any smooth closed subvariety Y C X, Qy is also ample. Hence
it suffices to prove the theorem for ¢ = [5],k = 1. By (3.3.1) and §p = 2n — 1, one can take

dpevn = So(c(k + 1)(k + 80 + k8o — DKV 14 k) + &
— 4(2n — 1)2M81+1. (%1 F22n—1)+1

L22n—=1D)"P2.(n+ 1) +4n—1
< @n)"t3. 0
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3.4. Proof of Corollary D

This subsection is devoted to prove Corollary D.

Proof of Corollary D. — Recall that the Demailly-Semple k-jet tower Z; of (Z,Tz)
is a locally trivial product as well as its blow-up vi : Zr — Zk along the Wron-
skian ideal sheaf wo,(Z%). Indeed, by § 1.2 for any z € Z there exists an open set U
containing z so that Uy := n(;llc(U) ~ U xRy—ck and woo(Zy) v, =~ PryJn—c i, where
pry : U x Ry—c x = Ry—c k 1s the projection map. Let us denote by py : Rn—c,k — Ry—ck
the blow-up of R, _. x along J,,_. x. Write Uy := v; ' (Uk). Then

(3.4.1) U —— U xRy

Vkl llxuk

Uy —= U x Ry—ck-

It follows from the proof of Theorem 3.4 that there exists ay,...,dx,q € N such that
veOz (g, ...,a1) ® ﬁzk (—qF) is ample. Write mx = mo o vg : Zx — Z. One thus can
take ay,...,ax,q > 0 so that all higher direct images

(3.4.2) R () (v Oz, k... a1) ® O3 (—qF)) =0 Vi >0,

and & = v; Oz, (ag,...,a1) ® ﬁik (—qF) ® n,’;ﬂ%’l is ample for some very ample line
bundle &/ on Z.

CLaM 3.6. — (mp)+ (Vi Oz, (may, ....ma1)® Oy, (—mgqF)) is an ample vector bundle for
eachm > 0.
Proof of Claim 3.6. — Denote by &, = (mx)«(Z"™). From the local trivial product

structure of Z as in (3.4.1), &, 1s locally free for each m > 0.

By (3.4.2) and the degeneration of Leray spectral sequences, one has
H(Z,6n® F)=H (21, L"@nfF) Vi>0,m>0

for any coherent sheaf o on Z. Fix any point y € Z, with the maximal ideal of &'z, denoted
by m,,. As . is ample, there is a positive integer m, > 0 such that

HYZ, 6 ®@my) = HY(Z, L™ @ mfmy) =0 ¥V m > my,

which in turn implies that &, is globally generated at y for allm > m,. As Z is compact, we
can find an integer mo >> 0 such that &, is globally generated when m > mg. Observe that

Em = (i)« (Vi Oz, (mag., ... ,may) ® O3, (—mqF)) ® &/,

where 7 is a very ample line bundle on Z. Hence (nk)*(v;(K Oz, (mag,...,may) ® ﬁzk (—qu))
is a quotient of a direct sum of copies of the very ample line bundle &'z (</™). By the cohomo-
logical  characterization of ample vector bundles in [20, Theorem 6.1.10],
(i)« (Vi Oz, (may, ..., may) ® O, (—=mgqF)) is ample for m > my. O
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By the projection formula
(3.4.3) 7 = (m)«(vi Oz, (ak.....a1) ® Oy, (—qF)) = (mo4)«(Oz (ak. . ...a1) ® Jq).
where J; 1= (i)« ﬁzk (—qF) is the ideal sheaf of Z; with the subscheme €'z, /J, supported
on Z,Scing. By Claim 3.6, for proper ay.....ax.q > 0,v;0z, (ak.....a1) ® ﬁzk(—qF) ®
nfe/~! is very ample. For any regular germ of curve f : (C,0) — (Z,z), its k-th lift
fi) € Z;°®. Hence there exists a global section o € H%(Zy, Oz, (ax., ....a1) ® Hg,kﬂ_l ®Jq)
so that o(fjx)) # 0. Let P, € H*(Z, .7 ® &/~") be the corresponding element of o under

the isomorphism (3.4.3). Hence P,([f]x) # 0. It follows from [9, Proposition 6.16.i]
that # C Ex T, form :=a, + --- + ax. The corollary is thus proved. O
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